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Resumo: Este estudo avalia a classificação de Máximo a posteriori Composto (CMAP) de imagens Landsat para
reconstruir o histórico de uso da terra de áreas de agricultura itinerante na Amazônia. Foram estimados os ciclos
agrícolas e a idade das florestas secundárias próximas aos rios Juruá, Tefé e Tapajós, utilizando composições anuais de
imagens Landsat (1984–2024) classificadas pelo CMAP com uma estratégia de treinamento generalizado. A comparação
com entrevistas de proprietários locais mostra que o CMAP estima de forma eficaz esses parâmetros (55% em ±1 para
ciclos e 93% em ±3 anos para idade). Esses resultados demonstram o potencial do CMAP para a reconstrução do
histórico de uso da terra. A integração com dados de campo pode aprimorar o detalhamento das informações.
Palavras-chave: Máximo a posteriori Composto. Histórico de uso da terra. Floresta secundária. Landsat.

Abstract: This study evaluates the Compound Maximum a posteriori (CMAP) classification of Landsat imagery to
reconstruct the land-use history of shifting cultivation areas across the Amazon. We estimated agricultural cycles and
secondary forest age near the Juruá, Tefé, and Tapajós rivers using annual Landsat composites (1984–2024) classified
with CMAP and a generalized training strategy. Comparison with local landowner interviews showed that CMAP
effectively estimates these parameters (55% within ±1 for cycles and 93% within ±3 years for age). These results
demonstrate CMAP’s potential for land-use history reconstruction, with field data integration likely improving the
detailing of information.
Keywords: Compound Maximum a posteriori. Land-use history. Secondary forest. Landsat.
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1 INTRODUÇÃO

A agricultura itinerante, também conhecida como agricultura de coivara ou agricultura de pousio,
é o principal sistema agrícola que sustenta os meios de subsistência das populações na Amazônia (Padoch
& Pinedo-Vasquez, 2010). Além da produção de alimentos, também promove a diversidade genética das
culturas, a biodiversidade e a conservação do conhecimento tradicional local (Denevan et al., 1988; Padoch
& Pinedo-Vasquez, 2010). Esse sistema é caracterizado pela rotação de culturas com períodos de pousio.
Durante o pousio, a vegetação se regenera devido aos processos de sucessão secundária. Essa dinâmica cria
mosaicos heterogêneos de paisagem que incluem áreas agrícolas, florestas em sucessão, sistemas agroflorestais
e florestas maduras (Lawrence et al., 1998; Padoch & Pinedo-Vasquez, 2010). Esses também são sistemas muito
dinâmicos, que podem ser afetados por variáveis ambientais locais ou regionais (como qualidade do solo e
clima) e pelas práticas de manejo. Assim, estudos relacionados à agricultura itinerante exigem informações
precisas e detalhadas sobre a localização e o histórico de uso da terra dessas áreas.

Os sistemas de agricultura itinerante podem ocorrer em manchas relativamente pequenas (cerca de
1 ha) (Jakovac et al., 2016b), inseridas em paisagens heterogêneas e dinâmicas. Essa complexa dinâmica
espaço-temporal pode dificultar a obtenção de informações adequadas. Em muitas regiões da Amazônia, essa
prática tradicional é anterior ao aumento de ocupação ocorrido na década de 1970. Os períodos de pousio e
regeneração também podem variar entre menos de quatro e mais de 15 anos em regiões ribeirinhas (Affonso et al.,
2016; Jakovac et al., 2017; Steininger, 2000), e ultrapassar 40 anos em terras indígenas (Schmidt et al., 2021). A
frequência dos ciclos de cultivo também pode variar entre regiões, bem como em resposta a pressões culturais e
socioeconômicas. Por exemplo, Abrell et al. (2024) mapearam de um a sete ciclos de cultivo em um período de
10 anos em áreas de agricultura itinerante na região oriental da Amazônia brasileira.

