In vitro photoautotrophic cultivation of Melocactus zehntneri: insights from allometric characteristics from germination to acclimatization
DOI:
https://doi.org/10.14393/BJ-v40n0a2024-61107Palavras-chave:
Cactus, Light quality, Tissue cultureResumo
Melocactus zehntneri is a species of ornamental relevance suffering anthropogenic pressures, putting its preservation at risk. Thus, alternatives for propagating and conserving this species are needed. This study evaluated the effect of photoautotrophic cultivation of M. zehntneri to produce plants well acclimated to natural conditions. The seeds underwent different imbibition times before in vitro germination. Besides the growth room, a greenhouse hosted the photoautotrophic cultivation of seedlings. Vermiculite replaced agar in the culture medium. The imbibition pre-treatment in distilled water and the growth environments affected some parameters linked to germination. The greenhouse provided better characteristics for plants grown in vitro and for acclimatization than those kept in the growth room. Plants cultivated and acclimated ex vitro in a greenhouse photoautotrophic environment showed improved characteristics regarding ornamental significance.
Downloads
Referências
ANTONGIOVANNI, M., et al. Chronic anthropogenic disturbance on Caatinga dry forest fragments. Journal of Applied Ecology. 2020, 57(10), 2064–2074. https://doi.org/10.1111/1365-2664.13686
ARENCIBIA, A.D., et al. High-performance micropropagation of dendroenergetic poplar hybrids in photomixotrophic Temporary Immersion Bioreactors (TIBs). Industrial Crops and Products. 2017, 96, 102–109. https://doi.org/10.1016/j.indcrop.2016.11.065
BATISTA, D.S., et al. Light quality in plant tissue culture: does it matter? In Vitro Cellular and Developmental Biology – Plant. 2018, 54(3), 195–215. https://doi.org/10.1007/s11627-018-9902-5
BRAVO FILHO, E.S., et al. Melocactus (Cactaceae) no estado de Sergipe (Brasil) e aspectos de sua conservação. Lilloa. 2018a, 55(1), 16–25. https://doi.org/10.30550/j.lil/2018.55.1/2
BRAVO FILHO, E.S., et al. Multiplicação in vitro e aclimatização de Melocactus sergipensis. Lilloa. 2018b, 55(1), 26–36. https://doi.org/10.30550/j.lil/2018.55.1/3
BRAVO FILHO, E.S., et al. Germination and acclimatization of Melocactus sergipensis Taylor & Meiado. Iheringia, Série Botânica. 2019, 74, e2019009–e2019009. https://doi.org/10.21826/2446-82312019v74e2019009
COELHO, P.J.A., FUCK JÚNIOR, S.C.F. AND NASCIMENTO, E. Coleta e conservação ex situ de cactáceas nativas do estado de Ceará. Gaia Scientia. 2015, 9(2), 183–192.
DETTKE, G.A. and MILANEZE-GUTIERRE, M.A. Anatomia caulinar de espécies epífitas de Cactaceae, subfamília Cactoideae. Hoehnea. 2008, 35(4), 583–595. https://doi.org/10.1590/s2236-89062008000400010
DIAS, M.M., et al. Emergência e desenvolvimento da cactácea rabo-de-raposa (Arrojadoa spp) em diferentes meios de cultura e recipientes. Revista Ceres. 2008, 55(2), 117–123.
DIGNART, S.L., et al. Luz natural e concentrações de sacarose no cultivo in vitro de Cattleya walkeriana. Ciência e Agrotecnologia. 2009, 33(3), 780–787. https://doi.org/10.1590/s1413-70542009000300017
FERREIRA, D.F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia. 2014, 38(2), 109–112. https://doi.org/10.1590/S1413-70542014000200001
FLORES, J., GONZÁLEZ-SALVATIERRA, C. and JURADO, E. Effect of light on seed germination and seedling shape of succulent species from Mexico. Journal of Plant Ecology. 2016, 9(2), 174–179. https://doi.org/10.1093/jpe/rtv046
FLORES, J., et al. Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environmental and Experimental Botany. 2011, 71(1), 79–88. https://doi.org/10.1016/j.envexpbot.2010.10.025
GOETTSCH, B., et al. High proportion of cactus species threatened with extinction. Nature Plants. 2015, 1, 1–7. https://doi.org/10.1038/nplants.2015.142
GUERRERO, P.C., et al. Evolutionary change in the germination niche between related species within Neoporteria clade (Cactaceae) is idiosyncratic to habitat type. Gayana. Botánica. 2016, 73(2), 177–182. https://doi.org/10.4067/s0717-66432016000200177
GULMON, S., et al. Spatial relationships and competition in a Chilean Desert cactus. Oecologia. 1979, 44, 40–43. https://doi.org/10.1007/BF00346395
IUCN. The IUCN red list of threatened species, 2019. Available from: http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152094A121521664.en
KOZAI, T. and KUBOTA, C. Developing a photoautotrophic micropropagation system for woody plants. Journal of Plant Research. 2001, 114(4), 525–537. https://doi.org/10.1007/pl00014020
LIMA-NASCIMENTO, A.M., et al. Ethnobotany of native cacti in the northeast region of Brazil: Can traditional use influence availability? Acta Botânica Brasílica. 2019, 33(2), 350–359. https://doi.org/10.1590/0102-33062019abb0166
LINA, A. and ELOISA, L. How do young cacti (seeds and seedlings) from tropical xeric environments cope with extended drought periods? Journal of Arid Environments. 2018, 154, 1–7. https://doi.org/10.1016/j.jaridenv.2018.03.009
LYMPEROPOULOS, P., MSANNE, J. and RABARA, R. Phytochrome and phytohormones: Working in tandem for plant growth and development. Frontiers in Plant Science. 2018, 9, 1–14. https://doi.org/10.3389/fpls.2018.01037
MACHADO, M. The genus Melocactus in eastern Brazil : part I – An introduction to Melocactus. Cactus World. 2009, 27(1), 1–16.
