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Abstract: Spectral indices for detecting surface water bodies play a crucial role in environmental studies, on the other 

hand, these indices behave differently depending on the study site or the bands used. Therefore, this study proposed 

an evaluation of the performance of spectral indices in detecting surface water, using a scene from the Landsat-9 

satellite and implementing a new index called NIR-Green Water Index (NGWI). After a visual inspection, positive 

performance was found in all indices in the detection of surface water, especially those formulated using the green 

band, such as the Normalized Difference Water Index (NDWI), (NGWI) and Water Ratio Index (WRI). During the 

Pearson correlation and Separability Index analysis between the "Water" and "Non-water" classes, the Automated 

Water Extraction Index (AWEI) demonstrated the highest average separability, reaching 1.24, and the lowest 

correlation, with 0.15, which places it as the index with the best detection estimates. The NGWI stood out especially 

when compared to other indices, showing a moderate behavior with an average separability of 1.15, surpassing the 

WRI (1.12) and the MNDWI (1.13), in addition to an average Pearson correlation of 0.17, just behind AWEI (0.16) 

and WRI (0.15). Although all the indices mentioned have demonstrated usefulness in water detection, it was observed 

that more complex indices, with a more elaborate formulation and less sensitivity to shadows, such as AWEI, produced 

results comparable to simpler indices, such as NDWI and MNDWI. 

Keywords: Remote Sensing. Caatinga Biome. Water Reservoir.  

 

Resumo: Os índices espectrais para detecção de corpos hídricos superficiais desempenham um papel crucial em 

estudos ambientais, por outro lado, esses índices se comportam de forma diferente dependendo do local de estudo ou 

das bandas utilizadas. Diante disso, este estudo propôs uma avaliação do desempenho de índices espectrais na detecção 

de águas superficiais, utilizando uma cena do satélite Landsat-9 e implementação de um novo índice chamado Índice 

NIR-Verde de Água (NGWI). Após uma inspeção visual, constatou-se um desempenho positivo em todos os índices 

na detecção de águas superficiais, especialmente aqueles formulados utilizando a faixa verde, como o Índice de Água 

por Diferença Normalizada (NDWI), (NGWI) e Índice de Proporção de Água (WRI). Durante a análise de correlação 

de Pearson e Índice de Separabilidade entre as classes "Água" e "Não água", o Índice Automatizado de Extração de 

Água (AWEI) demonstrou a maior separabilidade média, atingindo 1,24, e a menor correlação, com 0,15, o que o 

coloca como o índice com as melhores estimativas de detecção. O NGWI, destacou-se especialmente na comparação 

com outros índices, apresentando um comportamento moderado com uma separabilidade média de 1,15, superando o 

WRI (1,12) e o MNDWI (1,13), além de uma correlação de Pearson média de 0,17, ficando apenas atrás do AWEI 

(0,16) e do WRI (0,15).Embora todos os índices mencionados tenham demonstrado utilidade na detecção de água, 

observou-se que índices mais complexos, com formulação mais elaborada e com menor sensibilidade às sombras, 

como o AWEI, produziram resultados comparáveis a índices mais simples, como o NDWI e o MNDWI. 

Palavras-chave: Sensoriamento Remoto. Bioma Caatinga. Reservatório de água.  

 

 

 
 

1 INTRODUCTION 

 
Surface water resources are of great value to humanity, as they offer a wide range of essential services, 

despite being the smallest portion of freshwater on the planet. These services include support for industrial and 

agricultural production, regional climate regulation and ecosystem maintenance. Furthermore, surface water 
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bodies play crucial roles in hydrological and biogeochemical cycles at local, regional and global levels. These 

areas are highly sensitive to both climate change and human activities, therefore serving as fundamental 

indicators of the various influences of environmental change and human action (MUSIE; GONFA, 2023). 

Traditional surface water monitoring methods are mainly based on manual surveys on the ground or at 

established measuring stations. Although the accuracy of the acquired data is high, it is time-consuming and 

costly work. Furthermore, many water bodies are in remote and rugged locations, and only data from limited 

points in incomplete time series can be obtained due to the limitations of economic and terrain factors 

(SABALE; VENKATESH; JOSE, 2022). 

