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Abstract

This study analyzes sediment production and export in
basins draining into Antonina Bay (PR), using the
Universal Soil Loss Equation (USLE), the Connectivity
Index (CI), and the Sediment Delivery Rate (SDR) to
calculate an effective sediment export index (Eeffective).
The study region encompasses the Cachoeira, Pequeno,
Cacatu, and Faisqueira river basins, located in a
fluviomarine dam area, where agricultural use is
concentrated on alluvial deposits. The results indicate that
the USLE predicts average losses ranging from 1.29 to 3.11
t ha-1 yr-1 per basin. In contrast, the Eeffective reduces
losses by 70 to 72% (0.36 to 0.88 t ha-1 yr-1), considering
retention and disconnectivity along the slopes. Low-
elevation regions associated with agricultural use,
particularly in the Lower Cachoeira River, are the main
points of sediment production and export. The USLE, IC,
and Eefetivo maps indicate that most of the transported
sediment does not reach the outlet, highlighting the role of
connectivity. Thus, combining estimates of potential
erosion with connectivity metrics can improve the spatial
representation of sediment export and guide conservation
measures (no-till farming, agroforestry systems, and
riparian forest restoration) to reduce coastal siltation and
determine priority areas for restoration.
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INTRODUCTION

Sheet erosion is one of the most significant soil-
degradation processes, characterized by the
continuous and relatively uniform removal of
surface particles by runoff (Bertoni et al., 2012;
Kopittke et al, 2025). Although often
underestimated due to its low visibility
compared to gully or ravine erosion, its
cumulative effects can lead to substantial losses
of fertile soil, compromising agricultural
productivity and environmental sustainability
(Morgan, 2005; Poesen, 2018). Globally, sheet
erosion is estimated to account for the loss of
billions of tons of soil each year, with direct
implications for food security and ecosystem
functioning (Pimentel et al., 1995; Borrelli et al.,
2017; Quinton; Fiener, 2023; Xiong; Leng, 2024).

Sheet erosion 1is particularly critical in
tropical and subtropical regions, where intense
rainfall promotes the removal of the most fertile
surface horizons and ultimately reduces
agricultural productivity. Additional impacts
include siltation, environmental degradation,
and increased restoration costs (Labriére et al.,
2015).

Soil-loss rates vary widely among
catchments: approximately 15 t ha™ year™ in
the Jacaré-Guacgu River catchment in Sao Paulo,
southeastern Brazil (Souza, 2016), and more
than 48 t ha™ year™ in the Juramento River
catchment in Minas Gerais, also in southeastern
Brazil (Oliveira; Leite, 2018). In agricultural
areas with exposed temporary crops, losses can
be even greater, reaching around 51.6 t ha™
year !, whereas under forest cover they decrease
to only 3—4 kg ha™ year™ (Marinhascki, 2016).
In Parania (southern Brazil), estimates range
from 10 t ha™ year™ (Souza et al., 2018) to 15—
20 t ha™ year™! in intensively managed areas
(Krug, 2020), with hotspots exceeding 50-100 t
ha™ year™ in exposed soils and access roads,
and peak values up to 355 t ha™ year™ (Souza et
al., 2018). This spatial heterogeneity highlights
the need for soil-conservation practices,
vegetation restoration, and road-management
strategies 1in critical areas (Krug, 2020;
Demarchi, et al.,2019; Xiong; Leng, 2024).

Beyond reducing soil fertility, sheet erosion
contributes to the silting of rivers, lakes, and
reservoirs, decreasing water availability and
increasing dredging costs (ANA, 2020).
Dredging is costly and causes significant
environmental impacts in estuarine
environments (Paula et al., 2006), including
hydraulic and sedimentological alterations such
as changes in circulation patterns, water-
column mixing, and increased turbidity (Liu et

al., 2010). Contaminant remobilization, such as
trace metals and organic compounds, frequently
occurs, affecting water quality and aquatic
organisms (Monte et al., 2019; Moreira et al.,
2021). Sediment removal also alters benthic
habitats, reducing feeding and breeding areas
and intensifying socio-environmental conflicts
associated with dredging operations (Castro;
Almeida, 2012).

