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Resumo 

Este estudo analisa a produção e o transporte de sedimentos em bacias hidrográficas 

que deságuam na baía de Antonina (PR), por meio da aplicação da Equação Universal 

de Perda de Solos (USLE), do Índice de Conectividade (IC) e da Taxa de Entrega de 

Sedimentos (SDR), com o objetivo de calcular um índice de exportação efetiva de 

sedimentos (Eefetivo). A área de estudo compreende as bacias dos rios Cachoeira (Alto 

e Baixo), Pequeno, Cacatu e Faisqueira, situadas em uma planície fluviomarinha, onde 

o uso agrícola se concentra nos depósitos aluvionares. Os resultados mostram que a 

USLE estima perdas médias de sedimentos variando de 1,29 a 3,11 t ha⁻¹ ano⁻¹ entre 

as bacias. Em contrapartida, o Eefetivo reduz essas perdas em 70 a 72% (0,36–0,88 t 

ha⁻¹ ano⁻¹), ao considerar os efeitos de retenção dos sedimentos e desconectividade dos 

canais ao longo das bacias. As áreas de menor altitude, associadas ao uso agrícola, 

especialmente no Baixo Cachoeira, destacam-se como principais zonas de produção e 

exportação de sedimentos. Os mapas de USLE, IC e Eefetivo revelam que a maior parte 

dos sedimentos transportados não alcança o exutório. A integração de estimativas de 

erosão potencial com métricas de conectividade aprimora a representação espacial da 

exportação de sedimentos e subsidia ações de manejo e conservação (como plantio direto, 

sistemas agroflorestais e recuperação de matas ciliares), visando reduzir o 

assoreamento costeiro e orientar a definição de áreas prioritárias para recuperação 

ambiental. 
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Abstract 

This study analyzes sediment production and export in basins draining into Antonina 

Bay (PR), using the Universal Soil Loss Equation (USLE), the Connectivity Index (CI), 

and the Sediment Delivery Rate (SDR) to calculate an effective sediment export index 

(Eeffective). The study region encompasses the Cachoeira, Pequeno, Cacatu, and 

Faisqueira river basins, located in a fluviomarine dam area, where agricultural use is 

concentrated on alluvial deposits. The results indicate that the USLE predicts average 

losses ranging from 1.29 to 3.11 t ha-1 yr-1 per basin. In contrast, the Eeffective reduces 

losses by 70 to 72% (0.36 to 0.88 t ha-1 yr-1), considering retention and disconnectivity 

along the slopes. Low-elevation regions associated with agricultural use, particularly in 

the Lower Cachoeira River, are the main points of sediment production and export. The 

USLE, IC, and Eefetivo maps indicate that most of the transported sediment does not 

reach the outlet, highlighting the role of connectivity. Thus, combining estimates of 

potential erosion with connectivity metrics can improve the spatial representation of 

sediment export and guide conservation measures (no-till farming, agroforestry 

systems, and riparian forest restoration) to reduce coastal siltation and determine 

priority areas for restoration. 
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INTRODUÇÃO 

 

 

A erosão laminar é um dos processos mais 

significativos de degradação do solo, 

caracterizado pela remoção contínua e 

relativamente uniforme de partículas da 

superfície devido à ação do escoamento 

superficial (Bertoni; Lombardi Neto, 2012; 

Kopittke et al., 2025). Embora muitas vezes 

subestimada por sua baixa visibilidade em 

comparação com erosões em sulcos, ravinas ou 

voçorocas, sua ação cumulativa pode resultar em 

perdas expressivas de solo fértil, 

comprometendo a produtividade agrícola e a 

sustentabilidade ambiental (Morgan, 2005; 

Poesen, 2018). Estima-se que, globalmente, a 

erosão laminar seja responsável pela perda de 

bilhões de toneladas de solo anualmente, com 

consequências diretas na segurança alimentar e 

na qualidade dos ecossistemas (Pimentel et al., 

1995; Borrelli et al., 2017; Quinton; Fiener, 

2023; Xiong; Leng, 2024). 

A erosão laminar é um problema crítico em 

regiões tropicais e subtropicais devido às chuvas 

intensas, resultando em perda dos horizontes 

superficiais mais férteis, redução da 

produtividade agrícola e impactos como 

assoreamento, degradação ambiental e aumento 

dos custos de recuperação (Labrière et al., 2015). 

As taxas de perda de solo variam amplamente 

entre bacias: cerca de 15 t ha⁻¹ ano⁻¹ no rio 

Jacaré-Guaçu, em São Paulo (Souza, 2016), e 

mais de 48 t ha⁻¹ ano⁻¹ na bacia da Barragem do 

rio Juramento, em Minas Gerais (Oliveira; 

Leite, 2018). Em áreas agrícolas com cultivo 

temporário exposto, perdas ainda maiores 

podem ocorrer, chegando a aproximadamente 

51,6 t ha⁻¹ ano⁻¹, enquanto sob cobertura 

florestal reduzem-se para apenas 3–4 kg ha⁻¹ 

ano⁻¹ (Marinhascki, 2016). No Paraná, as 

estimativas variam entre 10 t ha⁻¹ ano⁻¹ (Souza 

et al., 2018) e 15–20 t ha⁻¹ ano⁻¹ em áreas 

intensivamente manejadas (Krug, 2020), com 

hotspots superiores a 50–100 t ha⁻¹ ano⁻¹ em 

trechos de solo exposto e vias de acesso, podendo 

atingir valores pontuais próximos de 355 t ha⁻¹ 

ano⁻¹ (Souza et al., 2018). Essa heterogeneidade 

espacial evidencia a necessidade de práticas de 

conservação do solo, recuperação vegetal e 

controle em estradas e áreas críticas (Krug, 

2020; Demarchi et al., 2019; Xiong; Leng, 2024). 

