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Abstract 

This study analyzes sediment production and export in 

basins draining into Antonina Bay (PR), using the 

Universal Soil Loss Equation (USLE), the Connectivity 

Index (CI), and the Sediment Delivery Rate (SDR) to 

calculate an effective sediment export index (Eeffective). 

The study region encompasses the Cachoeira, Pequeno, 

Cacatu, and Faisqueira river basins, located in a 

fluviomarine dam area, where agricultural use is 

concentrated on alluvial deposits. The results indicate that 

the USLE predicts average losses ranging from 1.29 to 3.11 

t ha-1 yr-1 per basin. In contrast, the Eeffective reduces 

losses by 70 to 72% (0.36 to 0.88 t ha-1 yr-1), considering 

retention and disconnectivity along the slopes. Low-

elevation regions associated with agricultural use, 

particularly in the Lower Cachoeira River, are the main 

points of sediment production and export. The USLE, IC, 

and Eefetivo maps indicate that most of the transported 

sediment does not reach the outlet, highlighting the role of 

connectivity. Thus, combining estimates of potential 

erosion with connectivity metrics can improve the spatial 

representation of sediment export and guide conservation 

measures (no-till farming, agroforestry systems, and 

riparian forest restoration) to reduce coastal siltation and 

determine priority areas for restoration. 

 

 

 

 

 

 

 

 

  

https://orcid.org/0000-0002-7504-2913
https://orcid.org/0000-0003-1165-6382
https://orcid.org/0000-0002-9895-5192
https://orcid.org/0000-0002-1380-3879
https://orcid.org/0000-0002-1847-0161
https://orcid.org/0000-0003-4672-0639


OLIVEIRA et al.                                                                                                                            Sediment Production 

2 
 

Soc. Nat. | Uberlândia, MG | v.38 | e80061| 2026 | ISSN 1982-4513 

INTRODUCTION 

 

 

Sheet erosion is one of the most significant soil-

degradation processes, characterized by the 

continuous and relatively uniform removal of 

surface particles by runoff (Bertoni et al., 2012; 

Kopittke et al., 2025). Although often 

underestimated due to its low visibility 

compared to gully or ravine erosion, its 

cumulative effects can lead to substantial losses 

of fertile soil, compromising agricultural 

productivity and environmental sustainability 

(Morgan, 2005; Poesen, 2018). Globally, sheet 

erosion is estimated to account for the loss of 

billions of tons of soil each year, with direct 

implications for food security and ecosystem 

functioning (Pimentel et al., 1995; Borrelli et al., 

2017; Quinton; Fiener, 2023; Xiong; Leng, 2024). 

Sheet erosion is particularly critical in 

tropical and subtropical regions, where intense 

rainfall promotes the removal of the most fertile 

surface horizons and ultimately reduces 

agricultural productivity. Additional impacts 

include siltation, environmental degradation, 

and increased restoration costs (Labrière et al., 

2015). 

Soil-loss rates vary widely among 

catchments: approximately 15 t ha⁻¹ year⁻¹ in 

the Jacaré-Guaçu River catchment in São Paulo, 

southeastern Brazil (Souza, 2016), and more 

than 48 t ha⁻¹ year⁻¹ in the Juramento River 

catchment in Minas Gerais, also in southeastern 

Brazil (Oliveira; Leite, 2018). In agricultural 

areas with exposed temporary crops, losses can 

be even greater, reaching around 51.6 t ha⁻¹ 

year⁻¹, whereas under forest cover they decrease 

to only 3–4 kg ha⁻¹ year⁻¹ (Marinhascki, 2016). 

In Paraná (southern Brazil), estimates range 

from 10 t ha⁻¹ year⁻¹ (Souza et al., 2018) to 15–

20 t ha⁻¹ year⁻¹ in intensively managed areas 

(Krug, 2020), with hotspots exceeding 50–100 t 

ha⁻¹ year⁻¹ in exposed soils and access roads, 

and peak values up to 355 t ha⁻¹ year⁻¹ (Souza et 

al., 2018). This spatial heterogeneity highlights 

the need for soil-conservation practices, 

vegetation restoration, and road-management 

strategies in critical areas (Krug, 2020; 

Demarchi, et al.,2019; Xiong; Leng, 2024). 

Beyond reducing soil fertility, sheet erosion 

contributes to the silting of rivers, lakes, and 

reservoirs, decreasing water availability and 

increasing dredging costs (ANA, 2020). 