Lately, advances in Remote Sensing have offered an approach for monitoring of widely distributed 

water bodies over large areas prolonged periods. In this scenario, remote sensing provides observational data 

that widely covers space and is frequent over time, referring to the Earth's surface. This information can be 

used to map and monitor surface water dynamics (ALBERTINI et al. 2022). The widespread use of 

multispectral satellite imagery is seen in mapping and detection of water bodies, providing crucial data on the 

extent and quantity of surface aquatic resources. This information plays a significant role in analyzing water 

quality, calibrating and validating hydrological and hydrodynamic models, as well as creating risk maps for 

prevention, planning and environmental monitoring activities. Since it was launched in 1972, the freely 

available Landsat has gradually become one of the most popular remote sensing sources for surface water 

detection (SAGAN et al. 2020). The optical sensor onboard Landsat has a typical spatial resolution of 30 m 

for mapping water, among many other freely available but coarser sensors, e.g. Moderate-Resolution Imaging 

Spectroradiometer (MODIS) (250–1000 m), Advanced Very High Resolution Radiometer (AVHRR) (1100 

m), Envisat MEdium Resolution Imaging Spectrometer (MERIS) (300 m)  although high-resolution sensors, 

such as WorldView (0.31–2.4 m), have been used for water detection purposes, the difficulty in accessing this 

data hinders widespread applications when compared to Landsat (WANG et al. 2018). 

In general, images from orbital sensors provide a multi-temporal view of large areas of the Earth's 

surface. The quantitative and qualitative assessment of terrestrial features using orbital images has been carried 

out, among other ways, using spectral indices. The spectral indices are radiometric values calculated through 

operations involving different bands of orbital images and Unmanned Aerial Vehicle (UAV) images, and their 

applications provide parameters capable of investigating spectral properties, identifying certain types of 

information composed of different materials, such as water, buildings, or vegetation. The spectral indices are 

ratios involving reflectance values of the visible and infrared spectral regions, as these are sensitive to factors 

of physical structure, leaf area, surface water, soil moisture and photosynthetically active biomass. Different 

spectral indices have been developed, applied and analyzed with the aim of further exploring the spectral 

properties of water. Among the most used spectral water indices, the following stand out: Normalized 

Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Automated Water 

Extraction Index (AWEI) and Water Raio Index (WRI). 

The NDWI has two formulations, proposed by McFeeters (1996) and Gao (1996). McFeeters' NDWI 

(1996) is a ratio involving the green and near-infrared bands, used to highlight water bodies and minimize the 

response of other targets. The NDWI proposed by Gao (1996) is used to estimate the moisture content of 

vegetation, and is calculated from the ratio between the near-infrared and shortwave infrared bands. The 

MNDWI was developed by Xu (2006). This index uses the shortwave infrared band instead of the near-infrared 

band. In addition to detecting surface water, this index removes noise created by vegetation and built areas. In 

some cases, elements with low reflective characteristics, such as shadows, burnt areas and dark roofs in urban 

areas, are mistakenly classified as water (Feyisa et al. 2014). Therefore, Feyisa et al. (2014) developed AWEI, 

which effectively removes dark areas of accumulation and other non-water pixels. While Shen and Li (2010) 

developed WRI for water body extraction from Landsat ETM+ images. This index is based on the ratio between 

the total spectral reflectance of two visible bands (i.e., green and red) and the total spectral reflectance of the 

near-infrared and shortwave infrared bands. 

Despite the already established performance of spectral index, comparative studies persist that seek to 

evaluate the effectiveness of these different spectral indices. To date, no index has proven effective in all 

scenarios, with performance variations influenced by scene, sensor and weather conditions. This diversity of 

results makes room for the proposition of new modified spectral indices, aiming to optimize performance in 
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specific scenarios (LI et al. 2021). Bijeesh and Narasimhamurthy (2020) reported that the critical step in 

applying water spectral indices for water detection is to identify the most differentiating bands within the 

multiband image. Sufficient research is needed before it can be proven that the chosen bands are the most 

suitable for detecting water masses. Most proposed spectral indices are developed for specific sensor data and 

with the advent of newer satellites and sensors, newer spectral indices will have to be developed to incorporate 

improvements in data acquisition. Thus, methods based on spectral indices are of interest to researchers not 

only because they are easy to use and provide better results, but also because there is still room to improve 

existing spectral indices and propose new and better spectral indices (YANG; DU, 2017). 

Recent advances in remote sensing technology have provided new approaches for studying the 

dynamics of surface waters and their margins, encompassing various aspects such as mapping rivers and water 

bodies, detecting wetlands and flooded areas, and monitoring water quality. The implementation of new water 

spectral indices is closely linked to the development of new sensors with specific bands. For example, the 

NGWI, pioneered in this article, is derived from images from the newly launched Landsat-9. Additionally, the 

Multispectral Water Index (MuWI) is calculated using specific bands from the MultiSpectral Instrument (MSI) 

sensor on the Sentinel-2 satellite as described in Wang et al. (2018), and normalized water quality indices are 

obtained from the bands of the Ocean and Land Colour Instrument (OLCI) sensor on the Sentinel-3 satellite 

(RAWAT et al. 2023).Therefore, this study aimed to propose a new water index for images from the Landsat-

9 (OLI-2) satellite as well as analyze spectral characteristics of the NDWI, MNDWI, AWEI, WRI and NGWI 

for detecting surface water in the semi-arid scenario. The checks were compared under different types of land 

cover based on visual analysis, variation of medians by boxplot graphs, statistical separability and linear 

regression analysis. 