A erosão laminar não causa apenas perda de 

fertilidade, mas também promove o 

assoreamento de rios, lagos e reservatórios, 

reduzindo a disponibilidade hídrica e elevando 

os custos de dragagem (ANA, 2020). As 

dragagens, além de financeiramente onerosas, 

geram impactos ambientais significativos em 

ambientes estuarinos (Paula et al., 2006), 

incluindo alterações hidráulicas e 

sedimentológicas, como mudanças na circulação, 

na mistura da coluna d’água e aumento da 

turbidez (Liu et al., 2010). Frequentemente 

ocorre a remobilização de contaminantes — 

entre eles metais-traço e compostos orgânicos — 

com efeitos diretos sobre a qualidade da água e 

os organismos aquáticos (Monte et al., 2019; 

Moreira et al., 2021). O soterramento e a 

remoção de sedimentos também afetam habitats 

bentônicos, causando perda de áreas de 

alimentação e reprodução e intensificando 

conflitos socioambientais associados às 

operações de dragagem (Castro; Almeida, 2012). 

Assim, os efeitos combinados do 

assoreamento e das sucessivas intervenções de 

dragagem evidenciam a magnitude dos desafios 

enfrentados em sistemas estuarinos. Nesse 

contexto, o Complexo Estuarino de Paranaguá 

(CEP), localizado no litoral do Paraná (Brasil), 

destaca-se como um ambiente de grande 

complexidade hidrodinâmica, ecológica e 

geoquímica. Entre 2009 e 2015, foram dragados 

no CEP cerca de 23,5×10⁶ m³ de sedimentos, 

resultando em investimentos de 365,8 milhões 

de reais pela Administração dos Portos de 

Paranaguá e Antonina (APPA) (Neto et al., 

2017). 

O assoreamento na área decorre do acúmulo 

de sedimentos provenientes de diferentes áreas-

fonte das bacias adjacentes ao CEP, gerados por 

processos naturais frequentemente 

intensificados pelo uso inadequado do solo 

(Rutyna et al., 2021). Essa dinâmica torna-se 

ainda mais relevante diante da crescente 

pressão operacional sobre o complexo portuário, 

que depende da manutenção das condições de 

navegabilidade. Em 2022, o CEP recebeu 2.540 

embarcações, número que aumentou para 2.933 

em 2023; nesse ano, movimentou 65,39 milhões 

de toneladas de cargas e registrou receita 

operacional líquida de R$ 620,96 milhões (Portos 

do Paraná, 2023; 2024). Esse cenário reforça a 

importância de compreender tanto a origem dos 

sedimentos quanto os processos que controlam 

sua produção e entrada no sistema. 

Compreender esses processos é essencial 

para orientar ações de gestão, especialmente em 

sistemas sujeitos a intensa pressão logística 

como o CEP. Nesse contexto, ferramentas de 

modelagem tornam-se fundamentais para 

avaliar a susceptibilidade das bacias à geração 

de sedimentos. Avanços em modelagens 

computacionais, como a Equação Universal de 

Perda de Solo (USLE) e suas variações (RUSLE, 

MUSLE), têm permitido prever áreas com maior 

risco de perda de solo e otimizar estratégias de 

manejo e recuperação de áreas degradadas 
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(Renard et al., 1997; Borrelli et al., 2021; Kumar 

et al., 2022). Esses modelos estimam a produção 

potencial de sedimentos, embora não 

considerem os fatores que controlam sua 

transferência e retenção ao longo das bacias 

hidrográficas.  

A movimentação de sedimentos em bacias 

hidrográficas ocorre ao longo das encostas e dos 

canais (Bracken et al., 2015). Para superar 

limitações dos modelos tradicionais e 

representar melhor o fluxo sedimentar, métricas 

como o Índice de Conectividade (IC) (Borselli et 

al., 2008) têm sido empregadas para avaliar a 

eficiência do transporte dos materiais erodidos 

até a rede de drenagem. O IC se relaciona 

diretamente à Taxa de Entrega de Sedimentos 

(SDR), que quantifica a fração efetivamente 

entregue aos cursos d’água (Ferro; Minacapilli, 

1995), permitindo estimar a produção efetiva de 

sedimentos (Eefetivo), isto é, a porção da erosão 

total que alcança os exutórios (Vigiak et al., 

2012).  

Considerando que a produção total de 

sedimentos difere dos volumes realmente 

exportados, este artigo aplica a USLE, o IC, o 

SDR e o Eefetivo para identificar áreas de maior 

geração e exportação de sedimentos nas bacias 

que drenam para a baía de Antonina (PR) e 

discutir os fatores que intensificam esses 

processos na região. 

 

 

MATERIAIS E MÉTODOS 

 

 

Área de Estudo 

 

A área de estudo da presente pesquisa, é 

representada pelas bacias hidrográficas dos rios 

Cachoeira (alto e baixo), Pequeno, Cacatu e 

Faísqueira situadas no município de Antonina, 

estado do Paraná (Figura 1). Essas bacias são 

adjacentes ao CEP e fazem parte do programa 

de Recuperação de Áreas Degradadas (PRAD) 

da Área de Proteção Ambiental (APA) de 

Guaraqueçaba. O programa foi implementado 

em Antonina pela empresa pública estadual 

Portos do Paraná, como condicionante das obras 

de dragagem de aprofundamento do canal de 

navegação, acesso e berços do porto de 

Paranaguá. 