The combined effects of siltation and
repeated dredging emphasize the magnitude of
the challenges faced in estuarine systems. In
this context, the Paranagua Estuarine Complex
(PEC), located on the coast of Parana, southern
Brazil, stands out for its hydrodynamic,
ecological, and geochemical complexity.
Between 2009 and 2015, approximately 23.5 X
10° m? of sediments were dredged in the PEC,
requiring investments of 365.8 million reais by
the Paranagua and Antonina Port Authority
(APPA — Associagdo de Portos de Paranagua e
Antonina) (Neto et al., 2017).

Siltation in the area results from the
accumulation of sediments derived from the
catchments surrounding the Port Complex,
produced by natural processes often intensified
by inadequate land use (Rutyna et al., 2021).
This dynamic is particularly concerning given
the increasing operational pressure on the port
complex, which depends on maintaining
navigability. In 2022, the PEC received 2,540
vessels, rising to 2,933 in 2023; that year, it
handled 65.39 million tons of cargo and
generated a net operating revenue of R$ 620.96
million (Portos do Parana, 2023; 2024). These
conditions reinforce the importance of
understanding sediment sources and the
processes controlling sediment production and
delivery to the system.

Understanding these processes is essential
for guiding management actions, especially in
systems under high logistical pressure such as
the PEC. Modeling tools are fundamental for
assessing basin susceptibility to sediment
generation. Advances iIn computational
modeling, such as the Universal Soil Loss
Equation (USLE) and its variations (RUSLE,
MUSLE), have enabled the prediction of high-
risk areas and the optimization of management
and restoration strategies (Renard et al., 1997;
Borrelli et al., 2021; Kumar et al., 2022). These
models estimate potential sediment production
but do not account for factors controlling
sediment transfer and retention along
watersheds.

Sediment moves through watersheds along
slopes and channel networks (Bracken et al.,
2015). To address the limitations of traditional
models and better represent sediment flow,
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metrics such as the Index of Connectivity (IC)
(Borselli et al., 2008) have been used to evaluate
the efficiency of transporting eroded material to
the drainage network. The IC is directly related
to the Sediment Delivery Ratio (SDR), which
quantifies the fraction of sediments effectively
delivered to watercourses (Ferro; Minacapilli,
1995), thereby allowing the estimation of
effective sediment export (Eeffective), the
portion of total erosion that reaches basin
outlets (Vigiak et al., 2012).

Given that total sediment production differs
from the exported volumes, this article applies
USLE, IC, SDR, and Eeffective to identify areas
of highest sediment generation and export in the
basins draining into Antonina Bay, southern
Brazil, and to discuss the factors that intensify
these processes in the region.

METHODS

Study Area

The study area comprises the catchments of the
Cachoeira (upper and lower), Pequeno, Cacatu,
and Faisqueira rivers, located in the
municipality of Antonina, State of Parana,
southern Brazil (Figure 1). These basins are
adjacent to the PEC and form part of the
Degraded Areas Recovery Program (PRAD)
within the Guaraquegaba Environmental
Protection Area. The program was implemented
in the municipality of Antonina by the state-
owned public company Parana Ports as a
requirement associated with dredging works
carried out to deepen the navigation channel,
access routes, and berths of the Port of
Paranagua.

