Gas exchanges and chlorophyll content in green pepper plants under bio-fertilization and times of application
DOI:
https://doi.org/10.14393/BJ-v37n0a2021-53661Palavras-chave:
Capsicum annuum, Insumo orgânico, Condutância estomática, FotossínteseResumo
This study aimed to determine the gas exchange and the chlorophyll content of green pepper plants under doses and times of application of bio-fertilizers based on manure and enriched organic compost. Two experiments were carried out simultaneously with applications of bio-fertilizers prepared from manure and enriched organic compost, one using cattle manure (CBF) and the other sheep manure (SBF). For these, four doses of biological fertilizers (100, 200, 300 and 400 dm³ ha-1), three application times (0, 30 and 60 days after transplantation - DAT) and absolute control, referring to the absence of fertilization, were used. treatments. were arranged in a randomized block design, totaling 13 treatments. The variables evaluated were: the relative chlorophyll a, b and total content; liquid photosynthesis (A); stomatal conductance (gs); internal CO2 concentration (Ci); instant carboxylation efficiency (iCE - A/Ci); transpiration rate (T); intrinsic water use efficiency (iWUE - A/gs); and water use efficiency (WUE - A/E). Gs, A and T, showed significant effect at 60 DAT with the application of SBF and Ci at 30 DAT with CBF. The dose of 400 dm³ ha-1 of SBF provided greater gas results, and the doses of 200 and 300 dm³ ha-1 of CBF promoted a greater Ci, greater stomatal conductance, greater liquid photosynthesis and better water use efficiency, which results in a greater plant fresh weight at the time of flowering induction.
Downloads
Referências
ALVARES, C.A., et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2014, 22(6), 711-728.
CARSTENSEN, A., et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology. 2018, 176, 1879-2583. https://doi.org/10.1104/pp.17.01624
CAVALCANTE, A.R., et al. Gas exchanges and photochemical efficiency of hydroponic bell pepper under salinity and plant density. Revista Brasileira de Engenharia Agrícola e Ambiental. 2019, 23(1), 3-8. https://doi.org/10.1590/1807-1929/agriambi.v23n1p3-8
CAVALCANTE, F.J.A. Recomendações de adubação para o estado de Pernambuco: segunda aproximação. Instituto Agronômico de Pernambuco. Recife: IPA, 2008, 198p.
CELEDONIO, C.A., et al. Área foliar da figueira em três ambientes de cultivo, sob fertirrigação de biofertilizante bovino. Revista Brasileira de Agricultura Irrigada. 2016, 10(2), 586-597.
EMBRAPA. Diagnóstico Agroambiental do Município de Petrolândia - Estado de Pernambuco. Rio de Janeiro: Embrapa Solos, 2004. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/89249/1/circtec29-2004-petrolandia.pdf
EMBRAPA. Sistema Brasileiro de Classificação de Solos. 2ª ed. Brasília: Embrapa-SPI, 2006.
GUIMARÃES, N.F., et al. Biomassa e atividade microbiana do solo em diferentes sistemas de cultivo do cafeeiro. Revista de Ciências Agrárias. 2017, 40(1), 34-44. https://doi.org/10.19084/RCA16041
HASANUZZAMAN, M., et al. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy. 2018, 8(3), 31. https://doi.org/10.3390/agronomy8030031
KHAFAGY, H., AHMED, M. and ABDEL-AZEEM, S. Impact of mineral fertilizers with or without biofertilizers or potassium humate on some soil properties, yield and quality of pea plants under salt affected soil conditions. Journal of Agricultural Chemistry and Biotechnology. 2019, 10(1), 19-27. https://doi.org/10.21608 / JACB.2019.36785
MACHUCA, L.M.R. Impactos fisiológicos e bioquímicos causados pela deficiência hídrica em plantas de pimentão (Capsicum annuum L.). Botucatu: Universidade Estadual Paulista, 2018. Tese de Doutorado.
MATOS, C.C., et al. Potencial fitotóxico do biofertilizante da casca de pequi (Caryocar brasiliense Comb.). Cultura Agronômica. 2018, 27(1), 160-172. https://doi.org/10.32929/2446-8355.2018v27n1p160-172
R CORE TEAM. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2018.
SILVA, F.L.B., et al. Interação entre salinidade e biofertilizante bovino na cultura do feijão-caupi. Revista Brasileira de Engenharia Agrícola e Ambiental. 2011, 15(4), 383-389. https://doi.org/10.1590/S1415-43662011000400009
SOUSA, G.G., et al. Estresse salino em plantas de feijão-caupi em solo com fertilizantes orgânicos. Revista Agro@ mbiente On-line. 2014, 8(3), 359-367. http://dx.doi.org/10.18227/1982-8470ragro.v8i3.1824
SOUSA, G.G. Fertirrigação com biofertilizante bovino: efeitos no crescimento, trocas gasosas e na produtividade do pinhão-manso. Revista Brasileira de Ciências Agrárias. 2013, 8(3), 503-509. https://doi.org/10.5039/agraria.v8i3a2288
SOUZA, A.G., et al. Growth, nutrition and efficiency in the transport, uptake and use of nutrients in African mahogany. Revista Ciência Agronômica. 2020, 53(1), 11-17. https://doi.org/10.5935/1806-6690.20200024
TAIZ, L., et al. Fisiologia e desenvolvimento vegetal. 6ª ed. Porto Alegre: Artmed Editora, 2017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Ygor Henrique Leal, Thiago Jardelino Dias, Aline das Graças Souza, Ana Carolina Bezerra, Lucas Soares Rodrigues, Manoel Bandeira de Albuquerque, Marcia Paloma da Silva Leal, Adjair José da Silva, Marcos Fabrício Ribeiro de Lucena
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.