Influence of dental erosion on shear bond strength of ceramic brackets bonded with two different adhesive systems: an in vitro study

Autores

DOI:

https://doi.org/10.14393/BJ-v37n0a2021-56246

Palavras-chave:

Tooth erosion, Ceramics, Orthodontic brackets, Orthodontic adhesive.

Resumo

Este estudo teve como objetivo avaliar a resistência ao cisalhamento de braquetes cerâmicos colados em esmalte hígido e erodido utilizando dois diferentes sistemas adesivos. Setenta e dois incisivos centrais bovinos foram divididos em quatro grupos, definidos por dois fatores: condição do esmalte (grupo controle, mantido em saliva artificial; e grupo experimental, submetido ao desafio erosivo pela imersão em Coca-cola® por 90 segundos, a cada seis horas, durante cinco dias) e tipo de sistema adesivo (Transbond® XT ou Transbond® Plus Color Change). Braquetes cerâmicos policristalinos foram colados às coroas dos dentes bovinos hígidos e erodidos, seguindo as recomendações dos fabricantes de cada material e utilizando o mesmo protocolo de polimerização. As variáveis de resposta foram resistência ao cisalhamento e índice de remanescente adesivo (IRA). Os dados de resistência ao cisalhamento foram analisados utilizando ANOVA dois critérios, seguido pelo teste de Tukey. Os valores do IRA foram analisados por meio do teste Kruskal-Wallis seguido pelo teste de comparação de Dunn (α=0,05) e seus percentuais entre os grupos foram comparados pelo teste exato de Fisher. O coeficiente de correlação de Spearman foi aplicado para avaliar a correlação entre os valores do IRA e da resistência ao cisalhamento. Os resultados mostraram que apenas o sistema adesivo teve influência significativa na resistência ao cisalhamento (p=0,014), sendo que o Transbond® Plus Color Change apresentou valores mais elevados. Não houve diferença significativa relacionada à condição do esmalte (p=0.665) ou à interação entre o sistema adesivo e a condição do esmalte (p=0,055). Houve diferença quanto aos percentuais dos valores do IRA (p<0,001) e seus valores médios também apresentaram diferença estatisticamente significante na maioria das comparações entre os grupos. Contudo, nenhuma correlação significativa foi encontrada entre os valores do IRA e da resistência ao cisalhamento. Assim, conclui-se que o tipo de sistema adesivo afetou a resistência ao cisalhamento de braquetes cerâmicos colados ao esmalte dentário, mas a condição do esmalte, se hígido ou erodido, não demonstrou influência significativa. Não houve correlação entre os valores do IRA e da resistência ao cisalhamento, embora tenha havido tendência de maior retenção do adesivo, após a remoção do braquete, ao esmalte erodido.

Downloads

Não há dados estatísticos.

Referências

ABLAL, M.A., et al. A novel approach to study in situ enamel erosion and abrasion lesions. Journal of Dentistry. 2017, 59, 78-85. https://doi.org/10.1016/j.jdent.2017.02.013

AMATO, P.A., et al. Time reduction of light curing: influence on conversion degree and microhardness of orthodontic composites. American Journal of Orthodontics and Dentofacial Orthopedics. 2014, 146(1), 40–46. https://doi.org/10.1016/j.ajodo.2014.03.022

ATTIN, R., et al. Shear bond strength of brackets to demineralize enamel after different pretreatment methods. The Angle Orthodontist. 2012, 82(1), 56-61. https://doi.org/10.2319/012311-48.1

BREUNING, K.H., et al. Bonding metal brackets on tooth surfaces. Dentistry. 2014, 4(5), 231. https://doi.org/10.4172/2161-1122.1000231

CASAS-APAYCO, L.C., et al. Erosive cola-based drinks affect the bonding to enamel surface: an in vitro study. Journal of Applied Oral Science. 2014, 22(5), 434–441. https://doi.org/10.1590/1678-775720130468

CHENG, Z.J., et al. The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation. Biomedical Materials (Bristol, England). 2009, 4(1), 015020. https://doi.org/10.1088/1748-6041/4/1/015020

CORRER, G.M., et al. Influence of diet and salivary characteristics on the prevalence of dental erosion among 12-year-old schoolchildren. Journal of Dentistry for Children (Chicago, Ill.). 2009, 76(3), 181–187.

COSTENOBLE, A., et al. Bond strength and interfacial morphology of orthodontic brackets bonded to eroded enamel treated with calcium silicate-sodium phosphate salts or resin infiltration. The Angle Orthodontist. 2016, 86(6), 909–916. https://doi.org/10.2319/111315-764.1

COZZA, P., et al. Shear bond strength of metal brackets on enamel. The Angle Orthodontist. 2006, 76(5), 851–856. https://doi.org/10.1043/0003-3219(2006)076[0851:SBSOMB]2.0.CO;2

DEGRAZIA, F.W., et al. Influence of dental erosion on the shear bond strength of orthodontic brackets: an in vitro study. Revista da Faculdade de Odontologia - UPF. 2013, 18(1), 83-87. https://doi.org/10.5335/rfo.v18i1.3120

EISSAA, O.E., EL-SHOURBAGY, E.M. and GHOBASHY, S.A. In vivo effect of a fluoride releasing adhesive on inhibition of enamel demineralization around orthodontic brackets. Tanta Dental Journal. 2013, 10(2), 86-96. https://doi.org/10.1016/j.tdj.2013.08.007