 

2 MATERIAL AND METHODS 
 

2.1 Study area 
 

The Landsat path/row grid area (216/066) of size 185 km x 180 km was considered in this study and 

is located in northeastern Brazil where it has a high distribution of water bodies of different spatial 

configurations, partially covering the states of Pernambuco, Ceará, Alagoas, Sergipe and Bahia, entirely 

inserted in the semi-arid region (Figure 1). This region belongs to the northeastern semi-arid region of 

deciduous vegetation, characterized by low rainfall, low air humidity and high temperatures. Furthermore, the 

area has a distribution of water dams, including the Serrinha II Dam, the Barra do Juá Dam and the Itaparica 

Reservoir, some of which are supplied by the transposition of the São Francisco River. 

 

Figure 1 – The study area covers water bodies with different surface sizes and local landscapes, mainly characterized by 

a wide presence of artificial reservoirs distributed throughout the scene. 

 
Source: Author (2024). 
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2.2 Landsat-9 
 

Landsat 9 is an earth observation satellite in a joint mission of the US National Aeronautics and Space 

Administration (NASA) and the US Geological Survey (USGS), launched on September 27, 2021, from 

Vandenberg Space Force Base, in California. Landsat-9 includes two instruments: The Operational Land 

Imager 2 (OLI-2) to capture reflective bands and the Thermal Infrared Sensor 2 (TIRS-2) to obtain thermal 

infrared data. Table 1 describes the technical specifications of the Landsat-9 satellite. The TIRS2 sensor bands 

as well as the Panchromatic band and the Cirrus band were not used in our study. 

 

Table 1 – Technical specifications of OLI-2 and TIRS-2 images from Landsat-9  
Sensor Band Name Spectral resolution (µm) Spatial Resolution (m) 

OLI-2 band 1 Coastal Aerosol 0.43 - 0.45 30 

band 2 Blue 0.450 - 0.51 30 

band 3 Green 0.53 - 0.59 30 

band 4 Red 0.64 - 0.67 30 

band 5 Near-Infrared 0.85 - 0.88 30 

band 6 SWIR 1 1.57 - 1.65 30 

band 7 SWIR 2 2.11 - 2.29 30 

band 8 Panchromatic 0.50 - 0.68 15 

band 9 Cirrus 1.36 - 1.38 30 

TIRS-2 Band 10 TIRS 1 10.6 - 11.19 100 

Band 11 TIRS 2 11.5 - 12.51 100 

Source: USGS (2023). 

 

In this study, we used a Landstat-9 scene with ID LC92160662023275LGN00 captured on October 2, 

2023 without the presence of clouds, made available by the Earth Explorer platform. Landsat-9 collection 2 

level 2 images are distributed with surface reflectance using the Land Surface Reflectance Code (LaSRC) 

(version 1.5.0), which makes use of the coastal aerosol band to perform aerosol inversion tests, uses weather 

data MODIS auxiliaries and a unique radiative transfer model (Vermote et al. 2016). The Land Surface 

Reflectance Code (LaSRC) Product Guide contains details about the LaSRC algorithm and the Surface 

Reflectance data products created from it available at USGS (2023). 

 

2.3 Water Spectral Indices 
 

Table 2 presents four widely used water spectral indices in the literature: NDWI, MNDWI, AWEI, 

and WRI. In addition to the indices in Table 2, this study proposes a new water spectral index called NGWI, 

which will also be used in the performance analysis of the indices. 

 

Table 2 – Formula of the water index used in this study. ρ
Green

= green band; ρ
NIR

= Near-InfraRed band; ρ
SWIR1

 = 

ShortWave InfraRed 1 band; ρ
SWIR2

 = ShortWave InfraRed 2 band. 

Spectral Water index Formula Reference 

Normalized Difference Water 

Index (NDWI) 

(ρ
Green

-ρ
NIR

)

(ρ
Green

+ρ
NIR

)
 McFeeters (1996) 

Modified Normalized Difference 

Water Index (MNDWI) 

(ρ
Green

-ρ
SWIR1

)

(ρ
Green

+ρ
SWIR1

)
 Xu (2006) 

Automated Water Extraction 

Index (AWEI) 
(ρ

Blue
+2.5×ρ

Green
-1.5×(ρ

NIR
+ρ

SWIR1
)-0.25×ρ

SWIR2
) Feyisa et al. (2014) 

Water Ratio Index (WRI) 
(ρ

Green
+ρ

Red
)

(ρ
NIR

+ρ
SWIR1)

 (Shen  and Li, 2010) 

Source: Author (2024). 