Normalmente, o histórico de uso da terra de uma determinada área da superfície terrestre pode ser
obtido por meio de dados de campo ou com base em informações de cobertura da terra derivadas de imagens
de Sensoriamento Remoto (SR). Campanhas de campo podem demandar muitos recursos, sendo raramente
frequentes o bastante para fornecer informações acuradas em áreas de agricultura itinerante. As informações
costumam ser obtidas em momentos isolados, por meio de entrevistas com moradores locais. Assim, sua
acurácia depende da memória ou das anotações pessoais da pessoa entrevistada. As análises de SR, por sua vez,
frequentemente requerem dados de maior resolução espacial (Rufin et al., 2025) e/ou abordagens de classificação
mais refinadas do que as tarefas triviais de classificação de cobertura da terra que consideram dados de SR em
um único tempo por vez. As análises históricas (30+ anos) de SR dependem quase exclusivamente de imagens
Landsat de média resolução espacial, o que pode ser desafiador, considerando o tamanho de algumas manchas
de agricultura itinerante. Como prova dessa complexidade, destaca-se que os sistemas de agricultura itinerante
são atualmente invisíveis nos produtos brasileiros de Uso e Cobertura da Terra em escala nacional baseados em
SR, como o Monitoramento Sistêmico da Cobertura e Uso da Terra (TerraClass) (Almeida et al., 2025) ou o
Mapeamento Anual da Cobertura e Uso da Terra no Brasil (MapBiomas) (Souza et al., 2020).

A estimativa do histórico de uso da terra a partir de dados de SR pode ser feita tanto por meio do
mapeamento de tipos específicos de mudanças nas séries temporais de imagens quanto pela classificação dessas
imagens em séries temporais de cobertura da terra, ou seja, rotulando as observações em cada momento como
uma classe de interesse, para depois recuperar as informações a partir desse novo conjunto de classificações
(Reis et al., 2020a; Zhu, 2017). Quando a classificação é feita de forma independente, essa última abordagem é
conhecida como Comparação Pós-Classificação. Este é o método mais comumente utilizado para esse tipo de
análise e tem a vantagem de permitir a obtenção de diferentes tipos de informação sobre o histórico de uso da
terra, pois fornece informações completas sobre o tempo e o tipo de mudanças (Lu et al., 2004). No entanto,
esse método está sujeito à classificação de transições inválidas (isto é, aquelas que nunca poderiam ocorrer em
campo), as quais devem ser corrigidas em uma etapa de pós-processamento (Reis et al., 2020a). Aplicar esse
correção pode ser uma tarefa bastante desafiadora em áreas complexas, como aquelas que envolvem práticas de
agricultura itinerante.

Entretanto, métodos que incorporam informações multitemporais para resolver a classificação em cada
tempo, como o Máximo a posteriori Composto (Compound Maximum a posteriori - CMAP) (Reis et al., 2020b),
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podem oferecer uma alternativa viável para o uso de imagens Landsat como complemento às informações de
campo. O CMAP é uma abordagem de classificação supervisionada que considera as probabilidades individuais
das observações em cada tempo para gerar séries temporais de classificação válidas. Quando aplicado a dados
de SR para o problema de cobertura da terra, a formulação do CMAP incorpora o conhecimento a priori sobre a
dinâmica das classes em uma estrutura Bayesiana, ponderando a classificação das séries temporais de SR. Isso
garante que apenas transições válidas de uso e cobertura da terra sejam permitidas, sem a necessidade de filtros
pós-classificação e/ou coleta extensiva/complexa de amostras no espaço ou no tempo.

Com base no exposto, este estudo tem como objetivo avaliar o uso do CMAP na classificação de imagens
Landsat para recuperar o histórico de uso da terra em áreas localizadas na Amazônia brasileira. Os atributos
estimados do histórico de uso da terra foram o número de ciclos agrícolas e a idade das florestas secundárias
associadas à dinâmica da agricultura itinerante. Os resultados do CMAP foram comparados com informações
de campo. Essas foram obtidas por meio de entrevistas com proprietários rurais, em 88 áreas distribuídas pela
Amazônia próximas aos rios Tapajós, Tefé e Juruá. Este artigo é uma versão ampliada de Reis et al. (2025),
apresentada no XXV Simpósio Brasileiro de Geoinformática (GEOINFO 2025).

2 MATERIAL

Esta seção descreve a área de estudo, as classes de interesse e os dados de campo, bem como as imagens
Landsat utilizadas. Para a região Tapajós, a análise foi baseada na trajetória de cobertura da terra previamente
classificada por Reis (2022).

2.1 Área de estudo

Este estudo foi conduzido na Amazônia brasileira, em comunidades ribeirinhas localizadas nas margens
dos rios Juruá, Tefé e Tapajós (Figura 1.a). Essas áreas apresentam condições ambientais ligeiramente diferentes,
detalhadas a seguir.

