Alternative products to control powdery mildew in soybeans culture in field
DOI:
https://doi.org/10.14393/BJ-v37n0a2021-53681Palavras-chave:
Acibenzolar-S-methyl, Fungicide, Glycine max L., Micronutrients, Microsphaera diffusa.Resumo
The occurrence of powdery mildew (Microsphaera diffusa) in soybean (Glycine max L.) has increased in the last harvests. In order to study the efficiency of powdery mildew control due to the application of alternative products and conventional fungicide, trials were conducted in Ponta Grossa, PR, Brazil, during the 2013/2014 and 2014/2015 growing seasons. The design used was randomized blocks with four replications. The treatments for the experiments were: 1 - control; 2 - acibenzolar-S-methyl (Bion 500 WG®); 3 - calcium (Max Fruit®); 4 - Micronutrients: copper, manganese and zinc (Wert Plus®); 5 - Micronutrients: manganese, zinc and molybdenum (V6®); 6 - NK fertilizer (Hight Roots®); 7 - Ascophyllum nodosum (Acadian®) and 8 - fungicide (azoxystrobin + cyproconazole) (Priori XTRA®) with the addition of the adjuvant. Four applications of alternative products (phenological stages V3, V6, R1 and R5.1) and two of fungicide (phenological stages R1 and R5.1) were carried out. The parameters evaluated were powdery mildew severity and productivity. The severity data made it possible to calculate the area under the disease progress curve (AUDPG). Alternative products didn’t reduce powdery mildew in the two harvests. The conventional fungicide treatment was the only one that controlled powdery mildew and didn’t reduce the productivity in both experiments.
Downloads
Referências
ADAPAR - Agência de defesa agropecuária do Paraná. Priori Xtra. Available from: https://www.adapar.pr.gov.br/sites/adapar/arquivos_restritos/files/documento/2021-07/priorixtra.pdf
ALTIERI, M.A. and NICHOLLS, C.I. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research. 2003, 72(2), 203-211. https://doi.org/10.1016/S0167-1987(03)00089-8
ANDERSON, E.J., et al., 2019. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. IN: J.M AL-KHAYRI, S.M. JAIN and D.V. JHONSON, eds. Advances in plant breeding strategies: Legumes, Heidelberg: Springer, p. 431-516. https://doi.org/10.1007/978-3-030-23400-3_12
ARRUDA, R.S., et al. Mushrooms extracts effect on the induction of phytoalexins and on the control of soybean powdery mildew in greenhouse. Bioscience Journal. 2012, 28(2), 1981-3163.
BARCELOS, J.P.Q., et al. Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology. 2018, 7(67), 1502-1513. https://doi.org/10.1111/ppa.12871
BATTISTI, R., et al. Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production. 2018, 12(3), 159-168. https://doi.org/10.1007/s42106-018-0016-0
BHARDWAJ, D., et al. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories. 2014, 13(1), 66-76. https://doi.org/10.1186/1475-2859-13-66
BLUM, L.E., et al. Fungicides and fungicide mixtures to control soybean powdery mildew. Revista de Ciências Agroveterinárias. 2016, 1(1), 1-6. https://doi.org/10.1590/S0100-41582002000200016
CANTERI, M.G., et al. SASM Agri: Sistema para Análise e separação de médias em experimentos agrícolas pelos métodos Scot – Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação. 2001, 1(2), 18-24.
CARRÉ-MISSIO, V., et al. Inefficiency of silicon in leaf rust control on coffee grown in nutrient solution. Tropical Plant Pathology. 2009, 34(6), 416-421. https://doi.org/10.1590/S1982-56762009000600009
CARVALHO, B.O., et al. Action of defense activator and foliar fungicide on the control of Asiatic rust and on yield and quality of soybean seeds. Journal of Seed Science. 2013, 35(2), 198-206. https://doi.org/10.1590/S2317-15372013000200009
CONAB - Companhia nacional de abastecimento, Acompanhamento da safra brasileira de grãos. Boletim da safra de grãos, 2020. Available from: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos?start=50
DALLAGNOL, L.J., et al. Use of Acibenzolar-S-Methyl to control foliar diseases of soybean. Summa Phytopathologica. 2006, 32(3), 255-259. https://doi.org/10.1590/S0100-54052006000300007
DA ROCHA, M.R., et al. Effect of acibenzolar-s-methyl (benzothiadiazole), as a soybean systemic resistance inductor, on Heterodera glycines. Pesquisa Agropecuária Tropical. 2000, 30(2), 44-48. https://doi.org/10.1590/S1982-56762013000100006
DE ALMEIDA, R., FORCELINI, C.A. and GARCÉS FIALLOS, F.R. Chemical control of foliar diseases in soybean depends on cultivar and sowing date. Bioscience Journal. 2017, 33(5), 1188-1196. https://doi.org/10.14393/BJ-v33n5a2017-36931
EMBRAPA - Empresa Brasileira De Pesquisa Agropecuária. Centro nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Rio de Janeiro: EMBRAPA, 2006.
FEHR, W.R. and CAVINESS, C.E. Stages on soybean development. Ames: Iowa State University/Cooperative Extention Service, 1977, p.11 (Special Report, 80).
FRIEDRICH, K., et al. Agrochemicals: more poisons in times of rights setbacks. OKARA: Geografia em debate. 2018, 12(2), 326-347. https://doi.org/10.22478/ufpb.1982-3878.2018v12n2.41320
GABARDO, G., et al. Alternative Products to Control Soybean Downy Mildew in the Field. Journal of Agricultural Science. 2020, 12(8), 160-170. https://doi.org/10.5539/jas.v12n8p160
GODOY, C.V., et al. Doenças da soja. Manual de Fitopatologia. 2016, 2(5), 657-676.
