Influência da distribuição de tensão no desenvolvimento de lesões cervicais não cariosas com diferentes níveis de inserção óssea
DOI:
https://doi.org/10.14393/BJ-v38n0a2022-58132Palavras-chave:
Dental occlusion, Finite element analysis, Gingival recession, Permanent dental restoration, Tooth wear.Resumo
O objetivo deste estudo foi avaliar a influência do padrão de distribuição do estresse nos pré-molares superiores com lesões cervicais não cariosas (LCNCs), com diferentes níveis de inserção óssea, anterior e posteriormente ao procedimento restaurador da LCNC. Para esta análise, foram gerados modelos tridimensionais de pré-molares superiores. A partir do modelo hígido, foi gerado um modelo com LCNC. Para esses modelos foram gerados três modelos com perda óssea: nível ósseo normal, perda óssea vertical e perda óssea horizontal. A restauração de resina composta do modelo com LCNC foi simulada. Para cada modelo foram aplicadas três cargas diferentes com 100 N: carregamento axial (VL), carregamento vestibular (BL) e carregamento palatino (PL). Os dados foram obtidos em MPa, os valores de tensão foram obtidos pelo critério de tensão máxima principal em um nó da superfície vestibular e o valor da tensão mínima principal foi obtido em um nó para análises da crista óssea vestibular. Para os resultados de tensão máxima principal, a perda óssea não influenciou na distribuição de tensão ao nível da junção amelo-dentinária; para o critério de tensão mínima principal. O carregamento vestibular promoveu maior tensão compressiva na superfície óssea vestibular. A concentração de tensão ao nível ósseo independe da presença ou ausência de LCNC e do procedimento de restauração. O tipo de contato oclusal é fator chave para o desenvolvimento da perda óssea e origem e progressão da LCNC.
Downloads
Referências
ALVAREZ-ARENAL, A., et al. Non-carious cervical lesions and risk factors: A case-control study. Journal of Oral Rehabilitation. 2019, 46(1), 65-75. https://doi.org/10.1111/joor.12721
BERNHARDT, O., et al. Epidemiological evaluation of the multifactorial aetiology of abfractions. Journal of Oral Rehabilitation. 2006, 33(1), 17-25. https://doi.org/10.1111/j.1365-2842.2006.01532.x
BHUNDIA, S., BARTLETT, D. and O'TOOLE, S. Non-carious cervical lesions - can terminology influence our clinical assessment? British Dental Journal. 2019, 227(11), 985-988. https://doi.org/10.1038/s41415-019-1004-1
CARTER, D.R. and HAYES, W.C. The compressive behavior of bone as a two-phase porous structure. The Journal of Bone and Joint Surgery. 1977, 59(7), 954-962. https://doi.org/10.2106/00004623-197759070-00021
COBO, J., et al. Dentoalveolar stress from bodily tooth movement at different levels of bone loss. American Journal of Orthodontics and Dentofacial Orthopedics. 1996, 110(3), 256-262. https://doi.org/10.1016/S0889-5406(96)80008-4
CORREIA, A.M.O., et al. Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions. Journal of Dentistry. 2018, 76, 68-74. https://doi.org/10.1016/j.jdent.2018.06.010
CORN, H. and M.H. MARKS Basic biological concepts associated with adult Orthodontics: Lea & Febiger. Edtion ed. Philadelphia: Atlas of adult Orthodontics, 1989.
DEJAK, B. and MŁOTKOWSKI, A. Finite element analysis of strength and adhesion of cast posts compared to glass fiber-reinforced composite resin posts in anterior teeth. The Journal of Prosthetic Dentistry. 2011, 105(2), 115-126. https://doi.org/10.1016/S0022-3913(11)60011-5
DU, J.K., et al. Influence of cavity depth and restoration of non-carious cervical root lesions on strain distribution from various loading sites. BMC Oral Health. 2020, 20(1), 98-98. https://doi.org/10.1186/s12903-020-01083-w
DUANGTHIP, D., et al. Occlusal stress is involved in the formation of non-carious cervical lesions. A systematic review of abfraction. American Journal of Dentistry. 2017, 30(4), 212-220.