 

The choice of bands to define the new spectral index, the NGWI, was derived from the extensive 

existing literature on the spectral sensitivity of the green and near-infrared bands in water bodies, together with 

a critical analysis of the reflectance properties of various types of land cover. This approach was guided by the 

theory that water absorbs almost all incident radiant flux, while the Earth's surface reflects significant amounts 
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of energy in the near-infrared and shortwave infrared bands, with the reflectance in the green band being much 

greater for water. than for the Earth's surface (MCFEETERS, 1996; LEE et al. 2007; BARBOSA; NOVO; 

MARTINS, 2019). 

The main objective in formulating the NGWI was to maximize the separability between water and 

non-water pixels through the arithmetic manipulation of the green and near-infrared bands, along with the 

application of different coefficients. The development of NGWI was largely based on determining the point 

of convergence, which characterizes the radiative properties of the feature to be highlighted, in this case, water, 

in the green and near infrared bands (MARTÍN, GÓMEZ and CHUVIECO, 2006; MCFEETERS, 1996; 

ARST, 2003; XU, 2006). The definition of the convergence point was based on the analysis of dark areas in 

satellite images (low albedo), identified in studies by Feyisa et al. (2014), Mostafa (2017), Mcfeeters (1996), 

Zhou et al. (2017), Chuvieco, Martín and Palacios (2002), Ouma and Tateishi (2006) and Martín, Gómez and 

Chuvieco (2006), together with empirical results derived from reflectance patterns observed in pixel datasets 

representative of different types of land cover. The index was calculated through the inverse of the Euclidean 

distance between the spectral values at that point of convergence as detailed in Eq. (1). 

 

 
NGWI = 

1

(0,05 - ρ
NIR

)² + (0,3 - ρ
Green

)²
 (1) 

 

Based on the analysis performed, the convergence thresholds were established at 0.05 (NIR) and 0.3 

(Green). In Eq. (1), when calculating the sum of the second-order polynomial derived from the difference 

between the green and infrared bands using these convergence thresholds, the resulting values are considerably 

high for most non-aquatic pixels, while they are lower for the of water. To better distinguish water from other 

surfaces with similar spectral patterns and visually highlight water pixels, the inverse of the expression is 

calculated. Therefore, non-aquatic pixels tend to have values close to zero, while water pixels have slightly 

higher values. Applying a scaling factor of 109, the NGWI ranges from 0 to 1, with values above 0.5 being 

detected as “Water” and values below 0.5 being detected as no water. 

 

2.4 Visual and statistical analysis 
 

The spatial distributions of water indices was visually compared with a colored composition of the 

Landsat-9 scene, as well as Lidar images from the Pernambuco Digital Program (PE3D) and Google Earth in 

order to interpret the characteristics and patterns, in addition to understanding and analyzing spatial phenomena 

based on images of water indices. To carry out statistical analyzes based on sample selection, 500 points were 

selected in vector format (shapefile) to assess accuracy through a stratified random sampling method, with 100 

points for each class of land use and occupation present in the area. of study, being: Tree Vegetation, Shrub 

Vegetation, Pasture, Unvegetated Area and Water. The identification of these classes was based on overlapping 

with Mapbiomas maps. Therefore, these points were used to extract the values per pixel for each water spectral 

index analyzed in this study (BROWN et al. 2022). 

Based on the water index values obtained by the samples, a median analysis was performed using a 

boxplot graph and linear regression analysis between the “Water” and “Non-Water” classes represented by the 

different classes of land use and land cover (LULC). The analyzes made it possible to statistically understand 

the behavior of water indices and their power to detect surface water in satellite images.The M statistic was 

used to measure the spectral separability between the “Water” classes and the LULC classes based on the 

training samples, through Eq. (2). The M statistic quantifies the spectral distance between two distributions, 

the distance between the class means represents the signal intensity and the sum of the standard deviations 

represents the noise (KAUFMAN; REMER, 1994). 

 

 
Mb = 

|μb - μub|

σb + σub
 (2) 

 

Where μb and μub are the pixel average values of the spectral difference for the water and non-water 
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subsamples; and σ b and σ ub the corresponding standard deviations. The range of values generated by this 

method is 0.0 to 2.0, where a value of 0.0 means that the class pair has perfect similarity and a value of 2.0 or 

greater indicates that the class pairs are completely different. 