Dredging is costly and causes significant 

environmental impacts in estuarine 

environments (Paula et al., 2006), including 

hydraulic and sedimentological alterations such 

as changes in circulation patterns, water-

column mixing, and increased turbidity (Liu et 

al., 2010). Contaminant remobilization, such as 

trace metals and organic compounds, frequently 

occurs, affecting water quality and aquatic 

organisms (Monte et al., 2019; Moreira et al., 

2021). Sediment removal also alters benthic 

habitats, reducing feeding and breeding areas 

and intensifying socio-environmental conflicts 

associated with dredging operations (Castro; 

Almeida, 2012). 

The combined effects of siltation and 

repeated dredging emphasize the magnitude of 

the challenges faced in estuarine systems. In 

this context, the Paranaguá Estuarine Complex 

(PEC), located on the coast of Paraná, southern 

Brazil, stands out for its hydrodynamic, 

ecological, and geochemical complexity. 

Between 2009 and 2015, approximately 23.5 × 

10⁶ m³ of sediments were dredged in the PEC, 

requiring investments of 365.8 million reais by 

the Paranaguá and Antonina Port Authority 

(APPA – Associação de Portos de Paranaguá e 

Antonina) (Neto et al., 2017). 

Siltation in the area results from the 

accumulation of sediments derived from the 

catchments surrounding the Port Complex, 

produced by natural processes often intensified 

by inadequate land use (Rutyna et al., 2021). 

This dynamic is particularly concerning given 

the increasing operational pressure on the port 

complex, which depends on maintaining 

navigability. In 2022, the PEC received 2,540 

vessels, rising to 2,933 in 2023; that year, it 

handled 65.39 million tons of cargo and 

generated a net operating revenue of R$ 620.96 

million (Portos do Paraná, 2023; 2024). These 

conditions reinforce the importance of 

understanding sediment sources and the 

processes controlling sediment production and 

delivery to the system. 

Understanding these processes is essential 

for guiding management actions, especially in 

systems under high logistical pressure such as 

the PEC. Modeling tools are fundamental for 

assessing basin susceptibility to sediment 

generation. Advances in computational 

modeling, such as the Universal Soil Loss 

Equation (USLE) and its variations (RUSLE, 

MUSLE), have enabled the prediction of high-

risk areas and the optimization of management 

and restoration strategies (Renard et al., 1997; 

Borrelli et al., 2021; Kumar et al., 2022). These 

models estimate potential sediment production 

but do not account for factors controlling 

sediment transfer and retention along 

watersheds. 

Sediment moves through watersheds along 

slopes and channel networks (Bracken et al., 

2015). To address the limitations of traditional 

models and better represent sediment flow, 
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metrics such as the Index of Connectivity (IC) 

(Borselli et al., 2008) have been used to evaluate 

the efficiency of transporting eroded material to 

the drainage network. The IC is directly related 

to the Sediment Delivery Ratio (SDR), which 

quantifies the fraction of sediments effectively 

delivered to watercourses (Ferro; Minacapilli, 

1995), thereby allowing the estimation of 

effective sediment export (Eeffective), the 

portion of total erosion that reaches basin 

outlets (Vigiak et al., 2012). 

Given that total sediment production differs 

from the exported volumes, this article applies 

USLE, IC, SDR, and Eeffective to identify areas 

of highest sediment generation and export in the 

basins draining into Antonina Bay, southern 

Brazil, and to discuss the factors that intensify 

these processes in the region. 

 

METHODS 

 

 

Study Area 

 

The study area comprises the catchments of the 

Cachoeira (upper and lower), Pequeno, Cacatu, 

and Faísqueira rivers, located in the 

municipality of Antonina, State of Paraná, 

southern Brazil (Figure 1). These basins are 

adjacent to the PEC and form part of the 

Degraded Areas Recovery Program (PRAD) 

within the Guaraqueçaba Environmental 

Protection Area. The program was implemented 

in the municipality of Antonina by the state-

owned public company Paraná Ports as a 

requirement associated with dredging works 

carried out to deepen the navigation channel, 

access routes, and berths of the Port of 

Paranaguá. 

 

Figure 1 – Location of the study area 

 
Source: The authors (2025). 

 

The studied drainage basins exhibit a strong 

predominance of forest cover, ranging from 88% 

to 95%, whereas agricultural land occupies 

relatively small areas, between 4% and 11%. 

