Copper formulations in bacterial blight control and toxic effects on coffee seedlings

Authors

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-55641

Keywords:

Antibiotic, Bacteria, Chemical Control, Incidence, Phytotoxicity, Pseudomonas syringae pv. garcae.

Abstract

Bacterial blight of coffee (Pseudomonas syringae pv. garcae) is an important coffee disease and can be controlled using antibiotics and copper-based compounds. However, copper-based compounds raise doubts among coffee growers regarding bacterial blight control efficiency and phytotoxic potential. In this work, coffee plants were sprayed with different copper molecules in order to study their efficiency on bacterial blight control and the phytotoxic potential. Seven copper formulations, cuprous oxide, copper oxychloride, copper nitrate, copper hydroxide 1 (water-dispersible granules) and 2 (concentrated suspension), copper sulfate 1 (complexed with gluconic acid) and 2 (Bordeaux mixture) were studied. The copper formulations efficiency was compared with the antibiotic kasugamycin, saline solution, and control. In controlled environmental conditions of temperature, relative humidity, and photoperiod, coffee seedlings were sprayed with the treatments and after 24 hours they were inoculated with Pseudomonas syringae pv. garcae suspension. Disease incidence and severity assessments were performed in a 2-day interval during a 16-day period. Phytotoxicity incidence and severity, mapping, and quantification of copper on the leaf tissue surface, dried leaves weight, and total copper leaf content were assessed 16 days after pathogen inoculation. Data were submitted to the Scott-Knott test (p < 0.05). Cuprous oxide and copper sulfate 2 proved most efficient to bacterial blight control, causing lower phytotoxicity effect, best covering, and persistence on leaf tissues. Copper nitrate and copper sulfate complexed with gluconic acid were more phytotoxicity compared to other copper formulations.

Downloads

Download data is not yet available.

References

AGHAIE, M., AGHAIE, H. and EBRAHIMI, A. Thermodynamics of the solubility of barium nitrate in the mixed solvent, ethanol+ water, and the related ion-association. Journal of molecular liquids. 2007, 135(1), 72-74. http://dx.doi.org/10.1016/j.molliq.2006.10.005

AMARAL, J.D., TEIXEIRA, C. and PINHEIRO, E. A bactéria causadora da mancha aureolada do cafeeiro. Arquivo do Instituto Biológico. 1956, 23, 151.

BELAN, L.L., et al. Diagrammatic scale for assessment of bacterial blight in coffee leaves. Journal of Phytopathology. 2014, 162, 801-810. https://doi.org/10.1111/jph.12272

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. AGROFIT: Sistema de Agrotóxicos Fitossanitários. 2020. Available from: http://agrofit.agricultura.gov.br/agrofit_cons/!ap_produto_form_detalhe_cons?p_id_produto_formulado_tecnico=5369&p_tipo_janela=NEW

BRUNETTO, G., MELO, W. and KAMINSKI, J. Foliar application of calcium in peach in Serra Gaúcha: evaluation of content of nutrients in the leaf, fruit, and yield. Revista Brasileira de Fruticultura. 2008, 30(2), 528-533. http://dx.doi.org/10.1590/S0100-29452008000200045

CARMO, D.L., et al. Micronutrientes em solo e folha de cafeeiro sob sistema agroflorestal no sul de minas gerais. Coffee Science. 2012, 7(1), 76-83.

CHILLAPPAGARI, S., et al. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. Journal of bacteriology. 2010, 192, 2512-2524. http://dx.doi.org/10.1128/JB.00058-10

COSTA, A.S., et al. Bacterial halo blight of coffee in Brazil. Phytopathologische Zeitschrift. 1957, 28, 427-444.

COSTA, A.S. and SILVA, D.M.A. Mancha aureolada do cafeeiro. Bragantia. 1960, 19, 62-68.

DIAS, K.G.L., POZZA, A.A.A. and POZZA, E.A. Cobre via foliar na nutrição e na produção de mudas de cafeeiro. Coffee Science. 2015, 10(4), 516-526.

FAGERIA, N.K., et al. Foliar fertilization of crop plants. Journal of Plant Nutrition. 2009, 32(6), 1044-1064. http://dx.doi.org/10.1080/01904160902872826

GILARDI, G., GULLINO, M. and GARIBALDI, A. Evaluation of spray programmes for the management of leaf spot incited by Pseudomonas syringae pv. syringae on tomato cv. Cuore di bue. Crop protection. 2010, 29, 330-335. http://dx.doi.org/10.1016/j.cropro.2009.11.010

GISI, U. and SIEROTZKI, H. Fungicide modes of action and resistance in downy mildews. European Journal of Plant Pathology. 2008, 122, 157-167. http://dx.doi.org/10.1007/s10658-008-9290-5

ITHIRU, J.M., et al. Methods for early evaluation for resistance to bacterial blight of coffee. African Journal of Agriculture Research. 2013, 8(21), 2450-2454. http://dx.doi.org/10.5897/AJAR2013.6717

JIANG, W., MASHAYEKHI, H. and XING, B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution. 2009, 157, 1619-1625. http://dx.doi.org/10.1016/j.envpol.2008.12.025

KADO, C. and HESKETT, M. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology. 1970, 60, 969-976.

LA TORRE, A., IOVINO, V. and CARADONIA, F. Copper in plant protection: current situation and prospects. Phytopathologia Mediterranea. 2018, 57(2), 201-236. https://doi.org/10.14601/Phytopathol_Mediterr-23407

LYON, D.Y., et al. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environmental toxicology and chemistry. 2005, 24, 2757-2762. http://dx.doi.org/10.1897/04-649R.1

MACIEL, K.W., et al. Bacterial halo blight of coffee crop: aggressiveness and genetic diversity of strains. Bragantia. 2018, 77(1), 96-106. http://dx.doi.org/10.1590/1678-4499.2016267

MALAVOLTA, E., VITTI, G.C. and OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2 ed. Piracicaba: Potafos, 1997.

