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Abstract 

This paper aimed to evaluate the changes in biophysical parameters and 

trends in annual extremes of air temperature in Sinop, Mato Grosso, Brazil, 

using data from automatic weather stations (AWS) installed in rural and 

urban areas of the municipality. Changes in land use, surface albedo, 

radiation balance (Rn), sensible heat (H), and latent heat (LE) were 

estimated from Landsat 5 and Landsat 8 satellite images obtained in 2007, 

2011 and 2017. With RClimDex software, the trends in six extreme indices of 

annual maximum and minimum temperatures were calculated with least-

squares calibration and statistical significance assessed by Fisher test at a 

significance level (α) equal to 0.05. Through the years changes in land use 

and biophysical parameters like increase of albedo and reduction of Rn were 

observed in the rural area, while at the urban station (UFMT Sinop) the 

inversion of LE and H partition was observed. The extreme indices indicated 

an increasing tendency towards extreme temperatures in the urban area, 

with significant changes occurring in the indices TNx, DTR, Tn90p, and 

Tx90p. In the last decade, with the expansion of the urban area of Sinop, 

Mato Grosso - Brazil, fluctuations in trends of temperature extreme indices 

were observed, and are attributed to changes in land use and biophysical 

parameters. 
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INTRODUCTION 

 

 

In recent years, evidence of anthropogenic global 

warming has gained strength with the 

development of numerical models to predict the 

increase in air temperature due to greenhouse 

gas emissions. However, the long-term forecast is 

still uncertain, with divergences on the precise 

effects of environmental changes on climate 

(JUNGES; MASSONI, 2018). 

Tropical forests ecosystems, due to physical 

and biological interactions in the soil-plant-

atmosphere system, such as control of the carbon 

cycle and water availability to the atmosphere by 

evapotranspiration processes, play a key role in 

climate regulation at the local and regional scale 

(ARTAXO et al., 2014; DOUGHTY et al., 2015). 

However, this dynamic balance, in the regions of 

the Amazon-Cerrado (Rainforest-Savanna) 

biome transition, is subject to the effects of 

human actions such as the growth of urban 

centers and land management associated with 

deforestation, fire disturbance, and expansion of 

agriculture and pasture areas (NOBRE et al., 

2007; ARAÚJO et al., 2015). 

Replacement of natural forests by 

monocultures and urban centers can cause 

changes in the local and regional climate as a 

result of shifts in the surface albedo and energy 

exchanges between surface and atmosphere 

(MARTINS et al., 2015), which can impact air 

and soil temperature, as well as 

evapotranspiration. 

Since air temperature is easier to obtain 

than other meteorological parameters, it has 

frequently been used to identify climate changes 

by associating its fluctuations with shifts in the 

trends of extreme event indices related to global 

warming (MARENGO et al., 2007). In Brazil, 

several studies have used the extreme 

temperature indices proposed by the World 

Meteorological Organization (WMO) to assess 

local climate change (DANTAS et al., 2015; 

SANTOS et al., 2012; SANTOS et al., 2020; 

SILVA et al., 2015; SILVA et al., 2017). 

However, most studies have concentrated on the 

South and Southeast of the country, where there 

is a greater number of weather stations with 

quality-controlled and long-range meteorological 

datasets. 

The city of Sinop, Mato Grosso - Brazil, a 

result of the occupation policy of the Brazilian 

Legal Amazon developed by the federal 

government in the 1970s, has 142,996 

inhabitants (IBGE, 2020). It is located in the 

northern region of Mato Grosso, with an area of 

3,194.4 km² and an urban perimeter of 17 km². 

The city is located in the Teles Pires River basin 

(between the Upper and Middle Teles Pires 

regions) and its economy is dominated by 

agriculture and forestry. Sinop is a planned city 

incorporating modern urban criteria like a grid 

plan street design and a large average green 

space of 27.00 m² per inhabitant. However, in 

recent years the city has experienced a boom in 

its urban and agricultural area that has led to 

changes in land occupation and, consequently, in 

regional biophysical variables. 