Basin sizes vary from 103 to 180 km². Regarding 

average slope, the values show notable 

differences among the basins: upper Cachoeira 

and Cacatu present the highest mean slopes 

(34% and 31%, respectively), while lower 

Cachoeira and Faísqueira display the lowest 

averages (18% and 20%) (Table 1). 
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Table 1 – Characteristics of the studied river basins 

Catchment Área (Km2) Land Use (%) * Slope (%) 

 Forest Agriculture Média (DP) 

Upper Cachoeira 180 95 4 34,4 (23) 

Lower Cachoeira 137 88 11 18,3 (18) 

Cacatu 106 95 4 31,9 (28,3) 

Faisqueira 103 95 4 20,9 (17,6) 

Pequeno 112 93 7 30,5 (22,2) 

Source: Souza et al., 2020. 

 

The region is characterized by vegetation 

formations typical of the Atlantic Forest, 

ranging from montane and high-montane 

forests in the Serra do Mar to pioneering 

fluviomarine and fluviolacustrine communities 

associated with the coastal plain (Roderjan, 

2002; LAGEAMB, 2023). In the municipality of 

Antonina, approximately 87% of the territory is 

covered by forest vegetation (Souza et al., 2020). 

Among the anthropogenic land uses, 

diversified agriculture stands out, including 

rice, cassava, corn, banana, orange, and other 

crops (Figure 2). These activities are heavily 

concentrated in flat areas near rivers, where 

soils developed from fluvial deposits 

predominate (Ipardes, 2025). 

 

Figure 2 –Landscapes of the study area. A) Bridge over the Cachoeira River, lower course. B) 

Pequeno River; C) Cachoeira River, upper course; D) Landscape of the coastal plain, with the Serra 

do Mar mountain range in the background. E) Agricultural area on the coastal plain 

 
Source: The authors (2025). 

 

The drainage area of Antonina Bay is 

predominantly underlain by high-grade 

metamorphic rocks, especially migmatites and 

gneisses, along with Archean and Proterozoic 

crystalline complexes. The region also includes 

the Guaratubinha Formation with its basic 

dikes, Tertiary deposits of the Alexandra 

Formation, and extensive Holocene sediments, 

particularly alluvial deposits (Salamuni; Rocha, 

2002; Ângulo, 2004). 

The climate is classified as humid subtropical 

(Cfa) in the lowlands and humid mesothermal 

subtropical (Cfb) in the mountainous areas, with 

an average annual rainfall of 2,273 mm. 
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Summer is the wettest season, with monthly 

totals exceeding 300 mm, whereas winter 

precipitation generally remains below 150 mm 

(ClimateData, 2024; ITCG, 2008; Goudard; 

Paula, 2016). 

The predominant soils in the region are 

Acrisols, Cambisols, Gleysols, Leptosols and 

Fluvisols. Acrisols occur mainly in the less 

rugged portions of the Serra do Mar mountain 

range and in hilly areas, generally associated 

with Cambisols. These, in turn, are widely 

distributed in the Serra do Mar, and may occur 

in isolation or in association with other classes, 

especially in colluvial areas, hills, and 

mountains. Fluvisols are concentrated in valley 

bottoms, where they may occur alongside 

Gleysols, which also predominate in these 

environments, generally in isolation. Leptosols 

are characteristic of the mountainous portions of 

the Serra do Mar, while Fluvisols develop in 

fluvial environments (Paula, 2010). 

 

Estimation of Sediment Production 

 

The analysis of sediment production and 

connectivity in the study area was carried out 

using multiple complementary approaches. 

Direct soil loss was estimated using the 

Universal Soil Loss Equation (USLE). Sediment 

connectivity was evaluated through the Index of 

Connectivity (IC). These two components were 

then integrated by applying the Sediment 

Delivery Rate (SDR), which enabled the 

estimation of the effective sediment export index 

(Eeffective) (Borselli et al., 2008; Vigiak et al., 

2012; Cavalli et al., 2013) (Figure 3). 

 

Figure 3 – Work steps flowchart 

 
Source: The authors (2025). 

 

The USLE (Wischmeier; Smith, 1965; 1978) 

was applied to estimate potential sheet erosion 

in the study area. The USLE estimates average 

annual soil loss (t ha⁻¹ year⁻¹) based on climatic, 

topographic, pedological, and land-management 

factors (Equation 1): 

 
𝐴 =   𝑅 ×  𝐾 × 𝐿 ×  𝑆 ×  𝐶 ×  𝑃 

 

Where A = average annual soil loss (t ha⁻¹ 

year⁻¹) 

R = rainfall erosivity factor (MJ mm ha⁻¹ h⁻¹ 

year⁻¹) 

K = soil erodibility factor (t ha h ha⁻¹ MJ⁻¹ 

mm⁻¹) 

LS = topographic factor (slope length and 

slope steepness) 

C = land cover and management factor 

P = conservation practices factor 

 

Rainfall Erosivity – R Factor  

 

The R factor represents the erosive potential of 

rainfall (Figure 4), integrating both the 

intensity and duration of precipitation events. 

