Toxicity of Bacillus sp. (Bacillales: Bacillaceae) on the fungus gnats, Bradysia aff. ocellaris larvae (Diptera: Sciaridae)

Autores

  • Adriane da Fonseca Duarte Universidade Federal de Pelotas
  • Juliano Lessa Pinto Duarte Universidade Federal de Pelotas
  • Liliane Nachtigall Martins Universidade Federal de Pelotas
  • Lucas Raphael da Silva Universidade Federal de Pelotas https://orcid.org/0000-0001-6124-8737
  • Nycole de Souza Cunha Universidade Federal de Pelotas
  • Fábio Pereira Leivas Leite Universidade Federal de Pelotas
  • Uemerson Silva da Cunha Universidade Federal de Pelotas https://orcid.org/0000-0001-8005-4647
  • Daniel Bernardi Universidade Federal de Pelotas

DOI:

https://doi.org/10.14393/BJ-v39n0a2023-59878

Palavras-chave:

Biological Control, Bti, Strawberry, Sustainable management.

Resumo

Bacillus thuringiensis (Bt) Berliner tem potencial para uso no manejo de insetos. Seu uso pode ser uma alternativa para o manejo da Bradysia aff. ocellaris (Comstock), considerada uma das principais pragas do morangueiro em sistema sem solo. Portanto, o objetivo deste trabalho foi avaliar a toxicidade de diferentes bactérias sobre B. aff. ocellaris em bioensaios de laboratório e estufa. Os seguintes isolados foram usados ​​nos experimentos: Bacillus circulans (Bc), B. thuringiensis var. oswaldo cruzi (Bto) ou B. thuringiensis var. israelensis (Bti) e B. thuringiensis var. kurstaki (Btk). No laboratório, larvas de B. aff.  ocellaris mostraram alta suscetibilidade ao isolado Bti (92% de mortalidade) 14 dias após a exposição ao tratamento (DAET). Em contraste, os isolados Bc, Bto e Btk apresentaram mortalidade inferior a 32%, não diferindo do tratamento controle (água - mortalidade de 22%). De acordo com as curvas concentração-resposta, os valores de concentração letal LC50 e LC90 foram 4 x 106 UFC.mL-1 e 4 x 1015 UFC.mL-1. Ao aplicar Bti (4 × 1012 CFU.mL-1) na base de plantas de morangueiro crescendo em vasos plásticos contendo substrato de planta comercial, houve redução de 26% na emergência de B. aff. ocellaris foi observado. De acordo com esses resultados, o isolado Bti é considerado promissor para a formulação de bioinseticidas à base de Bt para o manejo de B. aff. ocellaris na cultura do morangueiro.

Downloads

Não há dados estatísticos.

Referências

ABOUSSAID, H., et al. Biological activity of Bacillus thuringiensis (Berliner) strains on larvae and adults of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Journal Environmental Protection. 2010, 1, 337–345. https://doi.org/10.4236/jep.2010.14040

ALBEROLA, T.M., et al. Insecticidal activity of strains of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). Journal Invertebrate Pathology. 1999, 74, 127–136. https://doi.org/10.1006/jipa.1999.4871

ANDREADIS, S.S., et al. Efficacy of Beauveria bassiana formulations against the fungus gnat Lycoriella ingenua. Biology Control. 2016, 103, 165–171. https://doi.org/10.1016/j.biocontrol.2016.09.003

ARIMOTO, M., et al. Molecular marker to identify the fungus gnat, Bradysia sp. (Diptera: Sciaridae), a new pest of Welsh onion and carrot in Japan. Applied Entomology Zoology. 2018, 53, 419–424. https://doi.org/10.1007/s13355-018-0563-y

BEN-DOV, E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins. 2014, 6, 1222–1243. https://doi.org/10.3390/toxins6041222

BRASIL . Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Agrofit—Sistema de agrotóxicos fitossanitários, 2020, Available from: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons

BRAVO, A., GILL, S. S. and SOBERON, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007, 49, 423–435. http://doi.org./10.1016/j.toxicon.2006.11.022

BROADLEY, A., KAUSCHKE, E. and MOHRIG, W. Black fungus gnats (Diptera: Sciaridae) found in association with cultivated plants and mushrooms in Australia, with notes on cosmopolitan pest species and biosecurity interceptions. Zootaxa. 2018, 4415, 201–242. https://doi.org/10.11646/zootaxa.4415.2.1

BUENTELLO-WONG, S., et al. Characterization of cry proteins in native strains of Bacillus thuringiensis and activity against Anastrepha ludens. Southwest Entomology. 2015, 40, 15–24. https://doi.org/10.3958/059.040.0102

CARVALHO, J.R., et al. Análise de probit aplicada a bioensaios com insetos. Colatina, IFES, 2017.

