Biophysical characteristics of soybean estimated by remote sensing associated with artificial intelligence

Autores

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-55925

Palavras-chave:

Artificial Neural Networks, Active Optical Sensor, Glycine max L. Machine Learning., Vegetation Index.

Resumo

As características biofísicas dos dosséis vegetativos, como biomassa, altura e diâmetro da copa, são ligadas à eficiência fotossintética e de uso da água, relacionadas ao desenvolvimento e comportamento produtivo dos cultivos. Diante da escassez de trabalhos que visam a estimação dos parâmetros, objetivou-se avaliar o desempenho das redes neurais artificiais (RNAs) aplicada ao Sensoriamento Remoto Proximal (SRP) para estimar características biofísicas da cultura da soja. O SRP e as RNAs apresentaram alto potencial de aplicação na agricultura, uma vez que obtiveram bom desempenho na estimação de altura (R2=0.89) e diâmetro do dossel (R2=0.96), sendo fresca biomassa (R2 = 0,98) e biomassa seca (R2 = 0,97) foram as melhores variáveis estimadas.

Downloads

Não há dados estatísticos.

Referências

ALT, C., KAGE, H. and STÜTZEL, H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annals of Botany. 2000, 86(5), 963-973. https://doi.org/10.1006/anbo.2000.1252

ALVARES, C.A., et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2013, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507

AMARAL, L.R., et al. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture. 2015, 16(1), 15-28. https://doi.org/10.1007/s11119-014-9377-2

ANDRADE JÚNIOR, A.S., FIGUEREDO JÚNIOR., L.G.M., CARDOSO, M.J. and RIBEIRO, V.Q. Parametrização de modelos agrometeorológicos para estimativa de produtividade da cultura do milho na região de Parnaíba, Piauí. Revista Ciência Agronômica. 2006, 37(2), 130–134.

BARROS, A.C.A. Otimização de redes neurais para previsão de séries temporais. Recife: Escola Politécnica de Pernambuco – Universidade de Pernambuco, Trabalho de Conclusão de Curso, 2005.

BOOTE, K.J., JONES, J.W. and PICKERING, N.B. Potential uses and limitations of crop models. Agronomy Journal. 1996, 88(5), 704-716. https://doi.org/10.2134/agronj1996.0002196200-8800050005x

BRAGA, A.P., CARVALHO, A.P.L.F. and LUDERMIR, T.B. Redes Neurais Artificiais: teoria e aplicações. 2nd ed. Rio de Janeiro: LTC, 2012.

CAO, Q., et al. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture. 2015, 112, 54-67. https://doi.org/10.1016/j.compag.2014.08.012

CASANOVA, D., EPEMA, G.F. and GOUDRIAAN, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Research. 1998, 55(1-2), 83-92. https://doi.org/10.1016/S0378-4290(97)00064-6

DIKER, K. and BAUSCH, W.C. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosystems Engineering. 2003, 85(4), 437-447. https://doi.org/10.1016/S1537-5110(03)00097-7

EMBRATOP. Receptor GPS Trimble R6 (L1/L2). 2017. Available from: http://www.embratop.com.br/produto/receptor-gps-trimble-r6-l1-l2/

FORMAGGIO, A.R. and SANCHES, I.D. Sensoriamento Remoto em agricultura. São Paulo: Oficina de Textos, 2017.

GARCIA, C.H. Tabelas para classificação do coeficiente de variação. Piracicaba: Instituto de Pesquisas e Estudos Florestais, Escola Superior de Agricultura “Luiz de Queiroz”, 1989.

GOBBI, K.F., et al. Características morfológicas, estruturais e produtividade do capim-braquiária e do amendoim forrageiro submetidos ao sombreamento. Revista Brasileira de Zootecnia. 2009. 38(9), 1645-1654. https://doi.o-rg/10.1590/S1516-35982009000900002

GROHS, D.S., BREDEMEIER, C., MUNDSTOCK, C.M. and POLETTO, N. Modelo para estimativa do potencial produtivo em trigo e cevada por meio do sensor GreenSeeker. Engenharia Agrícola. 2009. 29(1), 101-112. https://doi.org/10.1590/S0100-69162009000100011

GROHS, D.S., BREDEMEIER, C., POLETTO, N. and MUNDSTOCK, C.M. Validação de modelo para predição do potencial produtivo de trigo com sensor óptico ativo. Pesquisa Agropecuária Brasileira. 2011. 46(4), 446-449. https://doi.org/10.1590/S0100-204X2011000400015

HANSEN, P.M. and SCHJOERRING, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote sensing of environment. 2003. 86(4), 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7

HAYKIN, S. Redes neurais: princípios e prática. Porto Alegre: Bookman, 2001.