In this study, it was calculated using the 

equation proposed by Lombardi Neto and 
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Moldenhauer (1992), which estimates erosivity 

based on monthly and annual precipitation data 

(Equation 2): 

 

𝐸𝐼 = 68,73〖(𝑝^2/𝑃 ")" 〗^0,841 

 

Where 𝑝 is the average monthly precipitation 

(mm) and  

P is the average annual precipitation (mm). 

The precipitation data were obtained from 

the WorldClim climatic database (Fick; 

Hijmans, 2017), with a spatial resolution of 1 

km, corresponding to the 1970–2000 

climatological normal. 

 

Figure 4 – R-factor 

 
Source: The authors (2025). 

 

Soil Erodibility - K Factor 

 

The K factor reflects the soil's susceptibility to 

erosion (Figure 5). This factor can be determined 

in the laboratory or by empirical equations (e.g., 

Wischmeier nomogram). However, for 

application in larger areas, it is common to 

assign K values to mapped soil units, such as 

those of the Brazilian Soil Classification System 

(SiBCS). For this study, we used values adapted 

from the literature (Table 2) (Mello et al., 2007; 

Coelho et al., 2024). The soil data used were 

obtained from the work of Bhering et al., (2007) 

at a scale of 1:250.000.  

 

Table 2 – Soil classes found in the area and K values 

Brazilian soil 

classification (Santos et 

al., 2025) 

Soil Class (WRB, 2022)  Estimated K (t·ha·h) 

/(MJ·mm·ha) 

Weight 

Rock outcrop Rock outcrop 0,000  

Argissolo Vermelho-

Amarelo 

Acrisol 0,020 – 0,040 0,030 

Cambissolo Háplico Cambisol 0,020 – 0,035 0,025 

Cambissolo Flúvico Cambisol 0,030 – 0,050 0,040 

Gleissolo Sálico Solonchaks 0,030 – 0,050 0,040 

Source: Adapted from Coelho et al., (2024). 
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Figure 5 –K Factor 

 
Source: Bhering et al., (2007). 

 

Length/slope – LS Factor 

 

The LS factor (Figure 6) represents the 

combined influence of slope length and gradient 

on soil erosion. This factor quantifies how 

topographic characteristics control erosion 

potential and is calculated through a 

mathematical formulation that integrates 

terrain geometry (Desmet; Govers, 1996). 

The Digital Elevation Model (DEM) used to 

derive the LS factor was obtained from the 

FABDEM project (Forest and Buildings 

Removed from the Copernicus DEM). FABDEM 

is derived from the global Copernicus DEM and 

provides elevation data at 30 m spatial 

resolution, delivered on a 1-arc-second grid 

(approximately 30 m at the equator) (Hawker et 

al., 2022). 

Reference values of 22.1 m for slope length 

and 0.09 (equivalent to approximately a 9% 

slope) were adopted in the calculation (Equation 

3). 

 

𝐿𝑆 =  (
𝐹𝐴 ∗ 30

22.1
)

0,6

∗ (
sin(𝑆 ∗ 0,01745)

0,09
)

1,3

 

 

Where AF = Flow accumulation 

S = Slope 
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Figure 6 – LS Factor 

 
Source: The authors (2025). 

 

Land Use and conservation practices – CP 

Factor 

 

The CP factor represents the combined effect of 

land use and management (C) and conservation 

practices (P). The C factor expresses the 

relationship between soil loss under a given 

vegetation cover and management condition and 

the soil loss observed on bare ground, serving as 

an indicator of the protection provided by 

vegetation or surface residues. The P factor is 

associated with mechanical conservation 

practices—such as contour farming, terracing, 

and buffer strips—which reduce surface runoff 

velocity and enhance water infiltration. 

The product of these two components results 

in the CP value, which ranges from 0 to 1. 