 

Figura 1 – Localização da área de estudo 

 
Fonte: Os autores (2025). 
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Observa-se que as bacias hidrográficas 

estudadas possuem forte predominância de 

cobertura florestal, variando entre 88% e 95%, 

enquanto as áreas destinadas à agropecuária 

permanecem relativamente baixas, entre 4% e 

11%. As áreas das bacias variam de 103 a 180 

km². Em relação à declividade média, os valores 

mostram variações expressivas entre as bacias: 

Alto Cachoeira e Cacatu apresentam as maiores 

declividades médias (34 e 31 %, 

respectivamente), enquanto Baixo Cachoeira e 

Faisqueira possuem os menores valores médios 

(18 e 20 %) (Tabela 1).  

 

Tabela 1 – Características das bacias hidrográficas estudadas 

Bacia Hidrográfica Área (Km2) Uso do Solo (%) * Declividade 

  Floresta Agropecuária Média (DP) 

Alto Cachoeira 180 95 4 34,4 (23) 

Baixo Cachoeira 137 88 11 18,3 (18) 

Cacatu 106 95 4 31,9 (28,3) 

Faisqueira 103 95 4 20,9 (17,6) 

Pequeno 112 93 7 30,5 (22,2) 

Fonte: Souza et al., 2020. 

 

A região é caracterizada pela presença de 

formações vegetais típicas da Floresta Atlântica, 

que variam desde florestas montanas e 

altomontanas na Serra do Mar até formações 

pioneiras fluviomarinhas e fluviolacustres 

associadas à planície costeira (Roderjan et al., 

2002; LAGEAMB, 2023). No município de 

Antonina, aproximadamente 87% do território 

encontra-se recoberto por florestas (Souza et al., 

2020). 

Entre os usos antrópicos destaca-se a 

agricultura diversificada (arroz, mandioca, 

milho, banana, laranja, entre outros) (Figura 2), 

fortemente concentrada em áreas planas 

próximas aos rios, onde predominam solos 

associados a depósitos fluviais (Ipardes, 2025). 

 

Figura 2 – Paisagens da área de estudo. A) Ponte sobre o Rio Cachoeira, baixo curso. B) Rio Pequeno; 

C) Rio Cachoeira, Alto Curso; D) Paisagem da planície litorânea, com a serra do Mar ao fundo. E) 

Area de agricultura na planície litorânea 

 
Fonte: Os autores (2025). 
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A área de drenagem da baía de Antonina é 

dominada por rochas metamórficas de alto grau, 

especialmente migmatitos e gnaisses, além de 

complexos arqueanos e proterozóicos. Também 

ocorrem a Formação Guaratubinha, com diques 

básicos, depósitos terciários da Formação 

Alexandra e expressivos sedimentos 

holocênicos, com destaque para as aluviões 

(Salamuni; Rocha, 2002; Ângulo, 2004). 

O clima é classificado como subtropical 

úmido (Cfa) nas planícies e subtropical úmido 

mesotérmico (Cfb) nas áreas serranas, com 

precipitação média anual de 2.273 mm. O verão 

é o período mais chuvoso, com totais mensais 

superiores a 300 mm, enquanto no inverno os 

índices não ultrapassam 150 mm (ClimateData, 

2024; ITCG, 2008; Goudard; Paula, 2016).  

Os solos predominantes da região são 

Argissolos, Cambissolos Háplicos e Flúvicos, 

Gleissolos e Neossolos Litólicos e Flúvicos. Os 

Argissolos ocorrem principalmente nas porções 

menos acidentadas da Serra do Mar e em áreas 

de morros e colinas, geralmente associados a 

Cambissolos Háplicos. Estes, por sua vez, estão 

amplamente distribuídos na Serra do Mar, 

podendo ocorrer de forma isolada ou em 

associação com outras classes, sobretudo em 

áreas coluviais, morros e colinas. Os 

Cambissolos Flúvicos (CY) concentram-se nos 

fundos de vale, onde podem ocorrer junto aos 

Gleissolos, que também predominam nesses 

ambientes, em geral de forma isolada. Já os 

Neossolos Litólicos são característicos das 

porções montanhosas da Serra do Mar, 

enquanto os Neossolos Flúvicos se desenvolvem 

em ambientes fluviais (Paula, 2010). 

 

Estimativa da produção de sedimentos 

 

A análise da produção e da conectividade de 

sedimentos na área de estudo foi conduzida por 

meio da aplicação de diferentes métodos. A 

perda direta de solos foi estimada com base na 

Equação Universal de Perda de Solos (USLE). A 

conectividade dos sedimentos foi avaliada a 

partir do Índice de Conectividade (IC). 

Posteriormente, buscou-se integrar esses dois 

aspectos por meio da Taxa de Entrega de 

Sedimentos (SDR), o que permitiu estimar o 

índice de produção efetiva de sedimentos 

(Eefetivo) (Borselli et al., 2008; Vigiak et al., 

2012; Cavalli et al., 2013) (Figura 3). 

 

Figura 3 – Fluxograma etapas de trabalho 

 
Fonte: Os autores (2025). 

 

 

  



OLIVEIRA et al.                                                                                                                       Produção de sedimentos 

6 
Soc. Nat. | Uberlândia, MG | v.38 | e80061| 2026 | ISSN 1982-4513 

Equação Universal de Perda de Solos 

 

A Equação Universal de Perda de Solos (USLE) 

(Wischmeier; Smith, 1965; 1978) foi utilizada 

para estimar a erosão laminar potencial na área 

de estudo. A USLE permite calcular a perda 

média anual de solo (t ha-1 ano-1) com base em 

fatores climáticos, topográficos, pedológicos e de 

manejo (Equação 1): 

 
𝐴 =   𝑅 ×  𝐾 × 𝐿 ×  𝑆 ×  𝐶 ×  𝑃 

 

Onde A = Perda anual de solo (t ha-1 ano-1) 

R = Fator erosividade da chuva (MJ mm ha-1 

h-1 ano-1) 

K = Fator erodibilidade do solo (t ha h ha-1 

MJ-1 mm-1) 

L = Fator comprimento de encosta 

(adimensional) 

S = Fator declividade (adimensional) 

C = Fator cobertura e manejo do solo 

(adimensional) 

P = Fator práticas conservacionistas 

(adimensional) 

 

Erosividade da chuva - Fator R 

 

O fator R representa o potencial erosivo das 

chuvas (Figura 4), integrando intensidade e 

duração. Foi calculado segundo a equação de 

Lombardi Neto e Moldenhauer (1992), que 

utiliza dados mensais e anuais de precipitação 

(Equação 2): 

 

𝐸𝐼 = 68,73〖(𝑝^2/𝑃 ")" 〗^0,841 

 

Onde p é a precipitação média mensal (mm)  

P a precipitação média anual (mm).  

