In vitro establishment and multiplication of Echynochloa polystachya
DOI:
https://doi.org/10.14393/BJ-v38n0a2022-60508Keywords:
Creeping River Grass, Micropropagation, Plant Growth Regulators, Tissue CultureAbstract
The objective of this work was to carry out the in vitro establishment of Echynochloa polystachya aiming at obtaining a micropropagation protocol for works involving the selection of superior genotypes and the cultivation of the species. E. polystachya stems were collected in the municipality of Manaus-AM. Explants were inoculated in test tubes containing Murashige and Skoog (MS) medium. Thirty days after in vitro establishment, the rate of sprouting and contamination were evaluated. Experiments were also carried out to assess the effects of sucrose and 6-benzylaminopurine (BAP) concentrations on the tillering rate of explants. It was found that during the successive subcultures there was a decrease in internodes and the consequent loss of vigor. There were responses in the multiplication rate at concentrations starting from 45 g L-1 sucrose. In addition, BAP and sucrose interfered the development and in vitro multiplication. Sucrose in conjunction with BAP was harmful and shortened internodes. The physiological state of the explants for the species under study was intrinsically linked to the concentrations of sucrose used for the culture medium and the concentrations of BAP. However, the sucrose and BAP concentrations suggested for in vitro cultivation of E. Polystachya must be adjusted during successive subcultures. Absence of contamination in the in vitro establishment occurred at concentrations 15, 30 and 60 g L-1 sucrose. The combination of 1.5 mg L-1 BAP and 30 g L-1 sucrose promoted greater induction of sprouts. In addition, the in vitro rooting of E. polystachya was 45%.
Downloads
References
ALCANTARA, G.B., et al. Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454. Acta Scientiarum. Agronomy. 2014, 36(1), 63-72. https://doi.org/10.4025/actasciagron.v36i1.16342
AMARAL, C.L.F. and SILVA, A.B. Melhoramento biotecnológico de plantas medicinais. Biotecnologia Ciência e Desenvolvimento. 2003, 30, 55-59.
BARBOSA, K.M.N., PIEDADE, M.T.F. and KICHNER, F.F. Estudo Temporal da vegetação da várzea da Amazônia central. Floresta. 2008, 38(1), 89-96.
BHERING, L.L. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology. 2017, 17(2), 187-190. https://doi.org/10.1590/1984-70332017v17n2s29
CRUZ, C.D. Programa GENES: estatística experimental e matrizes. Viçosa: UFV, 2013.
FOSSARD, R.A., et al. Tissue culture propagation of Eucalyptus ficifolia F. Muell. Combined Proceedings of Annual Meetings of the International Plant Propagators’ Society. 1978, 28, 427-435, 1978.
FROTA, M.H., et al. Efeitos do BAP e do AIA na indução e no crescimento in vitro de brotos de dez clones de palma forrageira. Revista Ciência Agronômica. 2004, 35, 279-283.
ISHIGAKI, G., et al. Multiple shoot formation, somatic embryogenesis and plant regeneration from seed‐derived shoot apical meristems in ruzigrass (Brachiaria ruziziensis). Grassland Science. 2009, 55(1), 46-51. https://doi.org/10.1111/j.1744-697X.2009.00137.x
JAEGER, P.A, et al. Beyond agar: gel substrates with improved optical clarity and drug efficiency and reduced autofluorescence for microbial growth experiments. Applied and Environmental Microbiology. 2015, 81, 5639-5649. https://doi.org/10.1128/AEM.01327-15
LANE, W.D. Regeneration of pear plants from shoot meristem: tips. Plant Science Letters. 1979, 16, 337-342. https://doi.org/10.1016/0304-4211(79)90046-4
LEMES, C.S.R., et al. Meios de cultivo e sacarose no crescimento inicial in vitro de Miltonia flavescens. Ciência Rural. 2016, 46(3), 499-505. https://doi.org/10.1590/0103-8478cr20150368
LEMOS, E.E.P., et al. Conservação in vitro de germoplasma de cana-de-açúcar. Pesquisa Agropecuária Brasileira. 2002, 37(10), 1359-1364. https://doi.org/10.1590/S0100-204X2002001000002
LESHEM, B., WERKER, E. and SHALER, D.P. The effect of cytokinins on vitrification in melon and and carnation. Annals of Botany. 1988, 62, 271-276. https://doi.org/10.1093/OXFORDJOURNALS.AOB.A087658
MALDANER, J., et al. Efeito de concentrações de sacarose na morfogênese in vitro de Desmodium incanum DC. Enciclopédia Biosfera, Centro Científico Conhecer – Goiânia. 2014, 10(19), 846-854.