This study aimed to assess changes in 

biophysical parameters (albedo, radiation 

balance, latent heat flow, and sensitive heat 

flow), land use and occupation, and their 

implications for extreme air temperature trends 

in the urban and rural areas of the municipality 

of Sinop, located in the Cerrado-Amazon 

transition region, Northern Mato Grosso. 

 

 

MATERIAL E METHODS 

 
Study location 

 

The daily series of maximum and minimum 

temperature data were obtained from the 

automatic weather station code A917 belonging 

to the Instituto Nacional de Meteorologia 

(INMET, in Portuguese), the federal institute 

responsible for the main meteorology net in 

Brazil, installed at latitude -11° 58 ', longitude -

55° 34' and altitude 367 m (INMET, 2018), and 

that of the Universidade Federal de Mato Grosso 

(UFMT - Campus Universitário de Sinop), 

installed at latitude -11° 51', longitude -55° 29' 

and altitude 371 m  (Figure 1). The stations are 

located, respectively, in rural and urban areas of 

the municipality of Sinop, with databases 

containing the years of 2007 to 2017 (INMET) 

and 2011 to 2016 (UFMT). 

According to the Koppen classification, 

the climatic type in the region is Aw - humid 

tropical climate, with a well-defined dry season 

(May to September), average annual 

precipitation around 1,970 mm and average 

annual temperature of 24.70 °C (SOUZA et al., 

2013) (Figure 2). 
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Figure 1. Location of INMET and UFMT automatic weather stations, Sinop - MT, Brazil 

 
Org.: From the authors, 2019. 

 

Figure 2. Climogram of the Gleba Celeste weather station located in the middle north region of Mato 

Grosso state (climatological normal: 1972 at 2010). 

 
Org.: Adapted from Souza et al. (2013). 

 

Image acquisition and processing 

 

The evaluation of changes in land use and 

occupation, as well as changes in albedo (α), 

radiation balance (Rn), latent heat flow (LE), and 

sensitive heat flow (H), was carried out with the 

help of remote sensing tools, using six images of 

surface reflectance and brightness temperature 

from the Operational Land Imager (OLI), Thermal 

Infrared Sensor (TIRS) and Thematic Mapper 

(TM), generated onboard the Landsat 5 and 

Landsat 8 satellites at the orbit 226 point 68, and 

the orbit 227 point 68, obtained from the US 

Geological Survey (USGS, 2018). Since the 

presence of clouds can cause errors in the 

estimates of energy balance, images from August 

(dry season) in the years 2007, 2011, and 2017 

were used. 

The surface reflectance images have 

undergone radiometric correction, atmospheric 

correction, systematic geometric correction, and 

precision correction using ground control chips, as 

well as a digital elevation model to correct 

parallax error due to the local topographic relief 
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(CLAVERIE et al ., 2015). 

 
Estimates of biophysical parameters 

 

The albedo, radiation balance, sensitive heat flow, 

and latent heat flow were obtained as part of the 

R-SSEB Algorithm (Simplified Modeling for 

Energy Balance Estimation to the Regional Scale 

Surface) proposed by Araújo et al. (2017). The 

surface albedo was calculated according to 

Equation 1, proposed by Tasumi et al. (2008). 

 

     
          

   
 

 (1) 

 

where:       is the portion of solar radiation 

reflected by the atmosphere, 0.03 was adopted 

according to Bastiaanssen (2000);    
   is the 

atmospheric transmittance; and      represents 

the albedo of the surface, without atmospheric 

correction. 

 

The surface albedo, without atmospheric 

correction, was obtained through a linear 

combination of the spectral reflectances of the 

bands (ρ) 2, 3, 4, 5, 6, and 7, Equation 2. 

