Evaluating pinhão conservation by using ionizing radiation and refrigeration

Autores

  • Pérsia Barcellos Carrasco Universidade Federal de Pelotas
  • Élder Pacheco da Cruz Universidade Federal de Pelotas https://orcid.org/0000-0002-0759-7378
  • Shanise Lisie Mello El Hallal Universidade Federal de Pelotas
  • Altair Delfino da Rocha Faes Universidade Federal de Pelotas
  • Eliezer Avila Gandra Universidade Federal de Pelotas
  • Carla Rosane Barboza Mendonça Universidade Federal de Pelotas
  • Caroline Dellinghausen Borges Universidade Federal de Pelotas https://orcid.org/0000-0002-8467-3418

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-53898

Palavras-chave:

Araucaria angustifolia, Cobalt–60, Seed.

Resumo

O pinhão é altamente perecível em virtude da alta atividade de água (>0,98), sendo facilmente acometido por fungos durante a estocagem e também suscetível ao processo de germinação e infestação por larvas. Essa semente é normalmente comercializada nas próprias pinhas, ou então a granel, debulhado, envasado em sacos plásticos, refrigerado ou moído congelado. Técnicas de conservação e industrialização do pinhão devem ser desenvolvidas para promover a sua comercialização e consumo em outras épocas do ano, além do período sazonal, incentivando a sua produção, extração e comercialização de forma sustentável, tendo em vista seu caráter essencialmente extrativista. Assim, objetivou-se com este estudo avaliar a conservação de pinhões utilizando radiação gama e refrigeração. Os pinhões foram irradiados com radiação gama a partir de uma fonte de cobalto-60 e dose de 1 kGy. Uma amostra controle foi utilizada, na qual os pinhões não foram irradiados. Os pinhões foram embalados em sacos de polietileno de alta densidade e estocados a temperatura ambiente e sob refrigeração a 4 ºC, durante 90 dias. Os pinhões foram avaliados quanto à perda de massa, acidez, açúcares redutores, vitamina C, firmeza, cor, compostos fenólicos totais, atividade antioxidante e análises microbiológicas. O uso isolado da radiação gama não foi efetiva para a manutenção dos parâmetros avaliados. Entretanto, quando usada em conjunto com a refrigeração, houve a redução do crescimento de fungos, microrganismos mesófilos e psicrotróficos aeróbios. O uso isolado de refrigeração dos pinhões, possibilitou a redução da perda de massa, do percentual de açúcares redutores e a obtenção de maior teor de vitamina C e atividade antioxidante. Assim, na busca de ampliar os benefícios, sugere-se a avaliação de doses mais elevadas de irradiação, em função da espessa casca do pinhão.

Downloads

Não há dados estatísticos.

Referências

AKHTAR, A., ABASSI, N.A. and HUSSAIN, A. Effect of calcium chloride treatments on quality characteristics of laquate fruit during storage. Journal of Botany. 2010, 42, 181-188.

AL-BACHIR, M. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds. Food Chemistry. 2016, 147, 191-197. https://doi.org/ 10.1016/j.foodchem.2015.10.094

ALBUZAUDI, M., et al. Effect of gamma irradiation and heat treatment on the artificial contamination of maize grains by Aspergillus flavus. Journal Stored Products. 2017, 71, 57-63. https://doi.org/10.1016/j.jspr.2017.01.003

AMARANTE, C.V.T., et al. Conservação pós-colheita de pinhões [sementes de Araucaria angustifolia (Bertoloni) Otto Kuntze] armazenados em diferentes temperaturas. Ciência Rural. 2007, 37, 346-351. https://doi.org/10.1590/S0103-84782007000200008

ANTUNES, L.E.C., GONÇALVES, E. D. and TREVISAN, R. Alterações de compostos fenólicos e pectina em pós-colheita de frutos de amora-preta. Revista Brasileira de Agrociência. 2006, 12, 57-61.