CASTILHO, R.C., et al. The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. Integrated Journal Pest Management. 2009, 55, 181–185. https://doi.org/10.1080/09670870902725783

CHEN, C., et al. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology. 2017, 26, 868–875. https://doi.org/10.1007/s10646-017-1817-0

CLOYD, R.A. Ecology of fungus gnats (Bradysia spp.) in greenhouse production systems associated with disease-interactions and alternative management strategies. Insects. 2015, 6, 325–332. https://doi.org/10.3390/insects6020325

CLOYD, R.A. Management of fungus gnats (Bradysia spp.) in greenhouses and nurseries. Floricultural Ornamental Biotechnology. 2008, 2, 84–89.

CLOYD, R.A. and DICKINSON, A. Effect of Bacillus thuringiensis subsp. israelensis and neonicotinoid insecticides on the fungus gnat Bradysia sp nr. coprophila (Lintner) (Diptera: Sciaridae). Pest Management Science. 2006, 62, 171–177. https://doi.org/10.1002/ps.1143

ClOYD, R. A. and ZABORSKI, E. R. Fungus gnats, Bradysia spp. (Diptera: Sciaridae), and other arthropods in commercial bagged soilless growing media and rooted plant plugs. Horticultural Entomology. 2004, 97, 503-510. http://doi.org/10.1603/0022-0493-97.2.503

COSSENTINE, J., ROBERTSON, M. and XU, D. Biological Activity of Bacillus thuringiensis in Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology. 2016, 109, 1071-1078. http://doi.org/10.1093/jee/tow062

CRICKMORE, N., et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Review. 1998, 1998, 807–813. http://doi.org/10.1128/mmbr.62.3.807-813.1998

DUARTE, A. da F., et al. Evaluation of Cosmolaelaps brevistilis and Stratiolaelaps scimitus (Mesostigmata: Laelapidae) as natural enemy of Bradysia aff. ocellaris (Diptera: Sciaridae). Systematic and Applied Acarology, 2021.

DUARTE, A. da F., et al. Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg). Ecotoxicology. 2020, 29, 148–155. https://doi.org/10.1007/s10646-020-02164-w

ERLER, S., et al. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecology and Evolution. 2009, 4, 3960–3967. http://doi.org/10.1002/ece3.1252

ESTRUCH, J. J., et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Science of the United States of America. 1996, 93, 5389-5394. http://doi.org/10.1073/pnas.93.11.5389

FEDERICI, B. A., PARK, H. W., and SAKAN, Y. Insecticidal Protein Crystals of Bacillus thuringiensis. In: J. M. SHIVELY (ed.) Inclusions in Prokariotes, 2006, p. 195–293. Springer-Verlag, Berlin Heidelberg.

FRANKENHUYZEN, K. V. Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal Invertebrate Pathology. 2009, 101, 1–16. https://doi.org/10.1016/j.jip.2009.02.009

FRANKENHUYZEN, K. V. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. Journal Invertebrate Pathology. 2013, 114, 76–85. https://doi.org/10.1016/j.jip.2013.05.010

FREIRE, R.A.P., et al. Biological control of Bradysia matogrossensis (Diptera: Sciaridae) in mushroom cultivation with predatory mites. Experimental and Applied Acarology. 2007, 42, 87–93. https://doi.org/10.1007/s10493-007-9075-0

GEISLER, F.C.S., et al. Toxicity of bacterial isolates on adults of Zaprionus indianus (Diptera: Drosophilidae) and parasitoids Trichopria anastrephae (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae). Journal of Economic Entomology. 2019, 112, 2817–2823. https://doi.org/10.1093/jee/toz218

GOUFFON, C., et al. Binding sites for Bacillus thuringiensis Cry2Ae toxin on Heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Applied Environmental Microbiology. 2011, 77, 3182-3188. http://doi.org/10.1128/AEM.02791-10

ILIAS, F., et al. Insecticidal activity of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Diptera:Tephritidae). Journal Environmental Protection. 2013, 4, 480–485. https://doi.org/10.4236/jep.2013.45056

MARTINS, L.N., et al. Biological Activity of Bacillus thuringiensis (Bacillales: Bacillaceae) in Anastrepha fraterculus (Diptera: Tephritidae). Journal Economic Entomology. 2018, 111, 1486–1489. https://doi.org/10.1093/jee/tox364

MOHRIG, W., et al. Revision of the black fungus gnats (Diptera: Sciaridae) of North America. Studia Dipterologica. 2012, 19, 141–286.

MOLINA, C.A., et al. Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. Applied Environmental Microbiology. 2010, 76, 1320–1327. https://doi.org/10.1128/AEM.01624-09

MOREIRA, G.F. and MORAES, G.J. de. The Potential of free-living Laelapid mites (Mesostigmata: Laelapidae) as biological control agents, In: CARRILLO et al. Prospects for biological control of plant feeding mites and other harmful organisms, 2015, pp. 77–102.