Atmospheric transmittance for clear skies, 

Equation 3, was determined as proposed by Allen 

et al. (2007). 

 

                                             
          

(2) 

                  [
         

          
      (

 

       
)
   

] (3) 

 

where: P is the atmospheric pressure kPa; W is 

precipitable water in the atmosphere; cosθ_hor is 

the solar zenith angle on a horizontal surface; Kt 

is the turbidity coefficient (Kt = 1.0 for clean air 

and Kt = 0.5 for extremely cloudy, dusty or 

polluted air). 

 

The NDVI (Normalized Difference 

Vegetation Index) that serves as a measure of 

vegetation condition assessment is given by 

Equation 4, as proposed by Huete et al. (2002). 

 

      
          
          

 (4) 

 

where:      is the reflectance of the near infrared; 

and      is the reflectance of the red. 

 

The daily radiation balance (Rn24), which 

represents the sum of radiative fluxes to the 

surface in 24 hours, was obtained by calculating 

the upward and downward fluxes of longwave and 

shortwave radiation acting on the soil-plant-

atmosphere system, Equation 5. 

 

      (      )           (    )    (5) 

 

where: RS↓ is the incident short-wave radiation 
(Wm-2),       is the surface albedo (dimensionless), 

RL↓ is the long-wave radiation emitted by the 

atmosphere towards the surface (Wm-2), RL↑ is the 

radiation of long waves emitted by the surface; 

and     is the emissivity. 

 

Since incident shortwave solar radiation (RS↓) 

is the main source of energy for 

evapotranspiration (ET), Equation 5 can be 

simplified according to Equation 6, in which global 

radiation represents the sum of short radiation 

(direct and diffuse) reaching the Earth's surface 

(W m-2), being attenuated, along with the 

longwave components, by the properties of 

atmospheric transmissivity and surface albedo.  

 

            (       )  (         ) (6) 

 

where: Rg24 is the global daily radiation (W m-2) 

obtained from an automatic meteorological station 
in the INMET network near the study area;       

is the surface albedo; and     is the average daily 

transmissivity of the atmosphere. 

 

The components of the energy balance are 

obtained from the Rn estimate described above. 

Initially, the heat flow in the soil (G) was 

calculated through parameterizations. Then, the 

sensible heat (H) and latent heat (LE) fluxes were 

determined by the evaporative fraction (EF).  

The G value was computed according to Eq. (7) 

developed by Bastiaanssen (2000): 

 

  [
  
 
 (                )(            )]   (7) 

 

where: TS is the surface temperature (°C); α is the 

surface albedo (dimensionless); NDVI is the 

vegetation index (dimensionless); Rn is the 

radiation balance (Wm-2). 

 

In the R-SSEB model, the evaporative fraction 

(EF) is calculated using the average of at least 

three hot pixels and three cold pixels identified in 

the NDVI and Ts maps (SENAY et al., 2007). 

Assuming that the hot pixels have small ET 

values and the cold pixels represent the maximum 
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ET over the entire study area, the average of each 

set of pixels can be used to calculate the EF for all 

the pixels in the scene from Equation 8 developed 

by Senay et al. (2013): 

 

    
      
      

 (8) 

 

where: TH is the average of the hot pixels, TC is the 

average of the cold pixels and TS is the surface 

temperature. 

 

Once the FE was determined, the sensible (H) 

and latent (LE) heat fluxes were calculated 

according to Eqs. (9) and (10) (ROERINK et al., 

2000; SOBRINO et al., 2007): 

 
  (    )(    ) (9) 

     (    ) (10) 

 

The means and 95% confidence intervals of the 

biophysical parameters (α, Rn, H, LE) were 

calculated by bootstrapping with 1000 iterations 

the randomized resamplings with substitution 

(EFRON; TIBSHIRANI, 1993) and compared 

using the Kruskal-Wallis test, α = 0.05. 