Values close to zero indicate high conservation 

efficiency and lower soil loss, whereas values 

near 1 reflect the absence of conservation 

measures. In this study, the CP factor (Table 3 

and Figure 7) was assigned based on the land 

use and land cover mapped for the year 2024, 

with a 30-m spatial resolution (Souza et al., 

2020), following parameter values 

recommended in the literature for similar 

environmental conditions (Miqueloni et al., 

2012; Souza; Gasparetto, 2012). 
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Table 3 – Land Use and Land Cover Classes and CP values 

Code  Classes C P* CP (C × P) Final CP 

1.1 Forest Formation 0,001 – 0,01 1,0 0,001 – 0,01 0,001 

1.3 Mangrove 0,001 1,0 0,001 0,001 

1.4 Flodable Forest 0,002 1,0 0,002 0,002 

2.1 Wetland 0,005 1,0 0,005 0,005 

2.4 Rocky Outcrop 0,000 – 

0,001 

1,0 ~0,001 0 

2.5 Herbaceous Sandbank 

Vegetation 

0,02 1,0 0,02 0,02 

3.1 Pasture 0,05 – 0,30 1,0 0,05 – 0,30 0,30 

3.2.1.1 Soybean 0,20 – 0,30 1,0 0,20 – 0,30 0,30 

3.2.1.5 Other Temporary Crops 0,25 – 0,35 1,0 0,25 – 0,35 0,30 

3.3 Forest Plantation 0,10 – 0,20 1,0 0,10 – 0,20 0,15 

3.4 Mosaic of Uses 0,15 – 0,30 1,0 0,15 – 0,30 0,25 

4.2 Urban Area 0,00 – 0,05 1,0 0,00 – 0,05 0 

4.4 Other non Vegetated 

Areas 

0,30 – 1,00 1,0 0,30 – 1,00 0,5 

5.1 River, Lake and Ocean 0,00 1,0 0,00 0 

Source: Prepared by the authors (2025) *P was not calculated. 

 

Figure 7 – CP Factor 

 
Source: Souza et al., (2020). 

 

Index of Connectivity (IC) 

 

Since USLE calculates soil loss at the cell level 

within the raster matrices, it was necessary to 

incorporate complementary indices to 

characterize sediment connectivity dynamics in 

the study area. In this context, the Index of 

Connectivity (IC) (Borselli et al., 2008; Cavalli et 

al., 2013) was applied to estimate the efficiency 

of sediment transfer from hillslopes to the 

drainage network (Equation 4). 

 

𝐼𝐶 = log_10 〖𝐷_𝑢𝑝/𝐷_𝑑𝑛 〗 

 

Where Dup (potential contribution) is 

related to the contributing area and average 

slope of the hillside. 
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Ddn (resistance / distance to the channel) is 

the shortest path to drainage, weighted by 

slope and land use/cover. 

 

Equation 5 was used to calculate the 

potential contribution (Dup): 

 

𝐷𝑢𝑝 = ∑(𝐴𝑖 tan〖〖(θ〗𝑖))〗 

 

Where Ai = accumulated contributing area 

in the cell. 

θi = slope of the cell. 

 

Equation 6 was used to calculate the channel 

distance variable - Ddn: 

 

𝐷𝑑𝑛 = ∑ 〖(
𝑑𝑖

tan(θ𝑖)𝐶𝑖

〗) 

 

Where di = distance to the canal. 

Ci = land cover factor (derived from the land 

use and occupation map). 

 

Sediment Delivery Rate (SDR) and Effective 

Sediment Production Index (Eeffective) 

 

The effective sediment export from the 

watershed was estimated by integrating the 

Universal Soil Loss Equation (USLE/RUSLE) 

with the Sediment Delivery Ratio (SDR). The 

SDR represents the fraction of eroded soil that 

effectively reaches the drainage network and is 

controlled by the degree of connectivity within 

the watershed (Borselli et al., 2008; Vigiak et al., 

2012). 

To estimate SDR in a spatially distributed 

manner, a logistic function was employed in 

which the Index of Connectivity (IC) acts as the 

explanatory variable, following approaches 

implemented in recent hydrosedimentological 

connectivity models (Cavalli et al., 2013; López-

Vicente et al., 2013; Sharp et al., 2020) 

(Equation 7): 

 

𝑆𝐷𝑅 =  
1

1 + 𝑒(𝑎+𝑏×𝑖𝑐)
 

 

where a corresponds to the intercept of the 

logistic function 

b to the slope coefficient that controls the 

slope of the curve. Reference values for a and b 

were proposed by Vigiak et al., (2012) from 

calibrations in experimental basins in Europe, 

being a≈−0.56a \approx -0.56a≈−0.56 and 

b≈0.17b \approx 0.17b≈0.17. These parameters 

can be adjusted according to the local reality of 

each study. 