 

2.5 Otsu threshold 
 

Identification of water bodies based on spectral indices involves defining a threshold to distinguish 

between land and water areas in the image. However, finding this threshold is challenging, as it can vary due 

to several factors, such as land cover (CORDEIRO et al. 2021; TANG et al. 2022). In this study, we used an 

automated thresholding method based on Otsu's method to classify pixels as "Water" or "No Water" (OTSU, 

1979). The Otsu method is widely used in binary applications in satellite images, as it seeks to minimize the 

variance within each class in bimodal histograms of grayscale images. Previous studies have demonstrated that 

Otsu's algorithm is effective in separating water bodies in Landsat images (XIE et al. 2016). The final maps of 

water bodies were generated using the SciKit Image library, developed in Python 3.7 (WALT et al. 2014). This 

approach provides an efficient and reliable way to extract water bodies from spectral images, contributing to 

diverse applications in remote sensing and environmental analysis. 

 

3 RESULTS 
 

Figure 2 and 3 shows a visual comparison of four stretches present in the study area represented by the 

composition of false-color images R(green)-G(red)-B(NIR) in relation to the spatial distribution of the AWEI 

water spectral indices, NGWI, NDWI, MNDWI and WRI. 

 

Figure 2 – Visual comparison between water indices in four locations in the study area being a) – f) Serrinha II Dam, 

Pernambuco (Lat/Long), Urban area between water dams in the municipality of Serra Talhada, Permanbuco (Lat/Long), 

Section of the Itaparica Reservoir (Pernambuco/Bahia). 

 
Source: Author (2024). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Visual comparison between water indices in four locations in the study area being a) – f) Serrinha II Dam, 

Pernambuco (Lat/Long), Urban area between water dams in the municipality of Serra Talhada, Permanbuco (Lat/Long), 



Rev. Bras. Cartogr, vol. 76, 2024                                             DOI: http://dx.doi.org/10.14393/rbcv76n0a-72559 

    7 

Section of the Itaparica Reservoir (Pernambuco/Bahia). 

 
Source: Author (2024). 

 

In Figure 2 a) – f) and m) – r), it is highlighted that all indices showed a clear separation from the water 

body, evidenced by whitish pixels. This suggests that all of these indices have the potential to provide relevant 

spatial data for surface water detection. In Figure 2g) - 2l), overall, the visual analysis revealed a positive 

performance of all indices in identifying smaller-scale water features, in addition to an apparent distinction in 

relation to urban areas in the area. However, the NGWI and WRI indices stood out by presenting a more 

pronounced contrast between the characteristics of water bodies and surfaces without water. In Figure 2 m) – 

r), despite the positive detection mentioned above, it is noticeable that there are visual variations, with emphasis 

on Figures 2 o) (NGWI) and 2 r) (WRI). These variations may be related to the sensitivity of these indices to 

the presence of chlorophyll and suspended solids in the water. 

In Figure 3 a) – f), it is noted that the indices were effective in demarcating the river transposition line, 

even in a region with varied uses (agriculture in the southern sector and urban area in the northern sector). 

Both AWEI and MNDWI presented a delimitation with greater spacing, probably due to the sensitivity of these 

indices, where the pixels experienced a spectral mixture in the transition between the water and the land 

portion. While in Figure 3 g) – l), a region of the water body surrounded by humid areas, especially riparian 

forests, can be seen. The AWEI (Figure 3h) and MNDWI (Figure 3k) indices highlighted water pixels in these 

areas, indicating a limitation in the detection of water bodies in places with a notable presence of riparian 

forests.  

To spatially examine the extraction of the water body separated by “Water” and “Non-water” classes 

obtained by the Otsu method, Figure 4 presents the visual comparison based on the different spectral indices 

at four example points in the OLI-2 scene. In the analysis of the images in row 4b)-4f), it is evident that all 

indices were able to identify the water body of the Serrinha II Dam - Pernambuco without major interference, 

demonstrating effectiveness in detecting compact and isolated water masses. However, in row 4h) - 4l), 

overestimations related to urban spot pixels were observed, with emphasis on the NDWI, MNDWI and WRI 

indices. 
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Figure 4 – Results of extracting information about terrestrial surface water in the OLI-2 scene for different water 

spectral index. 

 
Source: Author (2024). 

 

Chen et al. (2020), using the Otsu and K-means method to detect water in urban areas, also found 

limitations in NDWI and MNDWI, especially when applied to high spatial resolution images. Purnam, Prasad 

and Ganasala (2024) and Chen et al. (2020) highlighted that automatic thresholding methods, such as the Otsu 

method and the K-means algorithm, only perform well if the histogram has a bimodal distribution, in which it 

has a deep and accentuated valley between the two peaks that represent objects and background, respectively. 

However, if the spatial content of the background image has several different spectral elements, the histogram 

will no longer exhibit bimodality and then the threshold value determined by the Otsu method will be incorrect.  