 
Extreme air temperature indices 

 

Eleven extreme air temperature indices (Table 1) 

were calculated using the RClimdex software, 

developed for the R language by the National 

Climate Data Center (NCDC) of the National 

Oceanic and Atmospheric Administration (NOAA) 

as documented by Easterling et al. (2003); Tank et 

al. (2009), for being recommended in the analysis 

of extreme climatic indices that assist in 

monitoring and detecting climate changes. 

A prerequisite for the calculation of the indices 

is the quality control of the data (ZHANG; YANG, 

2004), which proceeds in 3 stages: a) replacement 

of missing data; b) replacement of non-

representative values (Tmax < Tmin); and c) 

identification of extreme values (outliers) based on 

a predetermined number of standard deviations. 

 

Table 1. Extreme air temperature indexes evaluated in the Sinop region, MT.  

Indice Definition Unidade 
Tn10p Annual percentage of days on which TN < percentil 10 % 
Tx10p Annual percentage of days on which TX < percentil 10 % 
Tn90p Annual percentage of days on which TN > percentil 90 % 
Tx90p Annual percentage of days on which TX > percentil 90 % 
CSDI Maximum number of consecutive days in the year with TN < 

percentil 10 

Days 
WSDI Maximum number of consecutive days in the year with TX > 

percentil 90 

Days 
TXx Maximum annual value of the maximum daily temperature °C 
TXn Annual minimum value of maximum temperature °C 
TNx Maximum annual value of the minimum daily temperature °C 
TNn Minimum annual value of the minimum daily temperature °C 
DTR Mean annual difference between TX e TN °C 

Org.: From the authors, 2019. 

 

 

After the quality control test, the data undergo 

homogeneity analysis to detect possible 

discontinuities or displacements in the time series 

data records. The homogeneity test is based on the 

maximum penalized t-test (WANG et al., 2007) 

and maximum penalized F test (WANG, 2008), 

which are embedded in a recursive test algorithm. 

The annual trends in the climatic extreme indices 

were obtained by regression analysis using the 

least-squares method and statistical significance 

was determined by the Fisher’s test. 

 

 

RESULTS AND DISCUSSION 

 

 

The analysis of the change in land use showed a 

gradual reduction in native forest areas, which 

went from 41.76% to 39.47% of the total area of 

the municipality, as well as an increase in 

agricultural areas, whose percentage went from 

55.51% to 56.22%. However, the main change 

occurred due to the growth of the urban center, 

which increased by 408% in a decade, with the 

most accentuated growth having occurred between 

2011 and 2017 (Table 2; Figure 3). 
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Figure 3. Map of land use of the municipality of Sinop - MT for the years 2007, 2011 and 2017. 

 
Org.: From the authors, 2019. 

 

Table 2. Percentage of area of different land use, between 2007, 2011, and 2017, in the municipality of 

Sinop - MT. 

Land use 
Year 

2007 2011 2017 

Urban area 0.71 1.05 3.61 

Uncovered soil / Agriculture 55.51 57.74 56.22 

Forest 41.76 39.96 39.47 

Org.: From the authors, 2019. 

 

Similar to land use, biophysical parameters 

also changed, mainly in the urban area. The 

albedo near the UFMT station increased from 0.25 

to 0.45 between 2007 and 2017, being 31% higher 

than the estimate at INMET station in 2017 (rural 

area). Inversely to albedo, the net radiation, in the 

period, decreased by 30.78% and 14.29% for the 

UFMT and INMET stations, respectively (Table 

3). 

At the INMET station, the portions of the 

energy flow remained similar throughout the 

study period, corresponding to latent heat flow of 

52.60% (2007) and 53.91% (2017) of the radiation 

balance, and to sensitive heat flow of 35.04% 

(2007) and 34.40% (2017). The urbanization 

process, however, was responsible for changes in 

the parcel of energy destined for each flow. For the 

UFMT station an increase in the partition of 

sensitive heat flow, which went from 28.75% 

(2007) to 53.94% (2017), and reduced latent heat 

flow, whose percentage decreased from 58.99% 

(2007) to 25.23% (2017) (Table 3). 