Os dados foram obtidos do modelo climático 

WorldClim (Fick; Hijmans, 2017) com resolução 

espacial de 1 km (normal climatológica 1970–

2000). 

 

Figura 4 – Fator R 

 
Fonte: Os autores (2025). 

 

Erodibilidade do Solo - Fator K 

 

O fator K reflete a suscetibilidade do solo à 

erosão (Figura 5). Esse fator pode ser 

determinado em laboratório ou por equações 

empíricas (ex.: nomograma de Wischmeier). 

Porém, para aplicação em áreas maiores, é 

comum a atribuição de valores de K para 

unidades mapeadas de solo, como as do Sistema 

Brasileiro de Classificação de Solos (SiBCS). 

Para esse trabalho foram utilizados valores 

(Quadro 2) adaptados da literatura (Mello et al., 

2007; Coelho et al., 2024). Os dados de solo 

utilizados foram obtidos por meio do trabalho de 

Bhering et al., (2007) em escala 1:250.000.  
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Tabela 2 – Classes de solo encontrados na área e os valores de K 

Classe de Solo (Santos et 

al., 2025) 

Classe de Solo (WRB, 2022) K estimado (t·ha·h) 

/(MJ·mm·ha) 

Peso 

Afloramento de Rocha Rock outcrop 0,000  

Argissolo Vermelho-

Amarelo 

Acrisol 0,020 – 0,040 0,030 

Cambissolo Háplico Cambisol 0,020 – 0,035 0,025 

Cambissolo Flúvico Cambisol 0,030 – 0,050 0,040 

Gleissolo Sálico Solonchaks 0,030 – 0,050 0,040 

Fonte: Adaptado de Coelho et al., (2024). 

 

Figura 5 – Fator K 

 
Fonte: Bhering et al., (2007). 

 

Comprimento x declividade das vertentes – 

Fator LS 

 

O Fator LS (Figura 6), representa a influência 

combinada do comprimento e da inclinação da 

encosta nos processos erosivos. Este fator 

quantifica como a topografia do terreno afeta o 

potencial de erosão, sendo calculado através de 

uma relação matemática que integra 

características geomorfológicas (Desmet; 

Govers, 1996). 

O modelo digital de elevação (MDE) de 

entrada foi disponibilizado a partir do projeto 

FABDEM (floresta e edifícios removidos do 

Copernicus DEM). O modelo foi elaborado 

tomando por base o MDT global Copernicus, com 

30 metros de resolução espacial. Os dados estão 

disponíveis com grade de 1 segundo de arco 

(aproximadamente 30 m no equador) para o 

globo (Hawker et al., 2022) 

Foram utilizados os valores de referência 

22.1 (metros) para comprimento e 0.09 

(aproximadamente 9% de inclinação) (Equação 

3).  

 

𝐿𝑆 =  (
𝐴𝐹 ∗ 30

22.1
)

0,6

∗ (
sin(𝑆 ∗ 0,01745)

0,09
)

1,3

 

 

Onde AF = Acumulação de fluxo 

D = Declividade 
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Figura 6 – Fator LS 

 
Fonte: Os autores (2025). 

 

Uso e Prática conservacionista – Fator CP 

 

O fator CP representa o efeito combinado do uso 

e manejo do solo (C) e das práticas 

conservacionistas (P). O fator C expressa a 

relação entre a perda de solo em determinada 

condição de cobertura e manejo agrícola e a 

perda em solo descoberto, funcionando como um 

indicador da proteção oferecida pela vegetação 

ou resíduos vegetais superficiais. Já o fator P 

está relacionado às práticas mecânicas de 

conservação, como plantio em contorno, 

terraceamento e faixas de retenção, que atuam 

reduzindo a velocidade do escoamento 

superficial da água e aumentando a sua 

infiltração no solo.  

A multiplicação dos dois fatores resulta no 

valor CP, que varia de 0 a 1, sendo valores 

próximos a zero indicativos de maior eficiência 

das práticas de conservação e menor perda de 

solo, enquanto valores próximos a 1 refletem 

ausência de medidas conservacionistas.  