 

The effective export of sediments (Eeffective) 

corresponds to the volume of material that is 

transferred from the slope to the drainage 

system. Its estimation considers the product of 

the potential soil loss, calculated using the 

Universal Soil Loss Equation (USLE), and the 

sediment delivery factor (SDR) (Equation 8): 

 

𝐸𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝑆𝐿𝐸 𝑋 𝑆𝐷𝑅 

 

 

RESULTS 

 

 

Soil loss by USLE 

 

Areas most prone to soil loss are concentrated in 

environments with greater anthropogenic 

disturbance (Figure 8). Among the hydrographic 

basins, the highest concentration of elevated 

values occurs in the Lower Cachoeira basin. 

Significant sediment production also occurs in 

the Pequeno and Upper Cachoeira basins. 

Average sediment production values are 1.44 

t ha⁻¹ year⁻¹ in the Faisqueira basin, 2.32 t ha⁻¹ 

year⁻¹ in the Pequeno River basin, 2.85 t ha⁻¹ 

year⁻¹ in the Upper Cachoeira, 1.29 t ha⁻¹ year⁻¹ 

in the Cacatu basin, and 3.11 t ha⁻¹ year⁻¹ in the 

Lower Cachoeira basin. 
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Figure 8 – Soil Loss by USLE 

 
Source: The authors (2025). 

 

Index of Connectivity 

 

The Index of Connectivity (IC) values reflect the 

capacity of slopes to transfer sediments to the 

drainage network and are primarily controlled 

by slope gradient, proximity to channels, and 

vegetation cover density (Figure 9). Interfluve 

zones and areas with gentler terrain generally 

exhibit very low to medium connectivity, 

indicating a greater likelihood of sediment being 

retained before reaching the drainage network. 

In contrast, high and very high connectivity 

values are concentrated on the steepest slopes 

(greater than 15%) and along the main and 

secondary drainage channels, which act as 

preferential corridors for sediment transport 

toward watercourses. 
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Figure 9 – Index of Connectivity (IC) 

 
Source: The authors (2025). 

 

Effective sediment export index (Eeffective) 

 

The effective sediment export index (t ha⁻¹ 

year⁻¹) for the study area (Figure 10) provides 

an estimate of the spatial variability of soil loss 

that effectively reaches the drainage network. 

Most of the area exhibits low export values (<1 t 

ha⁻¹ year⁻¹), indicating relative stability and a 

reduced risk of sediment delivery to 

watercourses. However, certain sectors, 

particularly those adjacent to agricultural areas 

and along the Cachoeira River (highlighted in 

the figure 2e), show export rates exceeding 10 t 

ha⁻¹ year⁻¹. These zones represent critical areas, 

functioning as hotspots of soil degradation and 

high sediment-generation potential. 

 

  



OLIVEIRA et al.                                                                                                                            Sediment Production 

13 
Soc. Nat. | Uberlândia, MG | v.38 | e80061| 2026 | ISSN 1982-4513 

Figure 10 – Soil Loss by Eeffective 

 
Source: The authors (2025). 

 

 

DISCUSSION 

 

 

The results indicate that the USLE tends to 

overestimate soil loss rates (Benavidez et al., 

2018; Alewell et al., 2019; Meinen; Robinson, 

2021), whereas its integration with the IC and 

SDR helps mitigate this limitation (Table 4), 

yielding spatial patterns that more closely 

reflect observed conditions (Souza et al., 2025). 

This variation is consistent with findings from 

tropical and temperate regions (Borselli et al., 

2008; Vigiak et al., 2012). The occurrence of 

higher sediment production in highly connected 

areas reinforces the role of land use in shaping 

hydrosedimentological dynamics. Nevertheless, 

the combination of low altitudes, agricultural 

land use, and elevated soil loss in the Antonina 

Bay region underscores the environmental 

vulnerability of the system. 

 

Table 4 – Soil losses estimated by USLE and Eeffective in the watersheds that drain into Antonina 

Bay 

Catchment Average soil 

loss USLE  

(t ha-1 ano-1) 

Average soil loss 

Eefetivo  

(t ha-1 ano-1) 

Reduction 

(%) 

Faisqueira 1,44 0,41 71,52 

Pequeno 2,32 0,66 71,55 

Upper 

Cachoeira 
2,85 0,83 70,87 

Cacatu 1,29 0,36 72,09 

Lower 

Cachoeira 
3,11 0,88 71,70 

Total 2,02 0,62 71,54 

Source: The authors (2025). 

 

The results indicate average annual soil 

losses ranging from 1.29 to 3.11 t ha⁻¹ year⁻¹ 

according to the USLE, and from 0.36 to 0.88 t 

ha⁻¹ year⁻¹ for Eeffective, corresponding to 

reductions greater than 70% when accounting 

for drainage connectivity. These values fall 

within the range reported for other watersheds 

in the Atlantic Forest (Fernandes et al, 2014), 
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although they remain relatively high compared 

with areas under greater forest preservation. 