Figure 1 — Location of the study area
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The studied drainage basins exhibit a strong
predominance of forest cover, ranging from 88%
to 95%, whereas agricultural land occupies
relatively small areas, between 4% and 11%.
Basin sizes vary from 103 to 180 km?. Regarding
average slope, the values show notable

differences among the basins: upper Cachoeira
and Cacatu present the highest mean slopes
(84% and 31%, respectively), while lower
Cachoeira and Faisqueira display the lowest
averages (18% and 20%) (Table 1).
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Table 1 — Characteristics of the studied river basins

Catchment Area (Km?2) Land Use (%) * Slope (%)
Forest Agriculture Média (DP)

Upper Cachoeira 180 95 4 34,4 (23)

Lower Cachoeira 137 88 11 18,3 (18)
Cacatu 106 95 4 31,9 (28,3)
Faisqueira 103 95 4 20,9 (17,6)
Pequeno 112 93 7 30,5 (22,2)

Source: Souza et al., 2020.
The region is characterized by vegetation Among the anthropogenic land wuses,

formations typical of the Atlantic Forest,
ranging from montane and high-montane
forests in the Serra do Mar to pioneering
fluviomarine and fluviolacustrine communities
associated with the coastal plain (Roderjan,
2002; LAGEAMB, 2023). In the municipality of
Antonina, approximately 87% of the territory is
covered by forest vegetation (Souza et al., 2020).

diversified agriculture stands out, including
rice, cassava, corn, banana, orange, and other
crops (Figure 2). These activities are heavily
concentrated in flat areas near rivers, where
soils  developed from fluvial deposits
predominate (Ipardes, 2025).

Figure 2 —Landscapes of the study area. A) Bridge over the Cachoeira River, lower course. B)
Pequeno River; C) Cachoeira River, upper course; D) Landscape of the coastal plain, with the Serra

do Mar mountain range in the

The drainage area of Antonina Bay is
predominantly underlain by  high-grade
metamorphic rocks, especially migmatites and
gneisses, along with Archean and Proterozoic
crystalline complexes. The region also includes
the Guaratubinha Formation with its basic
dikes, Tertiary deposits of the Alexandra

background. E) Agricultural area on the

Source: The authors (2025).

coastal plain

N

; ——

Formation, and extensive Holocene sediments,
particularly alluvial deposits (Salamuni; Rocha,
2002; Angulo, 2004).

The climate is classified as humid subtropical
(Cfa) in the lowlands and humid mesothermal
subtropical (Cfb) in the mountainous areas, with
an average annual rainfall of 2,273 mm.
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Summer is the wettest season, with monthly
totals exceeding 300 mm, whereas winter
precipitation generally remains below 150 mm
(ClimateData, 2024; ITCG, 2008; Goudard,;
Paula, 2016).

The predominant soils in the region are
Acrisols, Cambisols, Gleysols, Leptosols and
Fluvisols. Acrisols occur mainly in the less
rugged portions of the Serra do Mar mountain
range and in hilly areas, generally associated
with Cambisols. These, in turn, are widely
distributed in the Serra do Mar, and may occur
in isolation or in association with other classes,
especially in colluvial areas, hills, and
mountains. Fluvisols are concentrated in valley
bottoms, where they may occur alongside
Gleysols, which also predominate in these
environments, generally in isolation. Leptosols
are characteristic of the mountainous portions of

the Serra do Mar, while Fluvisols develop in
fluvial environments (Paula, 2010).

Estimation of Sediment Production

The analysis of sediment production and
connectivity in the study area was carried out
using multiple complementary approaches.
Direct soil loss was estimated wusing the
Universal Soil Loss Equation (USLE). Sediment
connectivity was evaluated through the Index of
Connectivity (IC). These two components were
then integrated by applying the Sediment
Delivery Rate (SDR), which enabled the
estimation of the effective sediment export index
(Eeffective) (Borselli et al., 2008; Vigiak et al.,
2012; Cavalli et al., 2013) (Figure 3).

Figure 3 — Work steps flowchart
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Source: The authors (2025).

The USLE (Wischmeier; Smith, 1965; 1978)
was applied to estimate potential sheet erosion
in the study area. The USLE estimates average
annual soil loss (t ha™ year™) based on climatic,
topographic, pedological, and land-management
factors (Equation 1):

A= R X KXL XS XCXP

Where A = average annual soil loss (t ha™
year™)

R = rainfall erosivity factor (MdJ mm ha™ h™
year™?!)