The results of the air temperature extreme 

indices at the meteorological stations are 

presented in Figure 4. At the INMET station, no 

significant trends were found (p-value <0.10) in 
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the indices related to changes in the maximum 

and minimum temperature values (TXx, TXn, 

TNx, TNn, and DTR). However, at the UFMT 

station, there were significant increasing trends of 

0.34 °C in the maximum air temperature (TNx) 

and 0.32 °C in the daily temperature amplitude 

(DTR). 

Regarding the changes in days with extreme 

temperatures, an increasing trend in days with 

higher maximum and minimum temperatures was 

observed at the INMET station, given by the 

indices Tx90p (0.91%) and Tn90p (1.15%). Such 

changes were even more pronounced at the UFMT 

station, where increases of 4.84% (Tn90p) and 

3.15% (Tx90p) were observed (Figure 5). 

 

Table 3. biophysical parameters changes, between 2007 and 2017, at the two AWS in the municipality 

of Sinop - MT. 

biophysical 

parameters 

UFMT INMET 

2007 2011 2017 2007 2011 2017 

α 
0.25 

(0.1) 

0.43 

(0.1) 

0.45 

(0.1) 

0.20 

(0.1) 

0.24 

(0.1) 

0.31 

(0.1) 

Rn 
1862.3 

(17.2) 

1330.8 

(17.2) 

1289.0 

(17.2) 

1875.5 

(16.9) 

1621.2 

(16.9) 

1607.4 

(16.9) 

LE 
1098.6 

(23.2) 

419.1 

(23.2) 

325.2 

(23.2) 

986.5 

(22.8) 

767.2 

(22.8) 

866.5 

(22.8) 

H 
535.5 

(12.1) 

648.2 

(12.1) 

695.3 

(12.1) 

657.2 

(11.9) 

618.7 

(11.9) 

553.0 

(11.9) 

Values in parentheses represent the difference between the confidence interval and the mean. Org.: 

From the authors, 2019. 

 

Figure 4. Extreme indices of maximum and minimum air temperatures at INMET and UFMT weather 

stations. 

 
Org.: From the authors, 2019. 

 

Increasing trends in indices related to 

temperature were also found by Marengo and 

Camargo (2008) at 27 stations in southern 

Brazil, between 1960 and 2002, with increases of 

0.5 to 0.8 °C over a decade for minimum 

temperatures and of 0.4 °C over a decade for 

maximum temperatures. Similarly, the IPCC 

synthetic report (2007), which presented an 

overview of average annual temperatures on the 

South American continent, showed a 0.5 °C 

heating trend for the period from 1950 to 2000. 

The increase in air temperature observed 
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mainly at the UFMT station is related, among 

other factors, to changes in land occupation. 

Among these changes in land use, deforestation 

is a major factor affecting the climate, according 

to Foley et al. (2005). The conversion of native 

vegetation to areas of agricultural activities and 

urban centers is responsible for variations in the 

temperature, since it causes a reduction in 

evapotranspiration processes (HUNKE et al., 

2015), changing the portions and the magnitude 

of the radiation balance, albedo, and latent and 

sensitive heat fluxes (RODRIGUES et al., 2013). 

 

Figure 5. Indices related to the number of days with extreme values of maximum and minimum air 

temperatures in the meteorological stations of INMET and UFMT. 

 
Org.: From the authors, 2019. 

 

The absence of vegetation cover causes a 

greater reflection of shortwave radiation and 

greater emission of longwave radiation, reducing 

the surface radiation balance (ANDRADE et al., 

2014) and making energy available to the 

environment to be used primarily in the flow of 

sensitive heat, thereby heating the soil and air 

(BIUDES et al., 2015). In contrast, in 

environments with vegetation, since most of the 

radiation balance is used in evapotranspiration 

processes (latent heat), there is a trend towards 

increased water vapor content and reduced 

maximum temperature. 