In the Posses Stream watershed (state of 

Minas Gerais - southeast of Brazil), where 

extensive ecological restoration programs have 

been implemented, sediment production 

measured in experimental plots ranged from 

0.01 to 0.05 t ha⁻¹ year⁻¹, indicating extremely 

low export rates (Gomes et al., 2017). 

Conversely, in basins characterized by varying 

levels of Atlantic Forest cover (state of Rio de 

Janeiro - southeast of Brazil), sediment export 

monitored at the basin outlet ranged from 0.11 

to 0.46 t ha⁻¹ year⁻¹, while USLE estimates 

reached up to 5.24 t ha⁻¹ year⁻¹, illustrating the 

method’s tendency to overestimate potential 

erosion compared with measured sediment 

loads (Fernandes et al., 2014). 

At the continental scale, a European Union 

assessment indicated that only approximately 

15% of predicted gross erosion reaches 

watercourses, with most sediments being 

trapped or deposited across the landscape (JRC, 

2018). This pattern is widely documented: in 

basins with limited connectivity, effective export 

typically represents only a fraction of potential 

erosion. In the Ethiopian Rift, RUSLE-based 

estimates indicated erosion rates of 10–20 t ha⁻¹ 

year⁻¹, but only 21% of this material was 

delivered to the drainage network (Alemayehu 

et al., 2025). In mountainous Mediterranean 

basins, observations highlight high 

hydrosedimentological variability and strong 

control of connectivity on sediment delivery 

(Francke et al., 2018). Similarly, in southern 

Italy, rainfall–erosivity models indicated that 

only a small portion of generated material was 

exported, with most sediment retained within 

the basin (Diodato et al., 2024). 

The values obtained in this study, 

particularly those from the Eeffective model (0.4 

to 0.8 t ha⁻¹ year⁻¹), are consistent with 

estimates reported for partially vegetated 

Atlantic Forest watersheds (Fernandes et al., 

2014), although they remain higher than those 

documented in areas under continuous forest 

cover (Gomes et al., 2017). This contrast 

highlights the strong influence of land use and 

land cover on sediment export and reinforces the 

importance of integrating drainage connectivity 

into soil loss estimates. 

The comparison between USLE and 

Eeffective demonstrates a marked reduction in 

soil loss values once connectivity is considered, 

producing results more consistent with those 

observed in other Atlantic Forest studies. 

Although based on different methodologies, the 

values obtained here also align with estimates 

generated by Rutyna et al., (2021), who, using a 

morphopedological and morphometric approach 

(Crepani et al., 2001), reported average 

sediment production between 0.42 and 0.88 t 

ha⁻¹ year⁻¹ for the same basins draining into 

Antonina Bay. The similarity strengthens the 

consistency of the Eeffective index in capturing 

the effective export of sediments, mitigating the 

overestimation inherent to the standalone 

USLE (Benavidez et al., 2018; Alewell et al., 

2019; Meinen; Robinson, 2021). 

In the Antonina Bay region, land use 

emerges as the main factor driving sediment 

production, an effect also observed in other 

Brazilian biomes. Although not a central focus 

of this study, it is important to note that the 

Parigot de Souza Hydroelectric Plant, 

inaugurated in 1971, diverted part of the 

Capivari River flow into the Cachoeira River, 

increasing its annual discharge by 

approximately 33% (Soares; Santos, 2009). This 

change altered the hydrogeomorphological 

balance of the watershed and enhanced 

sediment export toward the coastal system, 

contributing to the silting of Antonina Bay. 

Examples from other Brazilian biomes 

illustrate similar patterns. In the Cerrado, 

intensive agricultural expansion has increased 

sediment export (Oliveira; Leite et al., 2018; 

Magalhães et al., 2023), a trend also observed in 

the lower Cachoeira and Pequeno basins (Table 

4; Figure 9). In the Amazon, deforestation for 

pasture increases hydrosedimentological 

connectivity (Barbosa; Fearnside, 2000), while 

in the Atlantic Forest, inadequate management 

on steep terrain intensifies erosion (Panachuki 

et al., 2011). Despite regional particularities, 

interactions between relief, land use, and 

connectivity exhibit recurrent patterns, 

reinforcing the relevance of integrated 

methodologies such as the one applied in this 

study. 

From a geomorphological perspective, areas 

with steeper slopes generally present greater 

susceptibility to sediment production. However, 

in the study area, these zones are 

predominantly covered by dense vegetation, 

which effectively inhibits erosive processes. 