K = soil erodibility factor (t ha h ha™ MJ™!
mm™Y)

LS = topographic factor (slope length and
slope steepness)

C =land cover and management factor

P = conservation practices factor

Rainfall Erosivity — R Factor

The R factor represents the erosive potential of
rainfall (Figure 4), integrating both the
intensity and duration of precipitation events.
In this study, it was calculated using the
equation proposed by Lombardi Neto and
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Moldenhauer (1992), which estimates erosivity
based on monthly and annual precipitation data
(Equation 2):

Where p is the average monthly precipitation
(mm) and

P is the average annual precipitation (mm).

The precipitation data were obtained from

48°35'W

EI = 68,73 [(p"2/P™)" ] ~0,841 the WorldClim climatic database (Fick;
Hijmans, 2017), with a spatial resolution of 1
km, corresponding to the 1970-2000
climatological normal.

Figure 4 — R-factor
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Source: The authors (2025).

Soil Erodibility - K Factor

The K factor reflects the soil's susceptibility to
erosion (Figure 5). This factor can be determined
in the laboratory or by empirical equations (e.g.,
Wischmeier  nomogram). However, for
application in larger areas, it is common to
assign K values to mapped soil units, such as

those of the Brazilian Soil Classification System
(SiBCS). For this study, we used values adapted
from the literature (Table 2) (Mello et al., 2007;
Coelho et al., 2024). The soil data used were
obtained from the work of Bhering et al., (2007)
at a scale of 1:250.000.

Table 2 — Soil classes found in the area and K values

Brazilian soil Soil Class (WRB, 2022) Estimated K (t ‘ha ‘h) Weight
classification (Santos et /(MdJ ‘mm ‘ha)
al., 2025)

Rock outcrop Rock outcrop 0,000

Argissolo Vermelho- Acrisol 0,020 — 0,040 0,030
Amarelo

Cambissolo Haplico Cambisol 0,020 — 0,035 0,025
Cambissolo Fluvico Cambisol 0,030 — 0,050 0,040
Gleissolo Salico Solonchaks 0,030 — 0,050 0,040

Source: Adapted from Coelho et al., (2024).
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Figure 5 —K Factor
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Length/slope — LS Factor

The LS factor (Figure 6) represents the
combined influence of slope length and gradient
on soil erosion. This factor quantifies how
topographic characteristics control erosion
potential and is calculated through a
mathematical formulation that integrates
terrain geometry (Desmet; Govers, 1996).

The Digital Elevation Model (DEM) used to
derive the LS factor was obtained from the
FABDEM project (Forest and Buildings
Removed from the Copernicus DEM). FABDEM
is derived from the global Copernicus DEM and
provides elevation data at 30 m spatial

resolution, delivered on a 1-arc-second grid
(approximately 30 m at the equator) (Hawker et
al., 2022).

Reference values of 22.1 m for slope length
and 0.09 (equivalent to approximately a 9%
slope) were adopted in the calculation (Equation
3).

L (FA * 30)0'6 sin(S * 0,01745)\ "
= *|—m——
221 0,09

Where AF = Flow accumulation
S = Slope
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Figure 6 — LS Factor
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Land Use and conservation practices — CP
Factor

The CP factor represents the combined effect of
land use and management (C) and conservation
practices (P). The C factor expresses the
relationship between soil loss under a given
vegetation cover and management condition and
the soil loss observed on bare ground, serving as
an indicator of the protection provided by
vegetation or surface residues. The P factor is
associated with mechanical conservation
practices—such as contour farming, terracing,
and buffer strips—which reduce surface runoff
velocity and enhance water infiltration.