Neste estudo, o fator CP (Tabela 3 e Figura 

7) foi atribuído de acordo com o uso e ocupação 

do solo mapeado na área de estudo para o ano de 

2024 com resolução espacial de 30 metros (Souza 

et al., 2020), considerando parâmetros 

recomendados na literatura para condições 

semelhantes (Miqueloni et al., 2012; Souza; 

Gasparetto, 2012). 
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Tabela 3 – Classes de Uso e Cobertura da terra e os valores de CP 

Código Classe de Uso e 

Cobertura da Terra 

C P* CP (C × P) CP Final 

1.1 Formação Florestal 0,001 – 0,01 1,0 0,001 – 0,01 0,001 

1.3 Mangue 0,001 1,0 0,001 0,001 

1.4 Floresta Alagável 0,002 1,0 0,002 0,002 

2.1 Campo Alagado e Área 

Pantanosa 

0,005 1,0 0,005 0,005 

2.4 Afloramento Rochoso 0,000 – 

0,001 

1,0 ~0,001 0 

2.5 Restinga Herbácea 0,02 1,0 0,02 0,02 

3.1 Pastagem 0,05 – 0,30 1,0 0,05 – 0,30 0,30 

3.2.1.1 Soja (sem práticas 

conservacionistas) 

0,20 – 0,30 1,0 0,20 – 0,30 0,30 

3.2.1.5 Outras Lavouras 

Temporárias 

0,25 – 0,35 1,0 0,25 – 0,35 0,30 

3.3 Silvicultura 0,10 – 0,20 1,0 0,10 – 0,20 0,15 

3.4 Mosaico de Usos 0,15 – 0,30 1,0 0,15 – 0,30 0,25 

4.2 Área Urbanizada 0,00 – 0,05 1,0 0,00 – 0,05 0 

4.4 Outras Áreas não 

vegetadas 

0,30 – 1,00 1,0 0,30 – 1,00 0,5 

5.1 Rio, Lago e Oceano 0,00 1,0 0,00 0 

Fonte: Elaborado pelos autores (2025). *P não foi calculado. 

 

Figura 7 – Fator CP 

 
Fonte: Souza et al., (2020). 
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Índice de conectividade (IC) 

 

Como a USLE calcula a perda de solo em nível 

de célula nas matrizes utilizadas, fez-se 

necessária a adoção de índices complementares 

para caracterizar a dinâmica da conectividade 

dos sedimentos na área de estudo. Nesse 

sentido, aplicou-se o Índice de Conectividade 

(IC) (Borselli et al., 2008; Cavalli et al., 2013), 

com o objetivo de estimar a eficiência de 

transferência dos sedimentos das encostas para 

os canais de drenagem (Equação 4). 

 

𝐼𝐶 = log_10 〖𝐷_𝑢𝑝/𝐷_𝑑𝑛 〗 

 

Onde Dup (potencial de aporte) é relacionado 

à área de contribuição e declividade média da 

encosta.   

Ddn (resistência / distância ao canal) é 

caminho mais curto até a drenagem, ponderado 

pela declividade e uso/cobertura do solo. 

 

Para o cálculo do potencial de aporte - Dup foi 

utilizada a equação 5: 

 

𝐷𝑢𝑝 = ∑(𝐴𝑖 tan〖〖(θ〗𝑖))〗 

 

Onde Ai = área de contribuição acumulada na 

célula. 

θi = declividade da célula. 

Para o cálculo da variável distância do canal 

- Ddn foi utilizada a equação 6: 

 

𝐷𝑑𝑛 = ∑ 〖(
𝑑𝑖

tan(θ𝑖)𝐶𝑖

〗) 

 

Onde di = distância até o canal. 

Ci = fator de cobertura do solo (derivado do 

mapa de uso e ocupação). 

 

Taxa de Entrega de Sedimentos (SDR) e 

Indice Efetivo de Produção de Sedimentos 

(Eefetivo). 

A exportação efetiva de sedimentos da bacia 

hidrográfica foi estimada pela integração da 

Equação Universal de Perda de Solo 

(USLE/RUSLE/EUPS) com a Taxa de Entrega 

de Sedimentos (SDR). O SDR representa a 

fração do solo erodido que efetivamente atinge a 

rede de drenagem, sendo condicionado pela 

conectividade existente entre as drenagens 

(Borselli et al., 2008; Vigiak et al., 2012). 

Para estimar o SDR de forma espacialmente 

distribuída, adotou-se uma função logística em 

que o Índice de Conectividade (IC) atua como 

variável explicativa, conforme implementado 

em modelos recentes de conectividade 

hidrossedimentológica (Cavalli et al., 2013; 

López-Vicente et al., 2013; Sharp et al., 2020) 

(Equação 7): 

 

𝑆𝐷𝑅 =  
1

1 + 𝑒(𝑎+𝑏×𝑖𝑐)
 

 

Onde a corresponde ao intercepto da função 

logística  

b ao coeficiente angular que controla a 

inclinação da curva. Valores de referência para 

a e b foram propostos por Vigiak et al. (2012) a 

partir de calibrações em bacias experimentais 

da Europa, sendo a≈−0,56a \approx -

0,56a≈−0,56 e b≈0,17b \approx 0,17b≈0,17. No 

entanto, tais parâmetros podem ser ajustados de 

acordo com a realidade local de cada estudo. 

A exportação efetiva de sedimentos (Eefetivo) 

corresponde ao volume de material que, é 

transferido da vertente para o sistema de 

drenagem. Para sua estimativa, considera-se o 

produto entre a perda potencial de solo, 

calculada pela Equação Universal de Perda de 

Solo (USLE), e o fator de entrega de sedimentos 

(SDR) (Equação 8): 

 
𝐸𝑒𝑓𝑒𝑡𝑖𝑣𝑜 = 𝑈𝑆𝐿𝐸 𝑋 𝑆𝐷𝑅 

 

 

RESULTADOS 

 

 

Perda de solo pela USLE 

 

As áreas com maior predisposição a perda de 

solo estão localizadas nos ambientes com maior 

intervenção antrópica (Figura 8). Na 

distribuição por bacias hidrográficas, a maior 

concentração de valores altos para a região se dá 

na bacia do Baixo Cachoeira. Trechos com 

produção significativa de sedimentos também 

são encontrados nas bacias do rio Pequeno e do 

Alto Cachoeira.   