Figura 1 – Localização das áreas de estudo: a) em relação aos limites naturais e políticos do Brasil; b) região do Juruá;
c) região de Tefé; d) região do Tapajós.

Fonte: Os autores (2025).
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A região do Juruá está situada na Amazônia ocidental (Figura 1.b), com precipitação média anual em
torno de 2.200 mm e temperatura média anual de aproximadamente 27 °C. Apresenta uma curta estação seca
com duração inferior a dois meses, durante os quais cada mês recebe menos de 100 mm de precipitação.

A região de Tefé está localizada na Amazônia central (Figura 1.c), com precipitação média anual de
cerca de 2.300 mm e temperatura média anual de aproximadamente 27 °C. Os padrões de estação seca são muito
semelhantes aos de Juruá.

A região do Tapajós está localizada na Amazônia oriental (Figura 1.d), onde tanto o clima quanto as
condições do solo diferem um pouco das regiões central e ocidental da Amazônia. Essa região apresenta uma
estação seca pronunciada que pode durar até cinco meses consecutivos, com cada mês recebendo menos de
100 mm de precipitação. A precipitação média anual é de cerca de 2.000 mm (Restrepo-Coupe et al., 2013) e a
temperatura média anual do ar é de aproximadamente 25,3 °C.

2.2 Dados de campo

Os dados de campo foram coletados em um total de 88 fragmentos de floresta secundária (11 no Juruá,
57 em Tefé e 20 no Tapajós, conforme Figura 1), amostrados ao longo de gradientes de intensidade de uso da
terra, em diferentes anos: 2023 no Juruá; 2012, 2013 e 2022 em Tefé; e 2024 no Tapajós. Os dados utilizados
neste estudo correspondem às coordenadas do ponto central de parcelas de 20 m × 50 m e às informações
fornecidas por entrevistas com os proprietários rurais sobre o histórico de uso da terra desde que a floresta
primária em cada fragmento foi cortada. Nas entrevistas, perguntou-se especificamente (i) a idade da floresta
secundária atual e (ii) quantas vezes a mandioca havia sido plantada naquele local. Essas perguntas foram feitas
várias vezes, de diferentes formas e a diferentes membros da família, para filtrar respostas imprecisas.

2.3 Imagens

Conforme mencionado anteriormente, este estudo baseia-se na classificação de séries temporais Landsat.
Foram utilizadas todas as imagens Landsat Tier 1 da Coleção 2 hospedadas na plataforma Google Earth Engine
(GEE) que: cobrem as parcelas avaliadas nos dados de campo; foram adquiridas entre 1º de agosto e 30 de
novembro dos anos de 1984 a 2024; correspondem a dados dos sensores Thematic Mapper (TM), Enhanced
Thematic Mapper (ETM+) e Operational Land Imager (OLI), a bordo dos satélites Landsat 5, Landsat 7
e Landsat 8, respectivamente. Esses dados foram utilizados no formato de Reflectância de Superfície, sem
processamento adicional. As principais características dessas imagens estão resumidas no Quadro 1.

Quadro 1 – Descrição das imagens Landsat.
Características TM ETM+ OLI

Bandas espectrais (𝜇𝑚) 7 bandas: 8 bandas: 9 bandas:
Costeira/Aerossol - - 0,435-0,451

Azul 0,45-0,52 0,45 -0,515 0,452-0,512
Verde 0,52-0,60 0,525-0,605 0,533-0,590

Vermelho 0,63-0,69 0,63-0,69 0,363-0,673
NIR 0,76-0,90 0,775-0,90 0,851-0,878

SWIR1 1,55-1,75 1,55-1,75 1,566-1,651
TIR 10,41-12,5 10,4-12,5 -

SWIR2 2,08-2,35 2,08-2,35 2,107-2,294
PAN - 0,52-0,9 0,503-0,676

Cirrus - - 1,363-1,384
Janela de aquisição de julho de 1982 de abril de 1999 de fevereiro de 2013

(lançamento ao fim da missão) até janeiro de 2013 até abril de 2022 em operação (julho de 2025)
Resolução espacial (m) 30 30 30

(120 na TIR) (60 na TIR, (15 na PAN)
15 na PAN)

Tempo de revisita (dias) 16 16 16

Fonte: NASA (2023), organizado por Reis et al. (2024).
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2.4 Classes de interesse

Para as três regiões, estudou-se a dinâmica entre quatro classes de interesse:

1. Floresta primária (Figura 2.a) – florestas maduras, submetidas ou não a eventos de degradação florestal,
sem evidências de desmatamento anterior;

2. Floresta secundária (Figura 2.b) – áreas anteriormente desmatadas ocupadas por vegetação estruturada
não plantada por seres humanos;

3. Área manejada (Figura 2.c) – áreas agrícolas utilizadas principalmente para a produção de culturas e/ou
pecuária, incluindo áreas de agricultura em pequena escala;

4. Outras áreas naturais – áreas cobertas por outros elementos naturais, como rios, áreas naturalmente
alagadas e vegetação natural não florestal.