EL AIDI, H., et al. Dynamics of tooth erosion in adolescents: a 3-year longitudinal study. Journal of Dentistry. 2010, 38(2), 131-137. https://doi.org/10.1016/j.jdent.2009.09.012

ELEKDAG-TÜRK, S. and EBULKBASH, H., 2018. Ceramic brackets revisited. In: ASLAN, B.I. and UZUNER, F.D., eds. Current Approaches in Orthodontics, London: IntechOpen, pp. 5-22. Available from: https://doi.org/10.5772/intechopen.79638

FARIA-JÚNIOR, É.M., et al. In-vivo evaluation of the surface roughness and morphology of enamel after bracket removal and polishing by different techniques. American Journal of Orthodontics and Dentofacial Orthopedics. 2015, 147(3), 324-329. https://doi.org/10.1016/j.ajodo.2014.10.033

GAMBON, D.L., BRAND, H.S. and VEERMAN, E.C.I. Dental erosion in the 21st century: what is happening to nutritional habits and lifestyle in our society? British Dental Journal. 2012, 213(2), 55-57. https://doi.org/10.1038/sj.bdj.2012.613

GITTNER, R., MÜLLER-HARTWICH, R., JOST-BRINKMANN, P.G. Influence of various storage media on shear bond strength and enamel fracture when debonding ceramic brackets: an in vitro study. Seminars in Orthodontics. 2010, 16(1), 49-54. https://doi.org/10.1053/j.sodo.2009.12.004

GUIGNONE, B.C., et al. Color stability of ceramic brackets immersed in potentially staining solutions. Dental Press Journal of Orthodontics. 2015, 20(4), 32-38. https://doi.org/10.1590/2176-9451.20.4.032-038.oar

HUNG, C.Y., et al. Shear bonding strength and thermal cycling effect of fluoride releasable/rechargeable orthodontic adhesive resins containing LiAl-F layered double hydroxide (LDH) filler. Materials (Basel). 2019, 12(19), 3204. https://doi.org/10.3390/ma12193204

LINJAWI, A.I. and ABBASSY, M.A. Comparison of shear bond strength to clinically simulated debonding of orthodontic brackets: an in vitro study. Journal of Orthodontic Science. 2016, 5(1), 25-29. https://doi.org/10.4103/2278-0203.176655

LUSSI, A., et al. Dental erosion: an overview with emphasis on chemical and histopathological aspects. Caries Research. 2011, 45(Suppl 1), 2-12. https://doi.org/10.1159/000325915

NARANJO, A.A., et al. Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. American Journal of Orthodontics and Dentofacial Orthopedics. 2006, 130(3), 275.e17-275.e22. https://doi.org/10.1016/j.ajodo.2005.10.022

OLIVEIRA, C.B., et al. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets. Dental Press Journal of Orthodontics. 2014, 19(4), 114-121. https://doi.org/10.1590/2176-9451.19.4.114-121.oar

ONCAG, G., TUNCER, A.V. and TOSUN, Y.S. Acid soft drinks effects on the shear bond strength of orthodontic brackets and a scanning electron microscopy evaluation of the enamel. The Angle Orthodontist. 2005, 75(2), 247-253. https://doi.org/10.1043/0003-3219(2005)075<0243:ASDEOT>2.0.CO;2

OWENS, B.M. and KITCHENS, M. The erosive potential of soft drinks on enamel surface substrate: an in vitro scanning electron microscopy investigation. The Journal of Contemporary Dental Practice. 2007, 8(7), 11-20.

SANTIN, G.C., et al. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets. American Journal of Orthodontics and Dentofacial Orthopedics. 2015, 148(2), 283-292. https://doi.org/10.1016/j.ajodo.2015.03.025

SHEIBANINIA, A., et al. The effect of an acidic food-simulating environment on the shear bond strength of self-ligating brackets with different base designs. International Journal of Dentistry. 2014, 2014(6), 689536. https://doi.org/10.1155/2014/689536

TALBOT, T.Q., et al. Effect of argon laser irradiation on shear bond strength of orthodontic brackets: an in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics. 2000, 118(3), 274-279. https://doi.org/10.1067/mod.2000.106069

TÜRKKAHRAMAN, H., et al. In vitro evaluation of shear bond strengths of colour change adhesives. European Journal of Orthodontics. 2010, 32(5), 571-574. https://doi.org/10.1093/ejo/cjp149

TZOU, S. and DARRELL, J. Transbond™ Plus Color Change adhesive: on-demand convenience with fluoride release, moisture tolerance and color change features. Orthodontics Perspective. 2007, 14(1), 11-13.

WANG, W.N., MENG C.L., TARNG, T.H. Bond strength: a comparison between chemical coated and mechanical interlock bases of ceramic and metal brackets. American Journal of Orthodontics and Dentofacial Orthopedics. 1997, 111(4), 374-381. https://doi.org/10.1016/s0889-5406(97)80019-4

Downloads

Publicado

2021-01-12

Como Citar

MENEZES-JÚNIOR, L.R.., BITTENCOURT, M.A.V., VILELA, A.B.F.., SOARES, C.J., NÓBREGA, D.F.., MARINHO, R.M. de M.., RODE, S. de M.., NAHSAN, F.P.S.. e PARANHOS, L.R.., 2021. Influence of dental erosion on shear bond strength of ceramic brackets bonded with two different adhesive systems: an in vitro study. Bioscience Journal [online], vol. 37, pp. e37005. [Accessed23 julho 2024]. DOI 10.14393/BJ-v37n0a2021-56246. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/56246.

Edição

Seção

Ciências da Saúde