Moreover, their greater distance from major 

floodplains limits the likelihood that eroded 

material will reach the main channels (Paula et 

al., 2010). The Eeffective index corroborates this 

pattern, indicating that most sediments 

produced in these environments do not reach the 

drainage network. 

To further illustrate these relationships, 

Figure 11 presents the association between the 

minimum elevation of first-order watersheds 

(m) and soil loss (t ha⁻¹ year⁻¹). The distribution 

of data points shows that minimum elevation 
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does not significantly explain the variation in 

estimated erosion, as indicated by the low R² 

value. Most watersheds with high losses (>10 t 

ha⁻¹ year⁻¹) are located at elevations below 400 

m. In contrast, above 600 m, soil loss values 

become sparse and remain close to zero. This 

pattern demonstrates that lower-lying areas 

near floodplains and Antonina Bay, where 

agricultural activities are concentrated, are 

more susceptible to elevated soil loss. 

Conversely, basins situated at higher 

elevations, generally associated with better-

preserved forest cover, and reduced 

anthropogenic pressure, exhibit minimal soil 

loss regardless of local topography. This contrast 

underscores the predominant role of land use 

and land cover in controlling erosion, 

outweighing the isolated influence of elevation. 

 

 

 

Figure 11 – Graph illustrating the estimated soil loss by USLE x Elevation of the outlets 

 
Source: The authors (2025). 

 

When the estimated values are compared 

with field measurements (Souza et al., 2025), a 

strong relationship emerges between land use 

and sediment production. Bare soil areas exhibit 

the highest losses (0.035 t ha⁻¹ year⁻¹), a value 

approximately 25 times greater than that 

recorded under native forest cover (0.0014 t ha⁻¹ 

year⁻¹). Conventional agriculture (0.0064 t ha⁻¹ 

year⁻¹) and agroforestry systems (0.0065 t ha⁻¹ 

year⁻¹) show intermediate values, markedly 

lower than those observed for bare soil, yet still 

above the levels associated with native 

vegetation. These findings demonstrate that 

forest cover provides the most effective 

protection against erosion. They also reinforce 

that even the highest field-measured losses 

(0.035 t ha⁻¹ year⁻¹ under exposed soil) remain 

lower than the estimates derived from USLE or 

from the Effective erosion values (Table 5). 

 

Table 5 – Comparison of soil losses estimated by USLE and Eeffective in the watersheds that drain 

into Antonina Bay 

Land Use Sediment (g/plot/year) 

2024* 

Sediment (t ha-1 

ano-1) 

Agroforestry 

System 

6,49 0,00649 

Native Forest 1,41 0,00141 

Agriculture 6,41 0,00641 

Bare soil 35,03 0,03503 

*Plots with 10 m2 

Source: Souza et al., (2025).  

 

FINAL CONSIDERATIONS 

 

 

The results show that the isolated application of 

the USLE substantially overestimates soil loss 

when compared with estimates obtained by 

integrating it with the Index of Connectivity (IC) 

and the Sediment Delivery Ratio (SDR). 

Incorporating these parameters reduced 

potential erosion values by approximately 70%, 

indicating that most of the mobilized material is 

retained on slopes before reaching the drainage 

network. This finding directly highlights the 

importance of accounting for 

hydrosedimentological connectivity to more 

accurately represent actual sediment export. 
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The spatial analysis revealed that the 

highest soil-loss rates are concentrated in low-

altitude areas with intensive agricultural use, 

particularly within alluvial plains, whereas 

higher-elevation regions covered by native 

forest exhibit minimal losses. The study 

therefore provides a detailed spatial assessment 

of the most vulnerable sectors, contributing to a 

clearer understanding of the geomorphological 

and anthropogenic controls on erosive dynamics. 

The resulting products, especially the IC and 

Eeffective maps, constitute valuable tools for 

environmental planning, enabling the 

identification of critical areas and guiding the 

allocation of priority management actions. 

Based on these results, the adoption of practices 

such as no-till agriculture, agroforestry systems, 

riparian forest maintenance, and improved 

land-use regulation in highly connected sectors 

is recommended, as these measures can 

significantly reduce sediment input to 

watercourses. 

Finally, the methodology proved robust, 

compatible with readily accessible datasets, and 

replicable in humid tropical basins. The study 

directly advances erosion and sediment 

connectivity assessments, providing technical 

support for public policies related to water 

management, soil conservation, and the 

mitigation of siltation in environmentally 

sensitive regions. 
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