MARCUZZO, L.L. Importance of epiphytic populations in the epidemiology of bacterial diseases. Revista de Ciências Agroveterinárias. 2009, 8(2), 146-151.

MARSCHNER, P. Marschner's mineral nutrition of higher plants. 3 ed. Adelaide: Academic Press, 2012.

MELLO, M., et al. Use of antibiotics and yeasts for controlling Chinese cabbage soft rot. Horticultura Brasileira. 2011, 29(1), 78. http://dx.doi.org/10.1590/S0102-05362011000100013

MENKISSOGLU, O. and LINDOW, S.E. Chemical forms of copper on leaves in relation to the bactericidal activity of cupric hydroxide deposits on plants. Phytopathology. 1991, 81(10), 1263-1270.

OLIVEIRA, J.R. and ROMEIRO, R.S. Reação de folhas novas e velhas de cafeeiro a Pseudomonas cichorii e Pseudomonas syringae pv. garcae. Fitopatologia Brasileira. 1990, 15(4), 355-357.

OLIVEIRA, S.H., SANTOS, J.M.F. and GUZZO, S.D. Effect of rain on tenacity and efficiency of fungicides associated with vegetable oil in the control of rust coffee disease. Fitopatologia Brasileira. 2002, 27(6), 581-585. http://dx.doi.org/10.1590/S0100-41582002000600004

ORDAX, M., et al. Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Applied and environmental microbiology. 2006, 72, 3482-3488. http://dx.doi.org/10.1128/AEM.72.5.3482-3488.2006

PARADELA, A.L., et al. Avaliação do índice de fitotoxidez de triazóis em mudas de café e eficiência dos triazóis aplicados via foliar no controle da ferrugem (Hemileia vastatrix) do cafeeiro (Coffea arabica). Fitopatologia Brasileira. 2006, 32(2), 72-81.

PATRÍCIO, F.R.A., et al. Avaliação da eficiência de fungicidas cúpricos no controle da mancha aureolada (Pseudomonas syringae pv. garcae) em mudas de cafeeiro. Anais do Congresso Brasileiro de pesquisas cafeeiras. 2012, 38, 1-2.

PETEK, M.R., et al. Selection of progenies of Coffea arabica with simultaneous resistance to bacterial blight and leaf rust. Bragantia. 2006, 65(1), 65-73. http://dx.doi.org/10.1590/S0006-87052006000100009

PEYVAST, G., et al. Uptake of calcium nitrate and potassium phosphate from foliar fertilization by tomato. Journal of Horticulture and Forestry. 2009, 1(1), 7-13.

POZZA E.A, CARVALHO V.L and CHALFOUN, S.M. 2010. Sintomas de injurias causadas por doenças do cafeeiro. In: GUIMARÃES, R.J., MENDES, A.N.G. and BALIZA, D.P. (Eds.). Semiologia do cafeeiro. 1st ed. Lavras: Editora UFLA, pp. 69-101.

RODRIGUES, L.M.R., et al. Mancha aureolada do cafeeiro causada por Pseudomonas syringae pv. garcae. Campinas: IAC, 2013.

SANTO, C.E., et al. Bacterial killing by dry metallic copper surfaces. Applied and environmental microbiology. 2011, 77, 794-802. http://dx.doi.org/10.1128/AEM.01599-10

SHANER, G. and FINNEY, R.E. The effect of nitrogen fertilization on the expression of slow-milde wing resistance in Knox wheat. Phytopathology. 1977, 67(8), 1051-1056.

TECCHIO, M.A., MERLIM, T.P.D.A., LEONEL, S. and GRASSI FILHO, H. Copper fertilization in citric seedlings. Irriga. 2015, 1(1), 87. http://dx.doi.org/10.15809/irriga.2015v1n1p87

USDA. Coffee: World Markets and Trade. Foreign Agricultural Service. 2020. Available from: https://downloads.usda.library.cornell.edu/usdaesmis/files/m900nt40f/6m3129089/r494w654j/coffee.pdf

YAMANDA, J.K. Resistência de isolados de Pseudomonas syringae pv. garcae. 2014. Dissertação de Mestrado, Universidade Federal de Lavras, 2014. Available from: http://repositorio.ufla.br/jspui/bitstream/1/4791/1/DISSERTA%C3%87%C3%83O%20Resist%C3%AAncia%20de%20isolados%20de%20Pseudomonas%20syringae%20pv.%20garcae%20ao%20cobre.pdf

ZOCCOLI, D.M., TAKATSU, A. and UESUGI, C.H. Ocorrência de mancha aureolada em cafeeiros na Região do Triângulo Mineiro e Alto Paranaíba. Bragantia. 2011, 70(4), 843-849. https://doi.org/10.1590/s0006-87052011000400017

Downloads

Published

2022-09-09

How to Cite

LORAN DE OLIVEIRA FREITAS, M., AMPÉLIO POZZA, E., SANTOS NETO, H., AZIZ ALEXANDRE POZZA, A., LEONI BELAN, L., ROCHA DA SILVA , H. and ESTEVÃO DE SOUZA , P., 2022. Copper formulations in bacterial blight control and toxic effects on coffee seedlings. Bioscience Journal [online], vol. 38, pp. e38043. [Accessed22 November 2024]. DOI 10.14393/BJ-v38n0a2022-55641. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/55641.

Issue

Section

Agricultural Sciences