These results, however, should be seen as 

preliminary since it is not possible to attribute the 

differences among temperature trends exclusively 

to land use and the expansion of urban areas, in 

addition to the fact that the database does not 

correspond to the 30 years of measurements 

recommended by OMM for climatic 

characterization (SILVA et al., 2017). 

 

 

FINAL CONSIDERATIONS 

 

 

Changes in land use and occupation between the 

years 2007 and 2017 were responsible for an 

increase of 80% and 55% in the surface albedo and 

a reduction of 30.78% and 14.29% in the radiation 

balance at the urban (UFMT) and rural (INMET) 

weather stations in the municipality of Sinop-MT, 

respectively. 

The energy portion destined for H and LE 

remained constant at the rural station (INMET). 

In the urban area (UFMT) there was an inversion 

of the energy portions of the radiation balance 

with an increase in H (air heating) and a reduction 

in LE (evapotranspiration). 

The station in the urban area (UFMT) showed 

a higher increase in the temperature extreme 

indices TNx (0.34 ° C year-1), DTR (0.32 ° C year-1), 

Tn90p (4.84%) and Tx90p (3.15%), indicating that 

the urbanization of the municipality is beginning 

to change the local environmental biophysical 

parameters. 

2008 2012 2016
0

4

8

12

16

20

24

p
e
rc

e
n

ta
g

e
 o

f 
d

a
y
s

 i
n

 t
h

e
 y

e
a
r 

(%
)

 

 

 

A
ir

 t
e
m

p
e
ra

tu
re

 (
°C

)

2008 2012 2016
4

8

12

16

20
INMET - Tx90p

Slop: 0.91

p-valor: 0.04

UFMT - CSDI

Slop: -1.14

p-valor: 0.47

 

 

UFMT - WSDI

Slop: -0.60

p-valor: 0.47

UFMT - Tx90p

Slop: 3.15

p-valor: 0.05

UFMT - Tn90p

Slop: 4.84

p-valor: 0.01

UFMT - Tx10p

Slop: -2.16

p-valor: 0.03

UFMT - Tn10p

Slop: -1.05

p-valor: 0.18

INMET - WSDI

Slop: 0.65

p-valor: 0.38

INMET - CSDI

Slop: -0.04

p-valor: 0.87

INMET - Tn90p

Slop: 1.15

p-valor: 0.10

INMET - Tx10p

Slop: -0.34

p-valor: 0.22

INMET - Tn10p

Slop: -0.58

p-valor: 0.28

 

 

2008 2012 2016
0

5

10

15

20

25

30

35

 

  

 

2008 2012 2016
0

4

8

12

16

20

24

 

 

 

 

2008 2012 2016
0

2

4

6

8

 

 

 

D
a
y
s

2008 2012 2016
0

5

10

15

20

25

30

 

 

 

2010 2013 2016
4

8

12

16

20

 

 

Date (Year)

2010 2013 2016
0

4

8

12

16

20

24

 

 

 

2010 2013 2016
-10

0

10

20

30

40

 

 

Y
 A

x
is

 T
it
le

2010 2013 2016
0

4

8

12

16

20

24

28

 

 

Y
 A

x
is

 T
it
le

2010 2013 2016
0

4

8

12

16

20

24

 

 

D
a
y
s

2010 2013 2016
0

2

4

6

8

10

 

 

 



SABINO et al. Biophysical parameters and extreme air temperature indices 

 

498 Soc. Nat. | Uberlândia, MG | v.32| p.490-500 | 2020| ISSN 1982-4513 

In future analyses, it is recommended that 

meteorological stations in other parts of the 

municipality be incorporated, since urban 

expansion is taking place in varying directions. 
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