ASHTARI, M., et al. Effect of gamma irradiation on antioxidants, microbiological properties and shelf life pomegranate arils cv. ‘Malas Saveh’. Scientia Horticultura. 2019, 244, 365-371. https://doi.org/10.1016/j.scienta.2018.09.067

BALBINOT, R., et al. Tendências de consumo e preço de comercialização do pinhão (semente da Araucaria angustifolia (Bert.) O. Ktze), no estado do Paraná. Ambiência. 2008, 4, 463-472.

BRAND-WILLIANS, W., CUVELIER, M.E. and BERSET, C. Use of a free radical method to evaluated antioxidante activity. LWT- Food Science and Technology. 1995, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

BRAZIL. Agência Nacional de Vigilância Sanitária. Regulamento técnico sobre padrões microbiológicos para alimentos. Resolução RDC n. 12, de 02 de janeiro de 2001.

BRUNO, L.M., et al. Avaliação microbiológica de hortaliças e frutas minimamente processadas comercializadas em Fortaleza (CE). Boletim do Centro de Pesquisa de Processamento de Alimentos. 2005, 23, 75-84.

CHITARRA, M.I.F. and CHITARRA, A.B. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. 2° ed. Lavras: UFLA, 2005.

CORDENUNSI, B.R., et al. Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds. Journal Agriculture Food Chemistry. 2004, 52, 3412-3416. https://doi.org/10.1021/jf034814l

COSTA, F.J.O.G. Avaliação, caracterização de pinhão (sementes de Araucaria angustifolia) nativas do estado do Paraná e seu uso em um produto alimentício. 2014. 146 f. Tese de Doutorado. Curitiba: Universidade Federal do Paraná, 2014.

DA SILVA, A.L.F. and DA ROZA, C.R. Uso da irradiação em alimentos: revisão. Boletim do Centro de Pesquisa de Processamento de Alimentos. 2010, 28, 49-56. http://dx.doi.org/10.5380/cep.v28i1.17897

DAVID, A.A.R. and SILOCH, R.M.H.Q. Avaliação de métodos para conservação de pinhão. Revista faz Ciência. 2010, 12, 207-216. https://doi.org/10.48075/rfc.v12i15.7521

DOWNES, F.P. and ITO, K. Compendium of methods for the microbiological examination of foods. 4th ed. Washington: American Public Health Association, 2001.

EGAE, I.M., et al. The effect of beta ionization on the antioxidant potential of “Bulida” apricot and its relationship with quality. Postharvest Biology and Technology. 2007, 46, 63-70. https://doi.org/10.1016/j.postharvbio.2007.04.002

FILHO, M.J., et al. Physicochemical microbiological and sensory acceptance alterations of strawberries caused by gamma radiation and storage time. Scientia Horticulturae. 2018, 238,187-194. https://doi.org/10.1016/j.scienta.2018.04.053

FONSECA, S.C.L. and FREIRE, H.B. Sementes Recalcitrantes: Problemas na Pós-colheita. Revista de Ciências Agronômicas. 2003, 62, 297-303. https://doi.org/10.1590/S0006-87052003000200016

FRANCO, B.D.G.M. and LANDGRAF, M. Microbiologia de Alimentos, 2°ed. São Paulo: Atheneu, 2008.

GAMA, T.M.M.T.B., et al. A influência de tratamentos térmicos no teor de amido, cor e aparência microscópica de pinhão nativo (Araucaria angustifolia). Revista Brasileira de Tecnologia Agroindustrial. 2010, 4, 161-178. https://doi.org/10.3895/S1981-36862010000200005

GUERREIRO, D., et al. Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies. 2016, 36, 1-9. https://doi.org/10.1016/j.ifset.2016.05.008

HENNIPMAN, H.S., et al. Qualidade sanitária e fisiológica de sementes de Araucária durante o armazenamento. Revista Ciência Florestal. 2017, 27, 643-654. https://doi.org/10.5902/1980509827749

HUSSAIN, P.R., et al. Studies on enhacing the keeping quality of peach (Prunus persica Bausch) cv. Elberta by gamma irradiation. Radiation Phisics and Chemistry. 2008, 77, 473-481. https://doi.org/ 10.1016/j.radphyschem.2007.08.003

HUSSAIN, P.R., et al. Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum-graceum L.). Innovative Food Science and Emerging Technologies. 2016, 33, 268-281. https://doi.org/10.1016/j.ifset.2015.11.017

IAL-Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos, 1º ed. [Online]. São Paulo: Instituto Adolfo Lutz, 2008. Disponível em: http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial_2008.pdf

KAYS, J.S. Postharvest physiology of perishable plant products. New York: Van Nostrand Reinhold, 1991.