A média de produção de sedimentos é de 1,44 

t ha-1 ano-1 na bacia do rio Faisqueira, 2,32 t ha-

1 ano-1 no rio Pequeno, 2,85 t ha-1 ano-1 no Alto 

Cachoeira, 1,29 t ha-1 ano-1 no Cacatu e 3,11 t ha-

1 ano-1 no Baixo Cachoeira.  
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Figura 8 – Perda de Solo pela USLE 

 
Fonte: Os autores (2025). 

 

Indice de conectividade 

 

Os valores do Indice de Conectividade (IC) 

refletem a capacidade de transferência de 

sedimentos das vertentes até a rede de 

drenagem, sendo controlados principalmente 

pela declividade, proximidade aos canais e 

densidade da cobertura de vegetação (Figura 9).  

Observa-se que as áreas de interflúvio e 

setores mais suavizados do relevo apresentam, 

em sua maioria, índices muito baixos a médios, 

o que indica maior potencial de retenção de 

sedimentos antes que estes alcancem a rede de 

drenagem. Em contrapartida, valores altos e 

muito altos de conectividade concentram-se nas 

vertentes mais declivosas (acima de 15%) e ao 

longo da rede hidrográfica principal e 

secundária, destacando-se como corredores 

preferenciais de transporte de material até os 

cursos d’água. 
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Figura 9 – Índice de Conectividade (IC) 

 
Fonte: Os autores (2025). 

 

Índice de exportação efetiva de sedimentos 

(Eefetivo) 

 

O índice efetivo de exportação de sedimentos (t 

ha-1 ano-1) da área de estudo (Figura 10), permite 

estimar a variabilidade espacial da perda de solo 

que efetivamente atinge a rede de drenagem. 

Observa-se que a maior parte da área é 

caracterizada por apresentar baixos valores de 

exportação de sedimentos (<1 t ha-1 ano-1), o que 

indica relativa estabilidade e menor risco de 

aporte de sedimentos aos cursos d’água. 

Entretanto, existem setores, especialmente nas 

áreas adjacentes as zonas das áreas agrícolas e 

ao longo do rio Cachoeira (detalhado na figura), 

com exportação de sedimentos superior a 10 t ha-

1 ano-1. Esses setores configuram áreas críticas, 

atuando como hotspots de degradação do solo e 

de elevada geração potencial de sedimentos. 
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Figura 10 – Perda de solo pelo Eefetivo 

 
Fonte: Os autores (2025). 

 

DISCUSSÃO 

 

 

Os resultados obtidos indicam que a USLE 

tende a superestimar as taxas de solo 

(Benavidez et al., 2018; Alewell et al., 2019; 

Meinen; Robinson, 2021), ao passo que a sua 

integração com o IC e o SDR pode mitigar essa 

limitação (Tabela 4), proporcionando padrões 

espaciais mais próximos da realidade, em 

comparação com os dados disponíveis (Souza et 

al., 2025).  

Essa variação é consistente com estudos 

realizados em ambientes tropicais e temperados 

(Borselli et al., 2008; Vigiak et al., 2012). As 

áreas com maior produção de sedimentos em 

setores de alta conectividade reforça a influência 

do uso da terra na dinâmica 

hidrossedimentológica. Porém, a associação 

entre altitudes mais baixas, uso agrícola e 

maiores perdas de solo na região da baia de 

Antonina destaca a vulnerabilidade do 

ambiente. 

 

Tabela 4 – Comparação das perdas de solo estimadas pela USLE e pelo Eefetivo nas bacias 

hidrográficas que drenam para a Baía de Antonina 

Bacia 

Hidrográfica 

Perda média 

USLE 

(t ha-1 ano-1) 

Perda média 

Eefetivo 

(t ha-1 ano-1) 

Redução 

(%) 

Rio Faisqueira 1,44 0,41 71,52 

Rio Pequeno 2,32 0,66 71,55 

Alto Cachoeira 2,85 0,83 70,87 

Rio Cacatu 1,29 0,36 72,09 

Baixo 

Cachoeira 
3,11 0,88 71,70 

Total 2,02 0,62 71,54 

Fonte: Os autores (2025). 
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Os resultados obtidos apontam perdas 

médias anuais de solo variando entre 1,29 e 3,11 

t há-1 ano-1 pela USLE, e entre 0,36 e 0,88 t ha-1 

ano-1 para o Eefetivo, correspondendo a reduções 

superiores a 70% quando se considera o efeito da 

conectividade de drenagem. Esses valores se 

situam dentro da faixa reportada em outras 

bacias hidrográficas inseridas na Mata 

Atlântica (Fernandes et al., 2014) ainda que 

apresentem magnitude relativamente elevada 

quando comparados a áreas sob maior 

preservação florestal. 

De modo semelhante, na bacia hidrográfica 

do ribeirão Posses (Extrema-MG), onde há 

intensa implementação de programas de 

restauração ambiental, a produção específica de 

sedimentos foi estimada por meio de parcelas 

experimentais, o resultado foi de entre 0,01 e 

0,05 háha-1 ano-1, indicando baixa exportação de 

material (Gomes et al., 2017). Em contraste, em 

bacias do município de Macaé (RJ), 

caracterizadas por distintos percentuais de 

cobertura de Mata Atlântica, a produção de 

sedimentos monitorada no exutório das bacias 

variou de 0,11 a 0,46 t ha-1 ano-1, enquanto a 

USLE estimou valores de até 5,24 t ha-1 ano-1, 

evidenciando a tendencia do método de 

modelagem em superestimar as perdas 

potenciais quando comparados às cargas 

efetivamente monitoradas (Fernandes et al., 

2014). 