MAGUIRE, J.D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science. 1962, 2(2), 176-77. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
MARTINS, J.P.R., et al. Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell, Tissue and Organ Culture. 2015, 123(1), 121–132. https://doi.org/10.1007/s11240-015-0820-5
MEIADO, M.V, et al. Effects of light and temperature on seed germination of cacti of Brazilian ecosystems. Plant Species Biology. 2016, 31(2), 87–97. https://doi.org/10.1111/1442-1984.12087
MURASHIGUE, T. and SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962, 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
NASCIMENTO, A.V.S., et al. In vitro germination and micropropagation of Myracrodruon urundeuva Allemão (Anacardiaceae). Plant Cell Culture & Micropropagation. 2020, 16, 157–163. https://doi.org/10.46526/pccm.2020.v16.156
OGUCHI, R., et al. Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation. Oecologia. 2008, 155(4), 665–675. https://doi.org/10.1007/s00442-007-0951-4
PÉREZ-MOLPHE-BALCH, E., et al. Tissue culture of ornamental cacti. Scientia Agricola. 2015, 72(6), 540–561. https://doi.org/10.1590/0103-9016-2015-0012
REBOUÇAS, A.C.M.N. and DOS SANTOS, D.L. Influência do fotoperíodo e qualidade de luz na germinação de sementes de Melocactus conoideus (Cactaceae). Revista Brasileira de Biociências. 2007, 5(supl 2), 900–902.
REIS, M.V., et al. In vitro germination and post-seminal development of plantlets of Pilosocereus aurisetus (Werderm.) Byles & G.D. Rowley (Cactaceae). Revista Ceres. 2012, 59(6), 739–744. https://doi.org/10.1590/S0034-737X2012000600001
RESENDE, S.V., LIMA-BRITO, A. and DE SANTANA, J.R.F. Influência do substrato e do enraizamento na aclimatização de Melocactus glaucescens Buining & Brederoo propagados in vitro. Revista Ceres. 2010, 57(6), 803–809. https://doi.org/10.1590/s0034-737x2010000600016
RESENDE, S.V., et al. In vitro seed germination and plant growth of “cabeça-de-frade” (Cactaceae). Revista Caatinga. 2021, 34(1), 1-8. http://dx.doi.org/10.1590/1983-21252021v34n101rc
RIBEIRO, E.M.S., et al. Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology. 2015, 52(3), 611–620. https://doi.org/10.1111/1365-2664.12420
SÁEZ, P.L., et al. Effect of photon flux density and exogenous sucrose on the photosynthetic performance during in vitro culture of Castanea sativa. American Journal of Plant Sciences. 2016, 07(14), 2087–2105. https://doi.org/10.4236/ajps.2016.714187
SANTOS, P.A.A., et al. Do different cultivation environments influence the germination and initial growth of three threatened Brazilian cacti species? South African Journal of Botany. 2020, 132, 363–370. https://doi.org/10.1016/j.sajb.2020.05.011
ŠEVČÍKOVÁ, H., et al. Mixotrophic in vitro cultivations: the way to go astray in plant physiology. Physiologia Plantarum. 2019, 167(3), 365–377. https://doi.org/10.1111/ppl.12893
SILVA, S., et al. Plano de ação nacional para a conservação das Cactáceas. Brasília: Instituto Chico Mendes de Conservação da Biodiversidade, 2011.
TORRES-SILVA, G., et al. In vitro shoot production, morphological alterations and genetic instability of Melocactus glaucescens (Cactaceae), an endangered species endemic to eastern Brazil. South African Journal of Botany. 2018, 115, 100-107. https://doi.org/10.1016/j.sajb.2018.01.001
YANG, L., et al. The role of light in regulating seed dormancy and germination. Journal of Integrative Plant Biology. 2020, 62(9), 1310–1326. https://doi.org/10.1111/jipb.13001
ZAPPI, D. and TAYLOR, N. Cactaceae in Flora do Brasil 2020 em construção, 2020. Available from: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB1595
ZERPA-CATANHO, D., et al. Seed germination of pitaya (Hylocereus spp.) as affected by seed extraction method, storage, germination conditions, germination assessment approach and water potential. Journal of Crop Improvement. 2019, 33(3), 372–394. https://doi.org/10.1080/15427528.2019.1604457
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Joedna Alves Campos , Ane Marcela das Chagas Mendonça, Augusto Vinícius de Souza Nascimento, Geovane da Silva Dias , Luciano Coutinho Silva , Marlucia Cruz de Santana , Carlos Dias da Silva Júnior , Paulo Augusto Almeida Santos
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.