A Figura 2 apresenta exemplos das classes de interesse. Essa figura foi baseada nos mosaicos Landsat
calculados por Reis et al. (2024) e nos dados de campo coletados por Sant’Anna et al. (2016), em agosto e
setembro de 2016, nas proximidades da região do Tapajós.

Figura 2 – Exemplo das classes de interesse conforme observadas no mosaico Landsat (à esquerda) e em campo (à direita):
a) Floresta primária; b) Floresta secundária; c) Área manejada. O mosaico Landsat corresponde à mediana das imagens
Landsat de agosto a novembro de 2016, na composição colorida SWIR1(R) NIR(G) SWIR2(B), com contraste aplicado.
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2.5 Série temporal de cobertura da terra para a região do Tapajós

Este conjunto de dados abrange uma classificação de cobertura da terra por ano na região do Tapajós, de
1984 a 2020, com classes de cobertura da terra e metodologia semelhantes às utilizadas no presente estudo. A
descrição detalhada desses dados está contida em Reis (2022).

3 MÉTODOS

A Figura 3 sintetiza a metodologia utilizada neste estudo. Cada etapa é detalhada nas subseções a seguir.

Figura 3 – Fluxograma metodológico, em que t representa o tempo do conjunto de dados.
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Fonte: Os autores (2025).

3.1 Pré-processamento

Foram derivadas composições anuais de imagens Landsat para cada conjunto de sensores (TM/ETM+ ou
OLI), calculando-se o valor da mediana, por banda, dos pixels não sinalizados como inválidos ou não observados
(por exemplo, nuvens, sombras de nuvem, neve ou valores negativos de reflectância). Apenas as bandas NIR,
SWIR1 e SWIR2 foram processadas, tanto para evitar a inclusão de dados não calibrados ou ruidosos das bandas
visíveis (Wulder et al., 2018), quanto para garantir o uso das mesmas bandas em todos os sensores. Para este
estudo, observou-se que as bandas do Azul, Verde e Vermelho apresentaram variação espectral suficiente ao
longo do tempo para se mostrarem inadequadas ao desenho de classificação, no qual o CMAP é treinado com
pixels rotulados coletados em diferentes imagens da série temporal. A inclusão dessas bandas resultou em erros
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graves de classificação nos testes realizados, enquanto a utilização apenas das bandas NIR, SWIR1 e SWIR2
produziu resultados muito mais robustos. Após o cálculo da mediana, áreas sem informação remanescentes
foram rotuladas como não observadas.

3.2 Coleta de pixels rotulados das classes de interesse

Os pixels das classes de interesse foram coletados com base na interpretação visual das composições de
imagens Landsat. Ao todo, foram delimitados 440 polígonos representando as classes de interesse na região do
Juruá e 400 em Tefé, cobrindo o período de 1984 a 2024.

3.3 Classificação da série temporal de imagens

As composições das regiões do Juruá e de Tefé foram classificadas utilizando uma abordagem semelhante
à aplicada anteriormente na região do Tapajós (Reis, 2022): classificando-se as composições Landsat de cada
sensor com o modelo CMAP treinado com amostras generalizadas (isto é, uma ou mais imagens foram
classificadas utilizando amostras coletadas em outra imagem). O CMAP requer duas entradas principais para
calcular a série temporal de classificação: (i) a probabilidade de cada observação dado um conjunto de classes,
para cada tempo; e (ii) a probabilidade a priori de uma sequência de classes. Esses componentes são explicados
a seguir.

Primeiramente, calculou-se a probabilidade de cada observação no tempo utilizando a Função Densidade
de Probabilidade da distribuição Gaussiana (Theodoridis & Koutroumbas, 2009) e pixels rotulados transferidos
entre conjuntos de composições de imagens. Esse processo trata cada instância de uma classe no tempo como
uma classe distinta, e todas competem pelo valor máximo dentro do algoritmo CMAP. Não foram utilizadas
amostras coletadas sobre composições OLI para treinar o modelo aplicado a composições TM/ETM+, ou
vice-versa, e os conjuntos de dados de Tefé e Juruá foram processados separadamente.