The product of these two components results
in the CP value, which ranges from 0 to 1.
Values close to zero indicate high conservation
efficiency and lower soil loss, whereas values
near 1 reflect the absence of conservation
measures. In this study, the CP factor (Table 3
and Figure 7) was assigned based on the land
use and land cover mapped for the year 2024,
with a 30-m spatial resolution (Souza et al.,
2020), following parameter values
recommended in the literature for similar
environmental conditions (Miqueloni et al.,
2012; Souza; Gasparetto, 2012).
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Table 3 — Land Use and Land Cover Classes and CP values
Code Classes C pP* CP (CxP) Final CP
1.1 Forest Formation 0,001 - 0,01 1,0 0,001 - 0,01 0,001
1.3 Mangrove 0,001 1,0 0,001 0,001
1.4 Flodable Forest 0,002 1,0 0,002 0,002
2.1 Wetland 0,005 1,0 0,005 0,005
2.4 Rocky Outcrop 0,000 — 1,0 ~0,001 0
0,001
2.5 Herbaceous Sandbank 0,02 1,0 0,02 0,02
Vegetation

3.1 Pasture 0,05 -0,30 1,0 0,05 -0,30 0,30

3.2.1.1 Soybean 0,20 - 0,30 1,0 0,20 - 0,30 0,30

3.2.1.5  Other Temporary Crops 0,25 — 0,35 1,0 0,25 -0,35 0,30
3.3 Forest Plantation 0,10 -0,20 1,0 0,10 - 0,20 0,15
3.4 Mosaic of Uses 0,15-0,30 1,0 0,15-0,30 0,25
4.2 Urban Area 0,00 - 0,05 1,0 0,00 - 0,05 0
4.4 Other non Vegetated 0,30 — 1,00 1,0 0,30 — 1,00 0,5

Areas
5.1 River, Lake and Ocean 0,00 1,0 0,00 0
Source: Prepared by the authors (2025) *P was not calculated.
Figure 7 — CP Factor
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of sediment transfer from hillslopes

T
25°20'S

T
25°25'S

drainage network (Equation 4).

Since USLE calculates soil loss at the cell level
within the raster matrices, it was necessary to

incorporate

complementary

indices

to

characterize sediment connectivity dynamics in

the study area. In this context, the Index of
Connectivity (IC) (Borselli et al., 2008; Cavalli et

al., 2013) was applied to estimate the efficiency
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Ddn (resistance / distance to the channel) is
the shortest path to drainage, weighted by
slope and land use/cover.

Equation 5 was used to calculate the
potential contribution (Dup):

Dup = ) (A;tan([(61))]

Where Ai = accumulated contributing area
in the cell.
0; = slope of the cell.

Equation 6 was used to calculate the channel
distance variable - Ddn:

AN E)

Where di = distance to the canal.
Ci =1land cover factor (derived from the land
use and occupation map).

Sediment Delivery Rate (SDR) and Effective
Sediment Production Index (Eeffective)

The effective sediment export from the
watershed was estimated by integrating the
Universal Soil Loss Equation (USLE/RUSLE)
with the Sediment Delivery Ratio (SDR). The
SDR represents the fraction of eroded soil that
effectively reaches the drainage network and is
controlled by the degree of connectivity within
the watershed (Borselli et al., 2008; Vigiak et al.,
2012).

To estimate SDR in a spatially distributed
manner, a logistic function was employed in
which the Index of Connectivity (IC) acts as the
explanatory variable, following approaches
implemented in recent hydrosedimentological
connectivity models (Cavalli et al., 2013; Lépez-
Vicente et al., 2013; Sharp et al., 2020)
(Equation 7):

1
SDR = W
where a corresponds to the intercept of the
logistic function
b to the slope coefficient that controls the
slope of the curve. Reference values for a and b
were proposed by Vigiak et al., (2012) from
calibrations in experimental basins in Europe,
being a=~—0.56a \approx -0.56a~—0.56 and
b=0.17b \approx 0.17b=0.17. These parameters
can be adjusted according to the local reality of
each study.