IGARASHI, S., et al. Leaf wetness duration and percentage based on inter-row spacing, and influence on asian soybean rust. Summa Phytopathologica. 2014, 40(2), 123-127. https://doi.org/10.1590/0100-5405/1969
JUN, T.H., et al. Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B. Theoretical and Applied Genetics. 2012, 125(6), 1159-1168. https://doi.org/10.1007/s00122-012-1902-y
LEITE, W.S., et al. Genetic parameters estimation, correlations and selection indexes for six agronomic traits in soybean lines F8. Comunicata Scientiae. 2016, 7(3), 302-310. https://doi.org/10.14295/CS.v7i3.1176
MACOSKI, N., et al. Application of Calcium and Sulfur in the Severity of Puccinia coronata f. sp. avenae. International Journal of Advanced Engineering Research and Science. 2021, 1(1), 1-8. https://doi.org/10.22161/ijaers.81.1
MARSCHNER, H. and MARSCHNER, P. Mineral nutrition of higher plants. London: Elsevier/Academic Press, 2012.
MATTIAZZI, P. Escala diagramática do oídio da soja. Efeito do oídio na produção e duração da área foliar sadia da soja. Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz”, 2003. Dissertação de mestrado.
MIAN, M.A., et al. Registration of ‘Wyandot-14’soybean with resistance to soybean aphid and powdery mildew. Journal of Plant Registrations. 2016, 10(3), 246-250. https://doi.org/10.3198/jpr2015.09.0059crc
PEREIRA, D.G., et al. Evaluation of powdery mildew [Erisyphe diffusa (U. Braun & S. Takam)] severity in soybean genotypes, in field. Revista Caatinga. 2012, 25(3), 25-30. https://doi.org/10.1590/S0100-54052009000200015
PINELA, J., et al. Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science & Emerging Technologies. 2017, 41(1), 160-171. https://doi.org/10.1016/j.ifset.2017.02.004
RITCHIE, S.W., et al. How a soybean plant develops. Ames: Iowa State University of Science and Technology, 1997. 20p (Special Report, 53).
RODRIGUES, V., BUENO, T.V. and TEBALDI, N.D. Biofertilizers in the control of tomato bacterial spot (Xanthomonas spp.). Summa Phytopathologica. 2016, 42(1), 94-96. https://doi.org/10.1590/0100-5405/2094
ROESE, A.D., RIBEIRO, P.J. and DE MIO, L.L.M. Microclimate in agrosilvopastoral system enhances powdery mildew severity compared to agropastoral and non-integrated crop. Tropical Plant Pathology. 2017, 5(42), 382-390. https://doi.org/10.1007/s40858-017-0162-4
SANTOS, H.A.A., et al. Control of wheat diseases using phosphites and acibenzolar-s-methyl alone or associated with piraclostrobina + epoxiconazole. Semina: Ciências Agrárias. 2011, 32(2), 433-442. https://doi.org/10.5433/1679-0359.2011v32n2p433
SHANER, G. and FINNEY, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology. 1977, 67(8), 1051-1056. https://doi.org/10.1094/Phyto-67-1051
SHITTU, H.O., AISAGBONHI, E. and OBIAZIKWOR, O.H. Plants’innate defence mechanisms against phytopathogens. Journal of Microbiology, Biotechnology and Food Sciences. 2021, 1(2021), 314-319. https://doi.org/10.15414/jmbfs.2019.9.2.314-319
SENTELHAS, P.C., et al. The soybean yield gap in Brazil-magnitude, causes and possible solutions for a sustainable production. Journal of Agricultural Science. 2015, 1(153), 1394–1411. https://doi.org/10.1017/S0021859615000313
SILVA, V.A.S., JULIATTI, F.C. and SILVA, L.A.S. Interaction between partial genetic resistance and fungicides in the control of soybean Asian. Pesquisa Agropecuária Brasileira. 2007, 42(9), 1261-1268. https://doi.org/10.1590/S0100-204X2007000900007
SILVA, O.C., et al. Phosphite sources and acibenzolar-S-methyl associated to fungicides on the control of foliar diseases in soybean. Tropical Plant Pathology. 2013, 38(1), 72-77. https://doi.org/10.1590/S1982-56762013000100012
TUPICH, F.L.B., et al. Impact of white mold control by fluazinam on soybean yield in the south of Paraná: Meta-analysis. Summa Phytopathologica. 2017, 43(2), 145-150. https://doi.org/10.1590/0100-5405/168479
USDA - UNITED STATES. Department of Agriculture. Market and trade data. 2019. Available from: https://usdasearch.usda.gov/search?utf8=%E2%9C%93&affiliate=usda&query=soybean&commit=Search
XAVIER, S.A., et al. Fotossíntese de folhas de soja infectadas por Corynespora cassiicola e Erysiphe diffusa. Summa Phytopathologica. 2015, 41(2), 156-159. https://doi.org/10.1590/0100-5405/1923
YULIA, E., et al. Resistance Potential to Powdery Mildew (Microsphaera diffusa Cooke and Peck) of Several Yellow and Black Soybean (Glycine max (L.) Merr) Genotypes. KnE Life Sciences. 2017, 2(6), 270-278. https://doi.org/10.18502/kls.v2i6.1049
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Gislaine Gabardo, Maristella Dalla Pria, Henrique Luis da Silva, Mônica Gabrielle Harms
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.