Para o cálculo da probabilidade a priori das sequências, adotou-se a abordagem simplificada proposta
por Reis et al. (2020b), na qual sequências de classes inválidas recebem probabilidade igual a 0,0 e todas as
sequências válidas recebem o mesmo valor de probabilidade, cuja soma é igual a 1,0. Uma sequência de classes
é considerada inválida quando contém uma transição inválida. O Quadro 2 apresenta a validade das transições
consideradas neste estudo. Note que uma classe Não observado não foi incluída nessa definição, pois transições
válidas para essa classe podem gerar sequências inválidas (como observado em Quevedo et al. (2024)). Para
evitar esse problema, atribuiu-se um valor de probabilidade constante a todas as classes em pixels mascarados
como Não observado. O CMAP então rotulou esses pixels com a classe considerada mais provável em função da
probabilidade a priori da sequência. Como esse valor constante não altera o cálculo do máximo, o processo não
privilegia nenhuma classe em relação às demais nos períodos sem observações. Os pixels mascarados foram
automaticamente rotulados como Não observados ao final da etapa de classificação.

Quadro 2 – Validade das transições entre classes de cobertura da terra de interesse.
Tempo 𝑡 + 1

F+O S M

Te
m

po
𝑡 Floresta primária (F) + Outras áreas naturais (O) Válido Válido Válido

Floresta secundária (S) Inválido Válido Válido
Área manejada (M) Inválido Válido Válido

Fonte: Os autores (2025).

3.4 Análise

A partir das classificações anuais realizadas pelo algoritmo CMAP, foram extraídas as seguintes
informações para os centroides das 88 parcelas de campo:

1. Número de ciclos agrícolas — número de vezes em que as classes Floresta primária ou Floresta
secundária mudaram para Área manejada entre 1984 e o ano da campanha de campo;
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2. Idade da floresta secundária atual — número de anos consecutivos em que um pixel foi classificado como
Floresta secundária, contando-se retroativamente a partir do ano da campanha de campo. Esse atributo
não pôde ser calculado para pixels que não estavam classificados como Floresta secundária no ano da
campanha.

A campanha de campo na região do Tapajós foi realizada em 2024, enquanto a última imagem classificada
correspondeu ao período seco de 2020. Para permitir a análise, a série temporal de cobertura da terra dessa região
foi estendida considerando que os anos de 2021 a 2024 permaneceriam classificados como Floresta secundária
em todas as parcelas. Essa extrapolação baseia-se em informações de campo que indicaram que nenhuma das
parcelas possuía menos de quatro anos em 2024. Para evitar artefatos gerados por pixels rotulados como Não
observado (por exemplo, reduzir a metade a idade de uma Floresta secundária em função da cobertura de nuvens
no meio de um ciclo de regeneração), aplicamos também um filtro de pós-processamento que: (i) identifica
instâncias únicas da classe Não observado ao longo do tempo; e (ii) atribui a esses casos a classe da observação
anterior. Essa escolha baseia-se na suposição conservadora de ausência de mudança no período não observado.
Neste estudo, não ocorreram problemas associados a múltiplos anos consecutivos sem observações válidas.

Os valores de número de ciclos agrícolas e idade da floresta secundária atual foram comparados,
parcela por parcela, com os valores obtidos nas entrevistas com proprietários rurais. Em seguida, calculou-se
a diferença entre as duas fontes subtraindo o valor obtido nas entrevistas do valor estimado pelo CMAP para
cada descritor. Uma diferença igual a zero indica concordância completa entre as duas abordagens. Diferenças
positivas indicam valores mais altos no CMAP, enquanto diferenças negativas indicam valores mais altos nas
entrevistas.

Nos casos de grande discrepância entre as duas fontes de informação, checou-se a classificação CMAP
dos pixels abrangidos pela geometria da parcela. Esta análise resulta na classificação de até sete pixels dependendo
do tamanho da parcela original. Esses resultados foram também comparados às composições Landsat, a fim de
identificar possíveis fontes de erro ou incerteza na classificação.