The effective export of sediments (Eeffective)
corresponds to the volume of material that is
transferred from the slope to the drainage
system. Its estimation considers the product of
the potential soil loss, calculated using the
Universal Soil Loss Equation (USLE), and the
sediment delivery factor (SDR) (Equation 8):

Eoffective = USLE X SDR

RESULTS

Soil loss by USLE

Areas most prone to soil loss are concentrated in
environments with greater anthropogenic
disturbance (Figure 8). Among the hydrographic
basins, the highest concentration of elevated
values occurs in the Lower Cachoeira basin.
Significant sediment production also occurs in
the Pequeno and Upper Cachoeira basins.

Average sediment production values are 1.44
t ha™ year™ in the Faisqueira basin, 2.32 t ha™
year™ in the Pequeno River basin, 2.85 t ha™
year ! in the Upper Cachoeira, 1.29 t ha™ year™
in the Cacatu basin, and 3.11 t ha™ year™ in the
Lower Cachoeira basin.
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Figure 8 — Soil Loss by USLE
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Index of Connectivity

The Index of Connectivity (IC) values reflect the
capacity of slopes to transfer sediments to the
drainage network and are primarily controlled
by slope gradient, proximity to channels, and
vegetation cover density (Figure 9). Interfluve
zones and areas with gentler terrain generally
exhibit very low to medium connectivity,

indicating a greater likelihood of sediment being
retained before reaching the drainage network.
In contrast, high and very high connectivity
values are concentrated on the steepest slopes
(greater than 15%) and along the main and
secondary drainage channels, which act as
preferential corridors for sediment transport
toward watercourses.
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Figure 9 — Index of Connectivity (IC)
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Effective sediment export index (Eeffective) reduced risk of sediment delivery to
watercourses. However, certain sectors,

The effective sediment export index (t ha™
year™') for the study area (Figure 10) provides
an estimate of the spatial variability of soil loss
that effectively reaches the drainage network.
Most of the area exhibits low export values (<1t
ha™ year™), indicating relative stability and a

particularly those adjacent to agricultural areas
and along the Cachoeira River (highlighted in
the figure 2e), show export rates exceeding 10 t
ha ! year™. These zones represent critical areas,
functioning as hotspots of soil degradation and
high sediment-generation potential.
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Figure 10 — Soil Loss by Eeffective
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DISCUSSION

The results indicate that the USLE tends to
overestimate soil loss rates (Benavidez et al.,
2018; Alewell et al., 2019; Meinen; Robinson,
2021), whereas its integration with the IC and
SDR helps mitigate this limitation (Table 4),
yielding spatial patterns that more -closely
reflect observed conditions (Souza et al., 2025).

This variation is consistent with findings from
tropical and temperate regions (Borselli et al.,
2008; Vigiak et al.,, 2012). The occurrence of
higher sediment production in highly connected
areas reinforces the role of land use in shaping
hydrosedimentological dynamics. Nevertheless,
the combination of low altitudes, agricultural
land use, and elevated soil loss in the Antonina
Bay region underscores the environmental
vulnerability of the system.

Table 4 — Soil losses estimated by USLE and Eeffective in the watersheds that drain into Antonina

Catchment Average soil Average soil loss  Reduction
loss USLE Eefetivo (%)
(t ha'! ano!) (t ha'! ano?!)
Faisqueira 1,44 0,41 71,52
Pequeno 2,32 0,66 71,55
Upper 2,85 0,83 70,87
Cachoeira
Cacatu 1,29 0,36 72,09
Lower
Cachoeira 3,11 0,88 71,70
Total 2,02 0,62 71,54

Source: The authors (2025).

The results indicate average annual soil
losses ranging from 1.29 to 3.11 t ha™ year™
according to the USLE, and from 0.36 to 0.88 t
ha™ year™ for Eeffective, corresponding to

reductions greater than 70% when accounting
for drainage connectivity. These values fall
within the range reported for other watersheds
in the Atlantic Forest (Fernandes et al, 2014),
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although they remain relatively high compared
with areas under greater forest preservation.