Em escala continental na União Europeia, 

estimou-se que apenas cerca de 15% da erosão 

bruta prevista alcança os cursos d’água, 

enquanto o restante permanece retido ou 

depositado na paisagem (JRC, 2018). Esse 

padrão é recorrente internacionalmente: em 

bacias com conectividade limitada, a exportação 

efetiva tende a representar apenas uma fração 

da erosão potencial. No Rift Etíope, a aplicação 

da RUSLE indicou erosão entre 10 e 20 t ha⁻¹ 

ano⁻¹, mas somente 21% desse material chegou 

à rede de drenagem (Alemayehu et al., 2025). 

Em bacias montanhosas no Mediterrâneo, 

medições indicam elevada variabilidade 

hidrossedimentológica e forte influência da 

conectividade da bacia na entrega de sedimentos 

(Francke et al., 2018). No sul da Itália, modelo 

estimou a erosão do solo com base na 

Erosividade das chuvas, o sedimento 

efetivamente transportado ao exutório 

apresentou valores substancialmente menores, 

mostrando que boa parte do material permanece 

retida ou depositada internamente na bacia 

(Diodato et al., 2024).  

Os valores obtidos aqui obtidos, 

especialmente pelo modelo Eefetivo (entre 0,4 e 

0,8 t ha-1 ano-1), aproximam-se mais dos 

patamares relatados em bacias hidrográficas 

com cobertura parcial de vegetação (Fernandes 

et al., 2014), mas permanecem superiores aos 

registrados em áreas sob cobertura florestal 

contínua (Gomes et al., 2017).  

Essa diferença evidencia a influência do uso 

e cobertura do solo sobre a exportação de 

sedimentos, ao mesmo tempo, ressalta a 

importância de incorporar a conectividade de 

rede de drenagem nas estimativas. A 

comparação entre USLE e Eefetivo demonstrou 

redução significativa das taxas de perda de solo 

quando o fator de conectividade foi considerado, 

resultando em valores mais condizentes com a 

realidade observada em outros estudos na Mata 

Atlântica. 

Embora tenham sido empregados métodos 

distintos, a comparação entre os resultados 

obtidos neste estudo e as estimativas 

apresentadas por Rutyna et al., (2021), baseadas 

no método proposto por Crepani et al., (2001), 

evidencia correspondência na magnitude da 

produção de sedimentos nas bacias 

hidrográficas que drenam para a Baía de 

Antonina (PR). 

Pela aplicação da USLE, as perdas médias de 

solo variaram entre 1,29 e 3,11 t ha⁻¹ ano⁻¹, 

representando a erosão potencial, isto é, o solo 

efetivamente produzido nas encostas, 

independentemente de alcançar ou não a foz. Ao 

incorporar parâmetros de conectividade e a taxa 

de entrega de sedimentos (SDR), estimou-se a 

fração desse material que efetivamente é 

exportada ao longo do sistema. Com isso, o 

índice de exportação efetiva (Eefetivo) indicou 

reduções de cerca de 70 a 72% nos valores 

originalmente estimados, resultando em 

exportações médias entre 0,36 e 0,88 t ha⁻¹ 

ano⁻¹, sem implicar diminuição da produção de 

sedimentos na origem, mas sim refletindo os 

processos de retenção e desconectividade ao 

longo da paisagem. 

Esses valores aproximam-se das estimativas 

apresentadas por Rutyna et al., (2021), que, ao 

avaliar as mesmas bacias hidrográficas por meio 

da integração de atributos morfopedológicos, uso 

da terra e índices morfométricos, obtiveram 

taxas médias de produção entre 0,42 e 0,88 t ha⁻¹ 

ano⁻¹. A semelhança entre os resultados reforça 

a consistência do índice Eefetivo em representar 

a exportação real de sedimentos, atenuando a 

tendência de superestimação inerente à 

aplicação isolada da USLE (Benavidez et al., 

2018; Alewell et al., 2019; Meinen; Robinson, 

2021). 

Na área da baía de Antonina, o uso do solo se 

mostrou como sendo o principal fator de 

produção de sedimentos, esses dados se 

assemelham com outros biomas brasileiros.  
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Embora não constitua foco deste estudo, é 

relevante mencionar que a Usina Hidrelétrica 

Governador Pedro Viriato Parigot de Souza, 

inaugurada em 1971, promoveu a transposição 

parcial das águas do rio Capivari para o rio 

Cachoeira, aumentando em cerca de 33% sua 

vazão média anual (Soares; Santos, 2009). Esse 

acréscimo de descarga modificou o balanço 

hidrogeomorfológico da bacia hidrográfica e 

potencializou a exportação de sedimentos ao 

sistema costeiro, contribuindo para o 

assoreamento da baía de Antonina. 

Exemplos de diferentes biomas ajudam a 

ilustrar a influência do uso e ocupação da terra 

sobre a dinâmica sedimentar. No Cerrado, o uso 

agrícola intensivo aumenta a exportação de 

sedimentos (Oliveira; Leite, 2018; Magalhães et 

al., 2023), padrão semelhante ao observado nas 

bacias hidrográfica do baixo Cachoeira e 

Pequeno (Tabela 4 e Figura 9). Na Amazônia, o 

desmatamento para pastagens eleva a 

conectividade hidrossedimentológica (Barbosa; 

Fearnside, 2000), enquanto na Mata Atlântica o 

manejo inadequado em relevo declivoso 

intensifica a erosão (Panachuki et al., 2011). 

Assim, apesar das particularidades regionais, os 

padrões de interação entre relevo, uso da terra e 

conectividade se repetem, reforçando a 

relevância de metodologias integradas como a 

proposta. 

Do ponto de vista geomorfológico, áreas de 

maior declividade tendem a ser mais suscetíveis 

à produção de sedimentos. No entanto, na área 

de estudo esses setores encontram-se 

predominantemente recobertos por vegetação 

densa, que atua como barreira ao 

desenvolvimento dos processos erosivos. Além 

disso, sua maior distância em relação às 

planícies dos principais cursos d’água limita a 

efetiva transferência de material (Paula et al., 

2010). A aplicação do índice de produção efetiva 

de sedimentos (Eefetivo) confirma esse padrão, 

indicando que os sedimentos potencialmente 

gerados nesses ambientes não alcançam, em 

grande parte, os canais principais. 