4 RESULTADOS

A Figura 4 apresenta o número estimado de ciclos agrícolas, por região e fonte de dados, bem como as
diferenças calculadas. Considerando todas as regiões em conjunto, a média ± desvio padrão do número de ciclos
agrícolas foi de 3,8 ± 2,3 para as entrevistas e 3,0 ± 1,7 para o CMAP. Em média, a diferença calculada entre os
dados das duas fontes de informação foi de -0,8 ± 1,9. As diferenças calculadas por região correspondem a
0,1 ± 2,0, -1,2 ± 1,8 e -0,8 ± 1,7, respectivamente, para Juruá, Tefé e Tapajós. Além disso, a diferença entre os
valores das duas fontes de informação mostrou uma concordância total (diferença zero) de 30% das amostras.
Esse valor aumenta para 55% considerando valores dentro de uma diferença de ± 1 ciclo.

Das 88 parcelas analisadas, 12 não foram classificados como Floresta secundária pelo CMAP no ano
de coleta dos dados de campo e foram removidas desta análise. Assim, os resultados para idade da floresta
secundária atual apresentados na Figura 5 referem-se às 76 parcelas restantes. Estimou-se uma idade média
de 5,4 ± 1,0 e 5,7 ± 2,9 anos em todos os locais, usando registros de entrevistas e classificações do CMAP,
respectivamente. A diferença média entre os resultados das entrevistas e do CMAP foi muito baixa, com média
de 0,4 ± 3,0 anos. Por região, a média e o desvio padrão dos valores foram estimados em 0,6 ± 2,2 (Juruá),
0,3 ± 2,3 (Tefé) e 0,4 ± 4,6 anos (Tapajós). As fontes concordam dentro de ± 1 ano para 53% dos 76 valores
válidos, e dentro de ± 3 anos para 93%.
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Figura 4 – Frequência dos valores de número de ciclos agrícolas, extraídos de entrevistas, séries temporais classificadas
pelo CMAP (centroide das parcelas) e diferença entre os valores (CMAP - Entrevistas).
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Fonte: Os autores (2025).

Figura 5 – Frequência dos valores de idade da floresta secundária atual, extraídos de entrevistas, séries temporais
classificadas pelo CMAP (centroide das parcelas) e diferença entre os valores (CMAP - Entrevistas).
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Para melhor compreender essas diferenças, a Figura 6 mostra um subconjunto espacial e temporal das
composições Landsat para a parcela 19 da região do Tapajós. Esta parcela apresenta a maior diferença absoluta
entre os resultados das entrevistas e do CMAP para idade da floresta secundária atual, estimada em 23 anos
pelo CMAP e em cinco anos nas entrevistas. Para justificar o valor observado nas entrevistas, seria esperado
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observar uma transição de uma classe florestal para Área manejada nas composições Landsat de 2018 e 2019.
Essa transição também igualaria os valores de número de ciclos agrícolas nesta parcela. No entanto, todas as
composições de 2015 a 2020 apresentaram valores espectrais condizentes com áreas florestadas. Só é possível
ver evidências de manejo nos pixels magenta em 2018, que (embora próximos) não interceptam os limites da
parcela.

Figura 6 – Subconjunto espacial e temporal das composições Landsat para a região do Tapajós (composição colorida
SWIR1(R) NIR(G) SWIR2(B) com contraste aplicado). O polígono da parcela Tapajós-19 está delimitado em preto. O

centro do polígono é representado pelo ponto amarelo.

2015 2016 2017 2018 2019 2020

Fonte: Os autores (2025).

Nesse sentido, uma determinada parcela pode apresentar pixels com sequências de classes bastante
diferentes. A Figura 7, por exemplo, ilustra os resultados da classificação para os seis pixels interceptados pela
parcela 43 em Tefé. O centróide corresponde ao pixel identificado como 5 nesta figura. As entrevistas registraram
dois ciclos agrícolas e uma floresta secundária de seis anos para essa parcela em 2022. Embora não seja possível
fazer inferências sobre a acurácia da classificação com base nesses valores, é possível observar que mudanças na
geometria da parcela poderiam facilmente deslocar o pixel central, resultando na classificação de um histórico
diferente.