In the Posses Stream watershed (state of
Minas Gerais - southeast of Brazil), where
extensive ecological restoration programs have
been implemented, sediment production
measured in experimental plots ranged from
0.01 to 0.05 t ha™ year™!, indicating extremely
low export rates (Gomes et al, 2017).
Conversely, in basins characterized by varying
levels of Atlantic Forest cover (state of Rio de
Janeiro - southeast of Brazil), sediment export
monitored at the basin outlet ranged from 0.11
to 0.46 t ha™ year™!, while USLE estimates
reached up to 5.24 t ha™ year™, illustrating the
method’s tendency to overestimate potential
erosion compared with measured sediment
loads (Fernandes et al., 2014).

At the continental scale, a European Union
assessment indicated that only approximately
15% of predicted gross erosion reaches
watercourses, with most sediments being
trapped or deposited across the landscape (JRC,
2018). This pattern is widely documented: in
basins with limited connectivity, effective export
typically represents only a fraction of potential
erosion. In the Ethiopian Rift, RUSLE-based
estimates indicated erosion rates of 10—20 t ha™
year™!, but only 21% of this material was
delivered to the drainage network (Alemayehu
et al., 2025). In mountainous Mediterranean
basins, observations highlight high
hydrosedimentological variability and strong
control of connectivity on sediment delivery
(Francke et al., 2018). Similarly, in southern
Italy, rainfall-erosivity models indicated that
only a small portion of generated material was
exported, with most sediment retained within
the basin (Diodato et al., 2024).

The values obtained in this study,
particularly those from the Eeffective model (0.4
to 0.8 t ha™ year™), are consistent with
estimates reported for partially vegetated
Atlantic Forest watersheds (Fernandes et al.,
2014), although they remain higher than those
documented in areas under continuous forest
cover (Gomes et al., 2017). This contrast
highlights the strong influence of land use and
land cover on sediment export and reinforces the
importance of integrating drainage connectivity
into soil loss estimates.

The comparison between USLE and
Eeffective demonstrates a marked reduction in
soil loss values once connectivity is considered,
producing results more consistent with those
observed in other Atlantic Forest studies.
Although based on different methodologies, the
values obtained here also align with estimates
generated by Rutyna et al., (2021), who, using a

morphopedological and morphometric approach
(Crepani et al., 2001), reported average
sediment production between 0.42 and 0.88 t
ha™ year™ for the same basins draining into
Antonina Bay. The similarity strengthens the
consistency of the Eeffective index in capturing
the effective export of sediments, mitigating the
overestimation inherent to the standalone
USLE (Benavidez et al., 2018; Alewell et al.,
2019; Meinen; Robinson, 2021).

In the Antonina Bay region, land use
emerges as the main factor driving sediment
production, an effect also observed in other
Brazilian biomes. Although not a central focus
of this study, it is important to note that the
Parigot de Souza Hydroelectric Plant,
inaugurated in 1971, diverted part of the
Capivari River flow into the Cachoeira River,
increasing its annual discharge by
approximately 33% (Soares; Santos, 2009). This
change altered the hydrogeomorphological
balance of the watershed and enhanced
sediment export toward the coastal system,
contributing to the silting of Antonina Bay.

Examples from other Brazilian biomes
illustrate similar patterns. In the Cerrado,
intensive agricultural expansion has increased
sediment export (Oliveira; Leite et al., 2018;
Magalhaes et al., 2023), a trend also observed in
the lower Cachoeira and Pequeno basins (Table
4; Figure 9). In the Amazon, deforestation for
pasture increases hydrosedimentological
connectivity (Barbosa; Fearnside, 2000), while
in the Atlantic Forest, inadequate management
on steep terrain intensifies erosion (Panachuki
et al., 2011). Despite regional particularities,
interactions between relief, land use, and
connectivity  exhibit recurrent patterns,
reinforcing the relevance of integrated
methodologies such as the one applied in this
study.

From a geomorphological perspective, areas
with steeper slopes generally present greater
susceptibility to sediment production. However,
in the study area, these =zones are
predominantly covered by dense vegetation,
which effectively inhibits erosive processes.
Moreover, their greater distance from major
floodplains limits the likelihood that eroded
material will reach the main channels (Paula et
al., 2010). The Eeffective index corroborates this
pattern, indicating that most sediments
produced in these environments do not reach the
drainage network.