KHATTAK, K.F., SIMPSON, T.J. and IHSANULLAH. Effect of gamma irradiation on the extraction yield, total phenolic content and free radical scavenging activity of Nigella staiva seed. Food Chemistry. 2008, 110, 967-972. https://doi.org/10.1016/j.foodchem.2008.03.003

KILCAST, D. Effect of irradiation on vitamins. Food Chemistry. 1994, 49, 157-164. https://doi.org/10.1016/0308-8146(94)90152-X

KOBLITZ, M. G. B. Bioquímica de Alimentos-teoria e aplicações práticas, 2° ed. Rio de Janeiro: Guanabara Koogan, 2008.

LATORRE, M.E., et al. Effects of gama irradiation on bio-chemical and physico-chemical parameters of fresh-cut red beet (Beta vulgaris L. var.conditiva). Journal of Food Engineering. 2010, 98, 178-191. https://doi.org/10.1016/j.jfoodeng.2009.12.024

MAHERANI, B., et al. World Market development and consumer acceptance of irradiation technology. Foods. 2016, 5, 79. https://doi.org/10.3390/foods5040079

MARAEI, W.R. and ELSAWY, M.K. Chemical quality and nutrient composition of strawberry fruits treated by gama-irradiation. Journal of Radiation Reserch and Applied Sciences. 2017, 10, 80-87. https://doi.org/10.16/j.jrran.2016.12.004

MARTINS, C.G., et al. Shelf-life of irradiated minimally processed watercress (Nasturtium officinale). Food Science and Technology. 2007, 27, 44-48. https://doi.org/10.1590/S0101-20612007000100008

MATTIUZ, B.H., DURIGAN, J.F. and ROSSI JÚNIOR, O.D. Processamento mínimo em goiabas ‘Paluma’ e ‘Pedro Sato’. Avaliação química, sensorial e microbiológica. Ciência e Tecnologia de Alimentos. 2003, 23, 409-413. https://doi.org/10.1590/S0101-20612003000300020

MEMON, N., et al. Combined effect of chemical preservative and different doses of irradiation on green onions to enhance shelf life. Journal of the Saudi Society of Agricultural Sciences. 2020, 2020. https://doi.org/10.1016/j.jssas.2018.09.006

MENEZES, J.B. Pós-colheita do pedúnculo do caju. Belo Horizonte: Informe Agropecuário, 1994.

NAJAFABADI, N.S., SAHARI, M.A. and BARZEGAR, M. Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiation Physics and Chemistry. 2017, 130, 62-68. https://doi.org10.1016/j.radphyschem.2016.07.002

OLIVERA, F.C. Estudos tecnológicos e de engenharia para o armazenamento e processamento do pinhão. 2008. 45 f. Tese de Doutorado. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2008.

OLIVEIRA, J., et al. Pulp of camu camu (Myrciaria dubia) subjected to gamma radiation. ACTA: Agronomica. 2013, 62, 7-12.

POLET, J.P., et al. Physico-chemical and sensory characteristics of gluten-free breads made with pinhão nuts (Araucaria angustifolia) associated to other flours. Journal of Culinary Science and Technology. 2017, 17, 136-145. https://doi.org 10.1080/15428052.2017.1405861

REIS M. S., LADIO A. and PERONI N. Landscapes with Araucaria in South America: evidence for a cultural dimension. Ecology and Society. 2014, 19, 43. https://doi.org/10.5751/ES-06163-190243

SANT’ANNA, V., et al. Effect of cooking on polyphenols and antioxidant activity of Araucaria angustifolia seed coat evaluation of phytochemical and microbiological stability over storage. International Journal of Food Science Tecnology. 2016, 51, 1932-1936. https://doi.org/ 10.1111/ijfs.13170