Figura 7 – Resultados da classificação CMAP para os seis pixels interceptados pela parcela Tefé-43, sem interpolação de
eventos isolados de Não Observado.
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5 DISCUSSÕES

Os dados de campo e os registros de entrevistas são frequentemente tratados como o padrão-ouro para
o histórico de uso da terra na Amazônia. No entanto, a aquisição essas informações depende (i) da presença
de residentes de longa data que possam recordar todo o histórico, (ii) de pessoas com boa memória sobre o
manejo utilizado, (iii) de entrevistar múltiplas pessoas para melhor precisão e (iv) do entrevistador ser capaz de
obter as informações sem introduzir vieses. Em geral, quanto mais curto o histórico de uso da terra — isto é,
quanto mais recente o desmatamento da floresta primária e o início dos ciclos de cultivo, melhor é a memória
das pessoas. Para a estimativa da idade das florestas secundárias, as entrevistas mostraram-se confiáveis porque
todas as parcelas continham florestas secundárias com menos de oito anos, com altura e estrutura aparentes
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que facilitaram as estimativas (Jakovac et al., 2015, 2016a). Contudo, todas as perguntas devem ser definidas a
priori nas entrevistas de campo, e informações sobre sistemas muito antigos ou dinâmicos podem ser incertas
(Dutrieux et al., 2016). A realização do trabalho de campo nas três localidades também demanda tempo e
dinheiro, envolvendo pelo menos quatro expedições de campo com cerca de 30 dias cada.

O CMAP tem a vantagem de fornecer dados a custos menores do que as entrevistas, de forma objetiva
e reprodutível. Os processos de classificação com CMAP utilizaram dados e softwares de livre acesso (uma
versão do CMAP em R está disponível em https://github.com/marianesreis/CMAP). O tempo de processamento
também é relativamente curto (todo o pré-processamento das imagens e as classificações puderam ser realizados
em menos de um dia utilizando máquinas locais e a capacidade padrão do GEE). A tarefa mais demorada é a
coleta de pixels rotulados das classes de interesse em alguns pontos no tempo, o que é esperado em qualquer
abordagem de classificação supervisionada.

Independentemente do método de classificação, um alvo só pode ser identificado em uma imagem de SR
se ele puder ser visto nessa imagem. Um grande desafio para estimar o número de ciclos e a idade das florestas
secundárias com o CMAP é que ambos dependem da detecção de queimadas dentro de uma janela temporal
curta. Os campos são geralmente derrubados e queimados na estação seca, de agosto a outubro (dependendo
das condições climáticas de cada ano e região). Após a queima, a mandioca é plantada a partir de manivas que
brotam rapidamente e cobrem os campos. Caso a mandioca não seja plantada por algum motivo, a regeneração
natural da floresta pode ocorrer imediatamente. Ambos os processos podem ocorrer em um a dois meses (Jakovac
et al., 2016c). Portanto, a janela temporal para a detecção de um ciclo agrícola pode ser menor que o intervalo de
um ano proposto. Esse problema também pode ser agravado em anos de alta pluviosidade, devido à regeneração
mais rápida da vegetação (Poorter et al., 2016) e à maior cobertura de nuvens.

Para análises multitemporais, é ainda necessário garantir que as imagens cubram todo o período de
análise, com resolução temporal adequada para registrar eventos individuais e resolução espacial suficiente para
identificar alvos pequenos. Esse não é o caso das séries temporais Landsat disponíveis. Por exemplo, 28% das
parcelas analisadas neste estudo já haviam sido desmatadas antes de 1984, de modo que não foi possível obter o
histórico completo de uso da terra dessas áreas. Como as entrevistas e o CMAP não mapeiam o mesmo intervalo
temporal nessas parcelas, é esperado que haja variação nas estimativas. Uma parcela também pode ter sido
convertida para mandioca após a campanha de campo, o que explicaria áreas não classificadas como florestas
secundárias no último ano em análise. Além das mudanças de uso da terra que ocorreram fora do período seco
e/ou não eram visíveis nas composições Landsat, as diferenças nos valores estimados também podem estar
relacionadas a inconsistências geométricas entre os conjuntos de dados, seja na definição do centróide das
parcelas ou no alinhamento temporal dos dados Landsat.