Para ilustrar essa tendência, a Figura 11 

apresenta a relação entre a elevação mínima das 

bacias hidrográficas de primeira ordem (m) e a 

perda de solo (t ha-1 ano-1). A distribuição dos 

pontos revela que a altitude das bacias de 

primeira ordem não explica de forma relevante 

a variação das taxas de erosão estimadas, o 

baixo valor de R² evidencia ausência de 

correlação significativa entre a elevação mínima 

e a perda de solo. 

Observa-se que a maioria das bacias 

hidrográficas com perdas significativas (> 10 t 

ha⁻¹ ano⁻¹) está associada a elevações inferiores 

a 400 m. Em contrapartida, em altitudes 

superiores a 600 m, os valores de perda de solo 

tornam-se esparsos e tendem a concentrar-se em 

níveis muito baixos, próximos de zero. Esse 

padrão indica que as áreas mais baixas, situadas 

nas proximidades das planícies fluviais e da 

Baía de Antonina, onde se concentram as 

atividades agrícolas, são mais suscetíveis à 

ocorrência de elevadas taxas de perda de solo. 

Por outro lado, as bacias localizadas em 

regiões de maior altitude, geralmente 

associadas a cobertura florestal mais 

preservada e a menor pressão antrópica, 

apresentam valores mínimos de perda de solo, 

independentemente das condições topográficas 

locais. Esse contraste reforça o papel 

determinante do uso e cobertura da terra no 

controle da erosão, em detrimento da influência 

altimétrica isolada. 

 

Figura 11 – Gráfico que ilustra a perda de solo estimada pela USLE x Elevação dos exutórios 

 
Fonte: Os autores (2025). 
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Quando os dados estimados são comparados 

com valores mensurados em campo (Souza et al., 

2025) verifica-se a forte relação entre o uso do 

solo e a produção de sedimentos, mostrando que 

áreas de solo exposto apresentam as maiores 

perdas (0,035 t ha-1 ano-1), valor cerca de 25 

vezes superior ao registrado em áreas de floresta 

nativa (0,0014 t ha-1 ano-1).  

Os sistemas de agricultura convencional 

(0,0064 t ha-1 ano-1) e agroflorestal (0,0065 t ha-1 

ano-1) apresentam valores intermediários, 

significativamente mais baixos que o solo 

exposto, mas ainda acima da condição de 

floresta nativa. Esses resultados indicam que, a 

cobertura florestal atua como a forma mais 

eficiente de proteção contra a erosão, e reforçam 

que mesmo os valores mais altos medidos em 

campo (0,035 t ha-1 ano-1 para o solo exposto) 

ainda são inferiores aos valores estimados, seja 

por meio da USLE e até mesmo do Eefetivo 

(Tabela 5). 

 

Tabela 5 – Comparação das perdas de solo estimadas pela USLE e pelo Eefetivo nas bacias 

hidrográficas que drenam para a Baía de Antonina 

Uso Sedimento (g/parcela/ano) 

2024* 

Sedimento (t ha-1 

ano-1) 

Sistema 

Agroflorestal 

6,49 0,00649 

Floresta Nativa 1,41 0,00141 

Agricultura 6,41 0,00641 

Solo exposto 35,03 0,03503 

*parcelas com 10 m2 

Fonte: Souza et al., (2025). 

 

 

CONSIDERAÇÕES FINAIS 

 

 

Os resultados mostram que a aplicação isolada 

da USLE superestima substancialmente a perda 

de solo quando comparada às estimativas 

obtidas pela integração com o Índice de 

Conectividade (IC) e o Sediment Delivery Ratio 

(SDR). A inclusão desses parâmetros reduziu em 

cerca de 70% os valores de erosão potencial, 

indicando que a maior parte do material 

mobilizado é retida nas vertentes antes de 

alcançar os cursos d’água. Essa evidência 

demonstra, de forma direta, a importância de 

considerar a conectividade 

hidrossedimentológica para representar com 

maior precisão a exportação real de sedimentos. 

A análise espacial identificou que as maiores 

taxas de perda de solo se concentram em áreas 

de baixa altitude e uso agrícola intensivo, 

especialmente em planícies aluviais, enquanto 

regiões de maior altitude e cobertas por floresta 

nativa apresentam perdas mínimas. Assim, o 

estudo fornece uma leitura espacial detalhada 

dos setores mais vulneráveis, contribuindo para 

o entendimento dos controles geomorfológicos e 

antrópicos sobre a dinâmica erosiva. 

Os produtos gerados, especialmente os 

mapas de IC e de Eefetivo, configuram 

ferramentas aplicáveis ao planejamento 

ambiental, permitindo a identificação de áreas 

críticas e orientando a alocação de ações 

prioritárias de manejo. A partir desses 

resultados, recomenda-se a adoção de práticas 

como plantio direto, sistemas agroflorestais, 

manutenção de matas ciliares e o ordenamento 

do uso agrícola em setores de alta conectividade, 

medidas que podem reduzir significativamente o 

aporte de sedimentos aos corpos hídricos. 

Por fim, a metodologia demonstrou ser 

robusta, integrável a dados de fácil acesso e 

replicável em bacias tropicais úmidas. O 

trabalho contribui diretamente para o avanço 

das análises de erosão e conectividade 

sedimentar, oferecendo subsídios técnicos para 

políticas públicas de gestão hídrica, conservação 

de solos e mitigação do assoreamento em 

ambientes sensíveis. 
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