Visually, NDWI, MNDWI and, especially, WRI presented a satisfactory extraction when compared to 

the RGB composition in Figures 4p), 4q) and 4r). The color of the water of the Cacimba Nova Dam, in 

Pernambuco, may be related to underestimations observed in the AWEI and NGWI indices applied in the Otsu 

method, showing a high sensitivity to spectral variations of the water for these indices. The humid areas and 

the São Francisco Delta, also in Pernambuco, demonstrated the potential and limitations of water extraction 

rates. All indices presented isolated pixels distributed in the humid environment in the southern sector of the 

river, however MNDWI showed a high frequency of these pixels, indicating a significant limitation in this type 

of target. Still in the Delta formation, only NDWI did not detect some narrower features, while MNDWI stood 

out visually with a more consistent detection. The AWEI, NGWI and WRI indices showed good detection, 

with similar results. 

Ma et al. (2019) highlighted that in humid areas and narrow rivers, the sensitivities of different indices 

to the proportions of water and land are different. This difference means that the threshold is indeed sensitive 

to the mixing characteristics of the land surface and indicates the need for the dynamic threshold method, 

which has also been suggested by other studies. The stability of thresholds is especially important when 

carrying out water mapping over large areas because complex land cover configurations are more likely to 

exist (ELSAYED et al. 2019). These statements will be applicable for wetland detection, as the land surface 

of wetlands typically transitions from pure water to a mixture of water and plants, and then to full vegetation 

cover. Thus, the transition from the dominant signal in water to the dominant signal in plants can be an 

important feature for wetland mapping. In order to understand the spectral behavior of each index, Figure 5 

shows boxplots with the distribution of pixel values based on the land cover classes present in the study area. 
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Figure 5 – Boxplot graph of water spectral indices values in relation to LULC classes. 

 
Source: Author (2024). 

 

In general terms, it is clear that all spectral indices exhibited significant variation between the different 

land cover classes and the "Water" class. Furthermore, they all demonstrated stability in the pixel values 

assigned to the water class, maintaining an interquartile range below 0.27, except in the case of the NGWI 

index. The AWEI revealed variations in the median greater than 5 for the pasture and non-vegetated area 

classes. On the other hand, for vegetation classes, variations were concentrated below 3.5, indicating that this 

index has a lower water detection capacity compared to classes without vegetation. In contrast, the MNDWI 

demonstrated stability in median variations. 

The classes of shrub vegetation, pasture and non-vegetated area remained at around 3, while tree 

vegetation exhibited a variation of 2.27. The NDWI exhibited a notable proximity between the medians in 

relation to the "Water" class, all concentrated below 2.6, with emphasis on the shrub vegetation class, which 

registered 1.95. The NGWI stood out for its best performance, presenting a median disparity above 4 for all 

classes, especially for pasture (5.17) and non-vegetated area (5.81). However, as mentioned previously, the 

"Water" class demonstrated high instability in pixel values, presenting the largest interquartile range in the 

analysis (1.9) and the largest standard deviation (1.16). The WRI showed the greatest stability in the median 

difference, all concentrated between 3.5 and 4 for all classes. These values are in accordance with the 

separabilities found in Table 3, which shows the values of the M index between the land cover classes and the 

“Water” class, showing the detection power of each spectral index in detecting water bodies in relation to other 

components. 

 

Table 3 – Separability Index (M) between soil cover classes and the “Water” class. 
LULC/ Indices WRI AWEI MNDWI NDWI NGWI 

Water/Tree vegetation 1,19 1,24 1,23 1,38 1,22 

Water/Shrub Vegetation 1,09 1,25 1,10 1,13 1,13 

Water/Pasture 1,10 1,21 1,11 1,17 1,11 

Water/Non vegetated area 1,10 1,27 1,06 1,18 1,14 

Source: Author (2024). 

 

It was observed that all classes presented high separability indices (M > 1), with small variations both 

between categories and indices. Despite this, the tree vegetation class exhibited the highest mean separability, 

reaching 1.25, while the other classes varied between 1.14 and 1.15. The lowest separability was observed in 

the WRI index for shrub vegetation, reaching 1.09, while the AWEI index revealed the highest mean 

separability (1.24), followed by the NDWI (1.22). The latter stood out in the tree vegetation category, 

presenting the highest separability of the set (1.38). The WRI, NDWI and NGWI indices demonstrated 
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consistent values between the classes, with a slight advantage for the NGWI, which presented an average 

separability of 1.15, while the WRI was 1.12 and the NDWI was 1.13. 

To analyze the strength of correlation between the (LULC) classes and the Water class for each index, 

a linear regression model was applied as well as the Correlation estimates (r) shown in Figure 6 and Table 4. 

 

Figure 6 – Scatterplot graph of linear regression grouped between land use and land cover classes and the Water class 

for each water spectral index under analysis. 