Erros de classificação em uma dada data têm potencial para impactar fortemente os dados recuperados
sobre o histórico de uso da terra, o que pode ou não se traduzir em métricas de acurácia de uma classificação de
cobertura da terra ao longo do tempo. Em particular, destaca-se que cultivos de mandioca, pastagens abandonadas
e florestas secundárias jovens podem apresentar padrões espectrais muito semelhantes em imagens Landsat (Reis
et al., 2024). O mesmo ocorre para florestas primárias e florestas secundárias mais desenvolvidas (Carreiras et al.,
2017; Reis et al., 2018). O CMAP, um classificador supervisionado baseado em pixels, operou considerando
apenas um pixel relativamente grande para a análise de manchas possivelmente muito pequenas de agricultura
itinerante. É esperado que esse pixel apresente uma mistura de diferentes tipos de cobertura da terra, o que
pode levar a erros de classificação derivados da resolução espacial das imagens Landsat utilizadas. Também se
considerou apenas uma observação por ano em um ambiente altamente dinâmico, o que pode ter significado a
perda de imagens específicas em que mudanças de cobertura da terra de interesse estavam visíveis.

Estudos futuros baseados na utilização do CMAP para a classificação das classes de cobertura da terra
associadas aos processos de agricultura itinerante podem se beneficiar da classificação de conjuntos de imagens
com maior resolução espacial (como Sentinel-1 e 2) em intervalos temporais menores, mesmo que isso resulte
na perda dos anos mais antigos da análise. Em particular, seria interessante estudar as variações no sinal do
Sentinel-1 decorrentes de eventos de queima, dado que essas imagens de Radar de Abertura Sintética são
especialmente sensíveis às mudanças na vegetação causadas por incêndios (Doblas et al., 2024). Além disso,
destaca-se que as análises deste estudo foram focadas em áreas sabidamente utilizadas para agricultura itinerante.
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Nesses casos, também é possível corrigir erros conhecidos do CMAP, como definir a classe de um determinado
pixel no ano da campanha de campo como Floresta secundária e limitar as transições para outras classes em
anos anteriores, de modo a garantir uma sequência mínima que respeite o observado em campo. Tal processo é
possível pela definição de probabilidades a priori adequadas de sequências no CMAP, ou pelo uso de filtros de
pós-processamento — este último foi utilizado de forma orgânica pelos intérpretes ao estimar os resultados
apresentados em Reis et al. (2025). Ademais, expandir a metodologia proposta para áreas desconhecidas pode
resultar na classificação incorreta de outros tipos de alvos, como bancos de areia e atividades de mineração ao
longo dos rios, o que pode implicar no processamento adicional de dados e deve ser avaliado caso a caso.

6 CONCLUSÕES

Neste estudo, avaliou-se o potencial de uso do CMAP para a classificação de séries temporais Landsat
com o objetivo de estimar dois atributos utilizados na caracterização da dinâmica da agricultura itinerante na
Amazônia: o número de ciclos agrícolas e a idade das florestas secundárias. Esses valores foram estimados para
88 sistemas de agricultura itinerante, distribuídos em três regiões amazônicas com diferentes características
ambientais e socioeconômicas, e validados por meio da comparação com resultados obtidos em entrevistas de
campo.

De forma geral, foi identificada uma boa concordância entre os resultados das entrevistas e aqueles
obtidos com CMAP nas estimativas de ambos os atributos. Não foi possível identificar vieses claros associados
a super ou subestimações em um determinado método, embora os resultados de Juruá devam ser avaliados com
cautela devido ao número muito pequeno de parcelas. De modo geral, os resultados indicam que o CMAP tem
potencial para recuperar de forma eficiente o histórico de uso da terra e a idade das florestas secundárias em
áreas de agricultura itinerante na Amazônia, com uma taxa de erro relativamente baixa quando comparado
às entrevistas de campo. Como as entrevistas com os proprietários fornecem informações mais ricas sobre as
dinâmicas de uso da terra, que não podem ser obtidas apenas por imagens, argumenta-se que o uso combinado
de ambos os métodos deve ser o caminho a seguir nas campanhas de levantamento.

O uso do CMAP também permite: (i) mapear áreas de agricultura itinerante fora das parcelas amostradas,
(ii) mapear a intensidade do histórico de uso anterior da terra, que pode ser usada como um indicador da
produtividade agrícola e da capacidade de regeneração florestal, (iii) descrever a dinâmica temporal dos sistemas
de agricultura itinerante e avaliar possíveis mudanças nessa dinâmica ao longo do tempo, (iv) estimar a idade das
florestas secundárias e (v) estimar o tempo de permanência das florestas secundárias. Todas essas aplicações são
valiosas para compreender os vetores de mudança, desenvolver modelos de uso da terra e planejar e implementar
políticas públicas de restauração florestal e provisão de serviços ecossistêmicos.
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