NAVROZIDIS, E.I., et al. Biological control of Bactocera oleae (Diptera: Tephritidae) using a Greek Bacillus thuringiensis isolate. Journal Economic Entomology. 2000, 93, 1657–1661. https://doi.org/10.1603/0022-0493-93.6.1657

OSBORNE, L.S., BOUCIAS, D.G. and LINDQUIST, R.K. Activity of Bacillus thuringiensis var. israelensis on Bradysia coprophila (Diptera: Sciaridae). Journal Economic Entomology. 1985, 78, 922–925. https://doi.org/10.1093/jee/78.4.922

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2018.

SAN-BLAS, E., et al. Biological control of the fungus gnats Bradysia difformis (Diptera, Mycetophilidae) in mushrooms with Heterorhabditis amazonensis in tropical conditions. Science Horticultural. 2017, 216, 120–125. https://doi.org/10.1016/j.scienta.2017.01.003

SAUKA, D. H., et al. PCR-based prediction of type I b-exotoxin production in Bacillus thuringiensis strains. Journal of Invertebrate Pathology. 2014, 122, 28–31. http://doi.org/10.1016/j.jip.2014.08.001

SCHNEPF, E., et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology Molecular Biology Reviews. 1998, 62, 775–806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

SENA, J. A. D., RODRÍGUEZ, H. C. S. and FERRÉ, J., 2009. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Applied Environmental Microbiology. 2009, 75, 2236-2237. http://doi.org/10.1128/AEM.02342-08

SHAMSHAD, A. The development of integrated pest management for the control of mushroom sciarid flies, Lycoriella ingenua (Dufour) and Bradysia ocellaris (Comstock), in cultivated mushrooms. Pest Management Science. 2010, 66, 1063–1074. https://doi.org/10.1002/ps.1987

SHAMSHAD, A., CLIFT, A.D. and MANSFIELD, S. Effect of compost and casing treatments of insecticides against the sciarid Bradysia ocellaris (Diptera: Sciaridae) and on the total yield of cultivated mushrooms, Agaricus bisporus. Pest Management Science. 2009, 65, 375–380. https://doi.org/10.1002/ps.1700

SHISHIR, M.A., et al. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae). Biocontrol Science. 2015, 20, 115–123. https://doi.org/10.4265/bio.20.115

SOBERÓN, M., MONNERAT, R. and BRAVO, A. Mode of action of cry toxins from Bacillus thuringiensis and resistance mechanisms. Microbiology and Toxicology. 2013, 2013, 15-27

TAYLOR, M.D., WILLEY, R.D. and NOBLET, R. A 24-h potato-based toxicity test for evaluating Bacillus thuringiensis var. israelensis (H-14) against darkwinged fungus gnat Bradysia impatiens Johannsen (Diptera: Sciaridae) larvae. International Journal Pest Management. 2007, 53, 77–81. https://doi.org/10.1080/09670870601090000

TOLEDO, J., et al. Toxicity of Bacillus thuringiensis β-exotoxin to three species of fruit flies (Diptera: Tephritidae). Journal of Economic Entomology. 1999, 92, 1052–1056. https://doi.org/10.1093/jee/92.5.1052

VIDAL-QUIST, J.C., CASTAÑERA, P. and GONZÁLEZ-CABRERA, J. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. Journal of Microbiology and Biotechnology. 2010, 19, 749-759. http://doi.org/10.4014/jmb.0810.595

YE, L., et al. Review of three black fungus gnat species (Diptera: Sciaridae) from greenhouses in China: Three greenhouse sciarids from China. Journal of Asia-Pacific Entomology. 2017, 20, 179–184. https://doi.org/10.1016/j.aspen.2016.12.012

WANG, F., et al. Identifcation of Cyt2Ba from a new strain of Bacillus thuringiensis and its toxicity in Bradysia diformis. Current Microbiology. 2020, 77, 2859-2866. https://doi.org/10.1007/s00284-020-02018-y

WANG, Z., et al. Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biology and Biochemistry. 2019, 135, 392-395. http://doi.org/10.1016/j.soilbio.2019.06.004

ZAHIRI, N. S., TIANYUN, S. U. and MULLA, M. S. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. Journal of Medical and Entomology. 2002, 39, 513-520. http://doi.org/10.1603/0022-2585-39.3.513

ZHANG, P., et al. Life table study of the effects of sublethal concentrations of thiamethoxam on Bradysia odoriphaga Yang and Zhang. Pesticide Biochemistry and Physiology. 2014, 111, 31–37. https://doi.org/10.1016/j.pestbp.2014.04.003

Downloads

Publicado

2023-08-18

Como Citar

DUARTE, A. da F., DUARTE, J.L.P., MARTINS, L.N., SILVA, L.R. da, CUNHA, N. de S., LEITE, F.P.L., CUNHA, U.S. da e BERNARDI, D., 2023. Toxicity of Bacillus sp. (Bacillales: Bacillaceae) on the fungus gnats, Bradysia aff. ocellaris larvae (Diptera: Sciaridae). Bioscience Journal [online], vol. 39, pp. e39089. [Accessed23 novembro 2024]. DOI 10.14393/BJ-v39n0a2023-59878. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/59878.

Edição

Seção

Ciências Agrárias