SILVA, R.A., et al. Inquérito sobre o consumo de alimentos possíveis de contaminação por micotoxinas na ingestão alimentar de escolares de Lavras, MG. Ciência e Agrotecnologia. 2007, 31,439-447. https://doi.org/10.1590/S1413-70542007000200026

SINGLETON, V.L., ORTHOFER, R. and LAMUELA-RAVENTÓS, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 1999, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

SONG, H.P., et al. Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiology. 2006, 23, 372-378. https://doi.org/10.1016/j.fm.2005.05.010

SOUZA, M.O., et al. Antioxidant and antigenotoxic activities of the brazilian pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidantes Redox Signal. 2014, 3, 24-37. https://doi.org/10.3390/antiox3010024

STEFANOVA, R., VASILEV, N.V. and SPASSOV, S.L. Irradiation of food, current legislation framework, and detection of irradiated foods. Food Analytical Methods. 2010, 3, 225-252. https://doi.org10.1007/s12161-009-9118-8

SWAILAM, H.M., et al. Shelf-life extension and quality improvement of minimally processed pear by combination treatments with irradiation. International Journal of Agriculture and Biology. 2007, 9, 575-583.

TACO. Tabela Brasileira de Composição de Alimentos, 4°ed. [Online]. Campinas: NEPA/UNICAMP, 2011. Available at: https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf

VASCONCELOS, N.M., PINTO, G.A. S. and ARAGÃO, F.A.S. Determinação de açúcares redutores pelo ácido 3,5 dinitrosalicílico: Histórico do desenvolvimento do método e estabelecimento de um protocolo para o laboratório de bioprocessos. Boletim de Pesquisa e Desenvolvimento. 2013, 88, 1-29.

VERZELETTI, A., FONTANA, R.C. and SANDRI, I.G. Avaliação da vida de prateleira de cenouras minimamente processadas. Alimentos e Nutrição. 2010, 21, 87-92.

VITTI, M.C.D., et al. Aspectos fisiológicos e microbiológicos de beterrabas minimamente processadas. Pesquisa Agropecuária Brasileira. 2004, 39, 1027-1032. https://doi.org/10.1590/S0100-204X2004001000011

WANG, C. and MENG, X. Effect of 60Co γ- irradiation on storage quality and cell wall ultra- structure of blueberry fruit during cold storage. Innovative Food Science and Emerging Technologies. 2016, 38, 91-97. https://doi.org/10.1016/j.ifset.2016.09.010

WANG, J., et al. The influence of gamma irradiation on the storage quality of bamboo shoots. Radiation Physics and Chemistry. 2019, 159, 124-130. https://doi.org/10.1016/j.radphyschem.2019.02.021

WEI, M., et al. Electron beam irradiation of sun-dried apricots for quality maintenance. Radiation Physics and Chemistry. 2014, 97, 126-133. https://doi.org/10.1016/j.radphyschem.2013.11.019

YUN, H., et al. Effect of high dose irradiation on quality characteristics of ready to eat chicken breast. Radiation Physics and Chemistry. 2012, 81, 1107-1110. https://doi.org/10.1016/j.radphyschem.2011.10.024

ZANDAVALLI, R.B., DILLENBURG, L.R. and DE SOUZA, P.V.D. Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Applied Soil Ecology. 2004, 25, 245-255. https://doi.org/10.1016/j.apsoil.2003.09.009

Downloads

Publicado

2022-08-12

Como Citar

BARCELLOS CARRASCO, P., PACHECO DA CRUZ, Élder, MELLO EL HALLAL, S.L., DA ROCHA FAES, A.D., AVILA GANDRA, E., BARBOZA MENDONÇA, C.R. e BORGES, C.D., 2022. Evaluating pinhão conservation by using ionizing radiation and refrigeration. Bioscience Journal [online], vol. 38, pp. e38064. [Accessed21 novembro 2024]. DOI 10.14393/BJ-v38n0a2022-53898. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/53898.

Edição

Seção

Ciências Agrárias