 
Source: Author (2024). 

 

Table 4 – Correlation values (r) between the LULC and the “Water” class. 
LULC/ Indeces AWEI MNDWI NDWI NGWI WRI 

Water/Tree vegetation 0,4 0,5 0,03 0,21 0,17 

Water/Shrub Vegetation 0,12 0,01 0,38 0,19 0,1 

Water/Pasture 0,03 0,13 0,03 0,17 0,09 

Water/Non vegetated area 0,08 0,12 0,36 0,1 0,22 

Source: Author (2024). 

 

Overall, the estimates of (r) did not reveal a significant pattern regarding the ability of the indices to 

separate the "Water" class, as summarized in Table 3, which compiles the correlation values. The MNDWI 

and NDWI indices showed the highest average correlations in the set, driven by the value of (r) in the tree 

vegetation class (r = 0.5) in the MNDWI and by the values of (r > 0.35) for the tree vegetation classes shrub 

vegetation and non-vegetated area in the NDWI, as indicated in Table 3. However, in this analysis, these 

indices revealed less effectiveness in detecting water bodies due to the significant correlation values between 

them. On the other hand, the WRI index stood out for its greater dispersion, indicating a greater water detection 

capacity, while the AWEI and NGWI indexes demonstrated values of (r) close to each other. 

 

4 DISCUSSIONS AND CONCLUSIONS 
 

In this study, the pioneeringly tested NGWI index, in addition to the other indices, aimed to extract the 

water surface and quantify the detection power through a scene from the recent Landsat-9. Comparing the 

trends in the area in this article with the results of other researchers, it appears that the results obtained have a 

high consistency standard. In particular, Bhaga et al. (2020) reported that advances in indices, techniques and 

availability of multitemporal and multispectral images have led to improved monitoring and detection of 

droughts and surface water resources, however, there is still a need to improve indices to remedy cloud 

contamination and the problem of shadows in mountainous and urbanized areas. Although previous research 

has devised several methods for identifying and mapping water bodies, this issue remains challenging as no 

method is universally applicable in all contexts and datasets. The proposal of improved spectral indices may 

be promising perspectives to address this complexity in specific applications (BIJEESH; 

NARASIMHAMURTHY, 2020). Previous studies, exemplified by Feyisa et al. (2014), Deoli et al. (2021), 

Khan (2022) and others that will be discussed later, summarize the dynamics of accuracy in water detection 
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based on spectral indices, highlighting the limitations and potentialities. These studies offer a comparative 

analysis with the results achieved in the present research, especially in varied contexts of land use and 

extraction methods. 

AWEI was designed to detect water bodies and avoid overestimation errors in shadows and other dark 

surfaces (FEYISA et al. 2014). Thus, as an initial study, the northeastern semi-arid region was selected as a 

simple and ideal case region, without a complexity of land covers covered by pure and open surface water 

bodies. There was no shadow area due to the mostly depressionless terrain, nor high albedo surfaces, such as 

snow and ice, due to the hot semi-arid climate. Furthermore, there were very limited urban areas in the area 

(ZHOU et al. 2017). Therefore, it was observed in this study that the AWEI index achieved a good performance 

in detecting water bodies, especially compared to the “Non-vegetated area” class, despite a visual limitation 

found in wetlands that was also seen for the MNDWI. In contrast, in research carried out by Rad, Kreitler and 

Sadegh (2021), AWEI demonstrated to be effective in delimiting water bodies in urban areas, making use of a 

series of Landsat images. In another study, AWEI demonstrated moderate performance, as evidenced by Yue 

et al. (2020), where the authors observed that due to the adopted threshold method, AWEI faced difficulties in 

accurately distinguishing between the water body and the mountain shadow in the Ordos basin, China. 

Furthermore, in studies conducted by Tew et al. (2022), AWEI fell short of MNDWI in identifying tropical 

aquaculture ponds in southwest Malaysia. 

NDWI is an index often used to enhance water characteristics in satellite images, eliminating the 

effects of soil and vegetation. Several studies demonstrate the effectiveness of NDWI in various regions of the 

world, applying it to monitor ecosystem variables and hydrological conditions. It particularly stands out in 

extracting and mapping the boundaries of aquatic areas, as well as estimating water volume (TENG et al. 2021; 

MCFEETERS, 1996). In the present study, the NDWI proved to be appropriate, presenting results similar to 

other indices, especially the MNDWI. However, the latter stood out in comparisons of water detection in 

relation to vegetation classes, which may be related to the MNDWI values in the water body being lower than 

the NDWI values, further enhancing the separabilities in relation to the other classes, since the Bottom of 

Atmosphere (BoA) reflectance values in the SWIR band are greater than those in the NIR (CHOUDHARY; 