GERAMY, A. Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). American Journal of Orthodontics and Dentofacial Orthopedics. 2000, 117(4), 399-405. https://doi.org/10.1016/S0889-5406(00)70159-4
GRIPPO, J.O. Abfractions: a new classification of hard tissue lesions of teeth. Journal of Esthetic Dentistry. 1991, 3(1), 14-19. https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
GRIPPO, J.O. Noncarious cervical lesions: the decision to ignore or restore. Journal of Esthetic Dentistry. 1992, 4, 55-64. https://doi.org/10.1111/j.1708-8240.1992.tb00721.x
GRIPPO, J.O., SIMRING, M. and COLEMAN, T.A. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. Journal of Esthetic and Restorative Dentistry. 2012, 24(1), 10-23. https://doi.org/10.1111/j.1708-8240.2011.00487.x
JAKUPOVIĆ, S., et al. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis. European Journal of Dentistry. 2016, 10(3), 413-418. https://doi.org/10.4103/1305-7456.184166
KIM, S.Y., et al. Two-year clinical effectiveness of adhesives and retention form on resin composite restorations of non-carious cervical lesions. Operative Dentistry. 2009, 34(5), 507-515. https://doi.org/10.2341/08-006C
KOLAK, V., et al. Epidemiological investigation of non-carious cervical lesions and possible etiological factors. Journal of Clinical and Experimental Dentistry. 2018, 10(7), e648-e656. https://doi.org/10.4317/jced.54860
LEE, W.C. and EAKLE, W.S. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. The Journal of Prosthetic Dentistry. 1984, 52(3), 374-380. https://doi.org/10.1016/0022-3913(84)904487
MACHADO, A.C., et al. Influência do desequilíbrio oclusal na origem de lesão cervical não cariosa e recessão gengival: análise por elementos finitos. Revista Odontológica do Brasil Central, 2018, 27(83), 204-2010. https://doi.org/10.36065/robrac.v27i83.1271
MACHADO, A.C., et al. Stress-strain analysis of premolars with non-carious cervical lesions: Influence of restorative material, loading direction and mechanical fatigue. Operative Dentistry. 2017, 42(3), 253-265.https://doi.org/10.2341/14-195-L
MADANI, A.O. and AHMADIAN-YAZDI, A. An investigation into the relationship between noncarious cervical lesions and premature contacts. Cranio: The Journal of Craniomandibular Practice. 2005, 23(1), 10-15. https://doi.org/10.1179/crn.2005.003
MATOS, F., et al. Impact of different restorative techniques on the stress distribution of endodontically-treated maxillary first premolars: a 2-dimensional finite element analysis. Journal of Research and Knowledge Spreading. 2020, 1(1), e11761. https://doi.org/10.20952/jrks1111761
MICHAEL, J.A., et al. Abfraction: separating fact from fiction. Australian Dental Journal. 2009, 54(1), 2-8. https://doi.org/10.1111/j.1834-7819.2008.01080.x
MIURA, J., et al. Multiscale analysis of stress distribution in teeth under applied forces. Dental Materials. 2009, 25(1), 67-73. https://doi.org/10.1016/j.dental.2008.04.015
POIATE, I.A., et al. Stress distribution in the cervical region of an upper central incisor in a 3D finite element model. Brazilian Oral Research. 2009, 23(2), 161-168. https://doi.org/10.1590/S1806-83242009000200012
REDDY, S.D., et al. Cervical stress due to normal occlusal loads is a cause for abfraction? - A finite element model study. Journal Orofacial Science. 2012, 4, 120. https://doi.org/10.4103/0975-8844.106204
REES, J.S. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. Journal of Oral Rehabilitation. 2002, 29(2), 188-193. https://doi.org/10.1046/j.1365-2842.2002.00836.x
REYES, E., et al. Abfractions and attachment loss in teeth with premature contacts in centric relation: clinical observations. Journal of Periodontology. 2009, 80(12), 1955-1962. https://doi.org/10.1902/jop.2009.090149
RUBIN, C., et al. Stress analysis of the human tooth using a three-dimensional finite element model. Journal of Dental Research. 1983, 62(2), 82-86. https://doi.org/10.1177/00220345830620021701
RUSU OLARU, A., et al. Identifying the Etiological Factors Involved in the Occurrence of Non-Carious Lesions. Current Health Sciences Journal. 2019, 45(2), 227-234. https://doi.org/10.12865/CHSJ.45.02.15
SHINYA, A., et al. Three-dimensional finite element analysis of metal and FRC adhesive fixed dental prostheses. The Journal of Adhesive Dentistry. 2008, 10(5), 365-371.
