Changes in chemical soil and corn yield after application of gypsum and potassium doses
DOI:
https://doi.org/10.14393/BJ-v36n3a2020-42443Keywords:
gypsum, gypsum and potassium interaction, Zea maysAbstract
Soil liming is a common practice in agriculture. It aims to reduce soil acidity and to supply calcium and magnesium. Lime, however, is not easily soluble in the soil, and its reaction products are often concentrated in the application zone, which is mainly the topsoil layer. In order to increase the concentration of nutrients in deeper layers, agricultural gypsum—a byproduct of phosphoric acid production process, rich in calcium and sulfur—is used. In this context, the objective of this study was to evaluate the chemical attributes of the oxysoil and the corn´s yield to the application of gypsum associated with potassium (K) rates. The study was developed in Uberaba city, Minas Gerais state, Brazil. The factorial scheme was used 5x5, with five rates of K (0, 100, 180, 240, 360 kg ha-1 K2O) and five gypsum rates (0, 500, 1000, 2000, 4000 kg ha-1) in a randomized complete block design with four replications. The soil chemical attributes were evaluated at 0.0-0.20 m and 0.20-0.40 m depth and the biometric and productive attributes of corn. The application of gypsum resulted in the increase of calcium (Ca) and sulfur (S) contents in all depths; reduced the levels of pH, manganese, potential acidity (H + Al) in the 0.0-0.20 m depth, and increase the levels of base of saturation and sum of bases on the 0.20-0.40 m depth. Corn yield and biometric attributes no were influenced by the factors evaluated.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Hamilton César de Oliveira Charlo, Juliano da Silva Martins de Almeida, Regina Maria Quintão Lana, Renata Castoldi, Édimo Fernando Alves Moreira, Moilton Ribeiro Franco Júnior, Welson Barbosa Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.