JANA, R.B. and MOHANTY, B.P. A comparative study of multiple approaches to soil hydraulic parameter scaling applied at the hillslope scale. Water Resources Research. 2012, 48(2), 2520. https://doi.org/10.1029/2010WR010185

JENSEN, J.R. Introductory digital image processing: a remote sensing perspective. Upper Saddle River: Prentice Hall, 1996.

KROSS, A., et al. Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of Within-Field Corn and Soybean Yields. Remote Sensing. 2020, 12(14), 2230. https://doi.org/10.3390/rs12142230

LU, J., et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Scientific reports. 2017, 7(1), 1-10. https://doi.org/10.1038/s41598-017-14597-1

MOTOMIYA, A.V.A., et al. Índice de vegetação no algodoeiro sob diferentes doses de nitrogênio e regulador de crescimento. Semina: Ciências Agrárias. 2014, 35(1), 169-177. https://doi.org/10.5433/1679-0359.2014v35n1p169

MUTANGA, O. and SKIDMORE, A.K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote sensing of environment. 2004, 90(1), 104-115. https://doi.org/10.1016/j.rse.2003.12.004

NAVALGUND, R.R. Remote sensing. Resonance. 2002, 7(1), 37-46.

NOVO, E.M.L.M. Sensoriamento Remoto: princípios e aplicações. São Paulo: Blucher, 2008.

POVH, F.P., et al. Comportamento do NDVI obtido por sensor ótico ativo em cereais. Pesquisa Agropecuária Brasileira. 2008, 43(80), 1075-1083. https://doi.org/10.1590/S0100-204X2008000800018

SANTOS, H.G., et al. Sistema Brasileiro de Classificação de Solos. 5th ed. Brasília: Embrapa, 2018.

SILVA, I.N., Spatti, D.H. and Flauzino, R.A. Redes Neurais Artificiais: para engenharias e ciências aplicadas. São Paulo: Artliber, 2016.

SOARES, F.C., Robaina, A.D., Peiter, M.X. and Russi, J.L. Predição da produtividade da cultura do milho utilizando rede neural artificial. Ciência Rural. 2015, 45(11), 1987-1993. https://doi.org/10.1590/0103-8478cr20141524

SOARES, F.C., et al. Redes neurais artificiais na estimativa da retenção de água do solo. Ciência Rural. 2014, 44(2), 293-300. https://doi.org/10.1590/S0103-84782014000200016

TOLEDO, G.L. and Ovalle, I.I. Correlação e regressão: Estatística Básica. 2nd ed. São Paulo: Atlas, 1995.

TRIMBLE, T. the W. the W.W. Especificações técnicas. Available from: http://www.geodata.eng.br/manuais/gps/trimble/R6.pdf

VIEIRA, T.G.C., LACERDA, W.S. and BOTELHO, T.G. Mapeamento de áreas cafeeiras utilizando redes neurais artificiais: Estudo de caso na região de Três Pontas, Minas Gerais. In: Anais XIV Simpósio Brasileiro de Sensoriamento Remoto,14, Natal, Brasil, 2009. Presented at the XIV Simpósio Brasileiro de Sensoriamento Remoto, INPE, 7947–7954.

ZHANG, Q. Precision Agriculture Technology for Crop Farming. Boca Raton: CRC Press, 2015.

Downloads

Publicado

2022-03-31

Como Citar

MORLIN CARNEIRO, F., FREIRE DE OLIVEIRA, M., LUNS HATUM DE ALMEIDA, S., LOPES DE BRITO FILHO, A., ANGELI FURLANI, C.E., DE SOUZA ROLIM, G., FERRAUDO, A.S. e PEREIRA DA SILVA, R., 2022. Biophysical characteristics of soybean estimated by remote sensing associated with artificial intelligence. Bioscience Journal [online], vol. 38, pp. e38024. [Accessed21 novembro 2024]. DOI 10.14393/BJ-v38n0a2022-55925. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/55925.

Edição

Seção

Ciências Agrárias