SOARES, A., et al. Prevalence and severity of non-carious cervical lesions and dentin hypersensitivity: association with oral-health related quality of life among Brazilian adults. Heliyon. 2021, 7(3), e06492. https://doi.org/10.1016/j.heliyon.2021.e06492
SOARES, P.V., et al. Loading and composite restoration assessment of various non-carious cervical lesions morphologies - 3D finite element analysis. Australian Dental Journal. 2015, 60(3), 309-316. https://doi.org/10.1111/adj.12233
SOARES, P.V., et al. Non-carious cervical lesions: influence of morphology and load type on biomechanical behaviour of maxillary incisors. Australian Dental Journal. 2013, 58(3), 306-314. https://doi.org/10.1111/adj.12084
SOARES, P.V., et al. Effect of root morphology on biomechanical behaviour of premolars associated with abfraction lesions and different loading types. Journal of Oral Rehabilitation. 2014, 41(2), 108-114. https://doi.org/10.1111/joor.12113
TEIXEIRA, D.N.R., et al. Prevalence of noncarious cervical lesions among adults: A systematic review. Journal of Dentistry. 2020, 95, 103285. https://doi.org/10.1016/j.jdent.2020.103285
TEIXEIRA, D.N.R., et al. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: A cross-sectional study. Journal of Dentistry. 2018, 76, 93-97. https://doi.org/10.1016/j.jdent.2018.06.017
VANDANA, K.L., et al. A finite element study to determine the occurrence of abfraction and displacement due to various occlusal forces and with different alveolar bone height. Journal of Indian Society of Periodontology. 2016, 20(1), 12-16. https://doi.org/10.4103/0972-124X.168484
VASUDEVA, G. and BOGRA, P. The effect of occlusal restoration and loading on the development of abfraction lesions: A finite element study. Journal of Conservative Dentistry. 2008, 11(3), 117-120. https://doi.org/10.4103/0972-0707.45250
WEINSTEIN, A.M., KLAWITTER, J.J. and COOK, S.D. Implant-bone interface characteristics of bioglass dental implants. Journal of Biomedical Materials Research. 1980, 14(1), 23-29. https://doi.org/10.1002/jbm.820140104
WOOD, I., et al. Non-carious cervical tooth surface loss: a literature review. Journal of Dentistry. 2008, 36(10), 759-766. https://doi.org/10.1016/j.jdent.2008.06.004
YOSHIZAKI, K. T., et al. Clinical features and factors associated with non-carious cervical lesions and dentin hypersensitivity. Journal of Oral Rehabilitation. 2017, 44(2),112-118. https://doi.org/10.1111/joor.12469
YANG, S.M. and CHUNG, H.J. Three-dimentional finite element analysis of a mandibular premolar with reduced periodontal support under a non-axial load. Oral Biology Research. 2019, 43(4), 313-326. https://doi.org/10.21851/obr.43.04.201912.313
ZEOLA, L.F., et al. Effects of non-carious cervical lesion size, occlusal loading and restoration on biomechanical behaviour of premolar teeth. Australian dental journal. 2016, 61(4), 408-417. https://doi.org/10.1111/adj.12391
ZEOLA, L.F., et al. Influence of non carious cervical lesions depth, loading point application and restoration on stress distribution pattern in lower premolars: A 2D finite element analysis. Bioscience Journal. 2015, 31, 648-656. https://doi.org/10.14393/BJ-v31n2a2015-27837
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Thiago Silva Peres, Daniela Navarro Ribeiro Teixeira, Paulo Vinicius Soares, Lívia Favaro Zeola, Alexandre Coelho Machado
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.