MENGARDA, L.H.G., et al. Estado físico do meio de cultura na propagação in vitro de bromeliaceae. Scientia Agraria. 2009, 10(6), 469-474.
MURASHIGE, T. and SKOOG, F.A. Revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum. 1962, 15, 473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
NEIBAUR, I., GALLO, M. and ALTPETER, F. The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In vitro Cellular & Developmental Biology - Plant. 2008, 44, 480-486. https://doi.org/10.1007/s11627-008-9143-0
PASSOS, L.P. and KÖPP, M.M. Micropropagação e cultivo in vitro de gramíneas forrageiras tropicais. Juiz de Fora: Embrapa Gado de Leite, 2010. Available from: https://www.embrapa.br/gado-de-leite/busca-de-publicacoes/-/publicacao/883964/micropropagacao-e-cultivo-in-vitro-de-gramineas-forrageiras-tropicais
PENCE, V.C. Evaluating costs for the in vitro propagation and preservation of endangered plants. In vitro Cellular & Developmental Biology – Plant. 2011, 47(1), 176-187. https://doi.org/10.1007/s11627-010-9323-6
PEREIRA, J.E.S. and FORTES, G.R.L. Protocolo para produção de material propagativo de batata em meio líquido. Pesquisa Agropecuária Brasileira. 2003, 38(9), 1035-1043. https://doi.org/10.1590/S0100-204X2003000900003
PIERIK, R.L.M. Handicaps for the large-scale commercial application of micropropagation. Acta Horticulturae. 1988, 230, 63-71. https://doi.org/10.17660/ActaHortic.1988.230.5
RUBIN, S., et al. Reguladores de crescimento na multiplicação in vitro de Thymus vulgaris L. Revista Brasileira de Biociências. 2007, 5(2), 480-482.
SILVA, J.P.G.S., et al. Efeito da citocinina 6-benzillaminopurina (BAP) sobre o estabelecimento in vitro de segmentos nodais de Rosa sp. Agroecossistemas. 2017, 9(2), 370-380. http://dx.doi.org/10.18542/ragros.v9i2.5097
SOMPORNPAILIN, K. and KHUNCHUAY, C. Synergistic effects of BAP and kinetin media additives on regeneration of vetiver grass (Vetiveria zizanioides L. Nash). Autralian Journal of Crop Science. 2016, 10(5), 726-731. https://doi.org/10.21475/ajcs.2016.10.05.p7439
THORPE, T., et al., 2008. The components of plant tissue culture media II: organic additions, osmotic and pH effects and support systems. In: GEORGE, E.F., HALL, M. A. and DE KLERK, G.J. Plant propagation by tissue culture. Netherland: Springer, pp. 501.
VIDIGAL, M.C., PASSOS, L.P. and SILVA, J. L. O. Conservação in vitro do germoplasma de capim elefante por meio da micropropagação de gemas axilares. Ciência Rural. 1998, 28(3), 379-385. https://doi.org/10.1590/S0103-84781998000300005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Emanuel Orestes da Silveira, Ricardo Lopes, Filipe Almendagna Rodrigues, Marcelo Domingues Martins Raizer, Fabio Jacobs Dias, Pamela Keiko Harada, Daniele Simões Araújo, Moacir Pasqual, José Magno Queiroz Luz, Maria Teresa Gomes Lopes
This work is licensed under a Creative Commons Attribution 4.0 International License.