NUMERICAL OPTIMIZATION APPLIED ON DESIGN OF TAILOR WELDED BLANKS
Abstract
Topology optimization is often referenced in literature as a layout optimization (or a generalized shape optimization). The importance of this type of optimization is the fact that the choice of an appropriate topology for a component, in conceptual stage is generally one of the most decisive factors for the efficiency of a new product. The use of tailor welded blanks in the automotive industry has allowed to optimize the design of a given component, because it is possible to combine steels with different thickness, degree of formability and mechanical strength in a single blank, which after the stamping, can be its performance optimized by proper configuration of the steel. The layout design of a tailor welded blanks depends on both the efforts that the final component will have in use as well as the strain during its forming process. This work consisted in use of topology optimization techniques and simulation of stamping via Inverse Approach to estimate the initial layout of a tailor welded blank, with constraint on Forming Limit Curve. In a second step, the topology optimization with mass constraint was used to maximize the stiffness of the component in use. Keywords: Tailor Welded Blank, Inverse Approach, Topology Optimization.Downloads
Download data is not yet available.
Downloads
Published
2015-08-06
Issue
Section
Mechanical Engineering