To further illustrate these relationships,
Figure 11 presents the association between the
minimum elevation of first-order watersheds
(m) and soil loss (t ha™ year™). The distribution
of data points shows that minimum elevation
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does not significantly explain the variation in
estimated erosion, as indicated by the low R?
value. Most watersheds with high losses (>10 t
ha™ year™) are located at elevations below 400
m. In contrast, above 600 m, soil loss values
become sparse and remain close to zero. This
pattern demonstrates that lower-lying areas
near floodplains and Antonina Bay, where
agricultural activities are concentrated, are
more susceptible to elevated soil loss.

Conversely, basins situated at higher
elevations, generally associated with better-
preserved  forest cover, and reduced
anthropogenic pressure, exhibit minimal soil
loss regardless of local topography. This contrast
underscores the predominant role of land use
and land cover in controlling erosion,
outweighing the isolated influence of elevation.

Figure 11 — Graph illustrating the estimated soil loss by USLE x Elevation of the outlets
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When the estimated values are compared
with field measurements (Souza et al., 2025), a
strong relationship emerges between land use
and sediment production. Bare soil areas exhibit
the highest losses (0.035 t ha™ year™), a value
approximately 25 times greater than that
recorded under native forest cover (0.0014 t ha™
year !). Conventional agriculture (0.0064 t ha™
year™) and agroforestry systems (0.0065 t ha™
year ') show intermediate values, markedly

lower than those observed for bare soil, yet still
above the levels associated with native
vegetation. These findings demonstrate that
forest cover provides the most -effective
protection against erosion. They also reinforce
that even the highest field-measured losses
(0.035 t ha™ year™ under exposed soil) remain
lower than the estimates derived from USLE or
from the Effective erosion values (Table 5).

Table 5 — Comparison of soil losses estimated by USLE and Eeffective in the watersheds that drain
into Antonina Bay

Land Use Sediment (g/plot/year) Sediment (t ha!
2024* ano-)
Agroforestry 6,49 0,00649
System
Native Forest 1,41 0,00141
Agriculture 6,41 0,00641
Bare soil 35,03 0,03503
*Plots with 10 m2
Source: Souza et al., (2025).
FINAL CONSIDERATIONS Incorporating these parameters reduced

The results show that the isolated application of
the USLE substantially overestimates soil loss
when compared with estimates obtained by
integrating it with the Index of Connectivity (IC)
and the Sediment Delivery Ratio (SDR).

potential erosion values by approximately 70%,
indicating that most of the mobilized material is
retained on slopes before reaching the drainage
network. This finding directly highlights the
importance of accounting for
hydrosedimentological connectivity to more
accurately represent actual sediment export.
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The spatial analysis revealed that the
highest soil-loss rates are concentrated in low-
altitude areas with intensive agricultural use,
particularly within alluvial plains, whereas
higher-elevation regions covered by native
forest exhibit minimal losses. The study
therefore provides a detailed spatial assessment
of the most vulnerable sectors, contributing to a
clearer understanding of the geomorphological
and anthropogenic controls on erosive dynamics.
The resulting products, especially the IC and
Eeffective maps, constitute valuable tools for
environmental  planning, enabling  the
identification of critical areas and guiding the
allocation of priority management actions.
Based on these results, the adoption of practices
such as no-till agriculture, agroforestry systems,
riparian forest maintenance, and improved
land-use regulation in highly connected sectors
is recommended, as these measures can
significantly reduce sediment input to
watercourses.

Finally, the methodology proved robust,
compatible with readily accessible datasets, and
replicable in humid tropical basins. The study
directly advances erosion and sediment
connectivity assessments, providing technical
support for public policies related to water
management, soil conservation, and the
mitigation of siltation in environmentally
sensitive regions.
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