GHOSH, 2022). In analyzes carried out by Wicaksono and Wicaksono (2019), it was found that NDWI had 

an advantage in detecting water bodies in unbuilt areas, but demonstrated a weakness when identifying water 

bodies in built urban environments (XU, 2006). On the other hand, Khan (2022) observed more promising 

results for MNDWI, highlighting its ability to extract water elements mixed with vegetation in satellite images, 

compared to NDWI. This effectiveness of MNDWI also extends to surface water quality analyses, as evidenced 

by Soltanian (2019). In a comparative study conducted by Blackmore et al. (2016) using Landsat-8 images in 

both dry and humid areas, with vegetation cover, it was found that the NDWI was more capable of predicting 

variations in dry conditions, especially in periods of recent significant rainfall. This capacity was attributed to 

the response of NDWI to vegetation moisture rather than surface moisture. Por sua vez, os resultados de Ali et 

al. (2019) indicaram que o MNDWI pode aprimorar a identificação de corpos d'água e suprimir eficientemente 

características acumuladas em comparação com o NDWI. 

The NGWI water spectral index developed in this study uses the green and NIR bands of the OLI-2 

sensor to increase the accuracy of water extraction in surface water bodies. This index has the capability to 

generate water maps from different satellite images with various resolutions, as many sensors provide images 

in the green and NIR bands, such as Sentinel-2, MODIS, and China-Brazil Earth-Resources Satellite (CBERS), 

among others. The results indicate that NGWI performs better than commonly used indices like NDWI, 

MNDWI, and AWEI. In particular, NGWI can better identify artificial water structures and riparian zones. 

This improved performance can be attributed to the specific adjustment of convergence coefficient thresholds 

of the green and NIR bands, as well as the proper use of the newly processed spectral bands from Landsat-9, 

and significant reductions in incorrect classifications due to shadows and solar glare (USGS, 2023). However, 

aquatic areas that mix with algae, suspended solids, or macrophytes still present significant confusion for all 

indices, including NGWI. Although the study focused on the semi-arid region, NGWI showed significant 

performance for mapping and monitoring water bodies, with the potential for application across the entire 

national territory. 

Overall, NGWI and WRI offered satisfactory results as they effectively suppress other objects in the 
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image, although an instability in the distribution of pixel values in water masses was observed for NGWI. This 

pattern may be associated with the sensitivity of the near infrared (NIR) and green bands, which present 

significant reflectance due to the photosynthetic activity of algae. It is worth mentioning that the Itaparica 

reservoir exhibits high psychoculture and agricultural activity in its vicinity, factors that can influence the 

biological and physical characteristics of the water. On the other hand, this behavior was mitigated in the WRI 

index due to the inclusion of the shortwave infrared (SWIR) band in its formulation. The high absorption of 

this band in water bodies results in a stabilization of pixel values in the water, contributing to overcoming the 

instability observed in NGWI, which resulted in better detection estimates. The results found for the WRI 

agreed with the findings of Herndon et al. (2020), Laonamsa et al. (2023) and especially Deoli et al. (2021), 

who evaluated the quality of mapping of various lakes in India using Landsat images, GPS lake physical survey 

and NDWI, MNDWI, WRI, NDVI indices and found that high performance was achieved by WRI comparing 

with other indices. 

Finally, according to Zhou et al. (2017) different types of water bodies exhibit distinct reflectance 

patterns. For example, in water bodies with high concentrations of phytoplankton, reflectance peaks are 

observed in the green band, while those with high sediment concentrations, such as silt, show reflectance peaks 

in the red band. Because each water index has a specific combination of spectral bands, its performance in 

extracting a particular type of water body is optimized or limited. Therefore, it would not be efficient to rely 

exclusively on a single water index to extract water bodies in a large region, where different types are 

interspersed. Achieving greater accuracy in mapping large-scale water bodies can be achieved using a 

combination of different water indices. 

All indices analyzed had satisfactory performance in separating water pixels from other pixels, on the 

other hand, the following stands out: (1) WRI separates water pixels with greater visibility. (2) The NGWI 

showed the largest median disparity between “Water” pixels and “No-Water” pixels followed by the AWEI 

index and the WRI. (3) The AWEI and NDWI indices presented the highest mean separability values, although 

close. (4) The NDWI and MNDWI indices showed significant average correlations of lower yield between the 

“Water” pixels and the “Non-Water” pixels driven by the proximity of values found for the tree and shrub 

vegetation classes. The study suggests that water indices are beneficial for the extraction of water bodies which 

will help researchers in quickly assessing water bodies in the semi-arid region. The various water spectral 

indices may differ in their behavior and application as found in this study, therefore, the user must also evaluate 

the conditions of use and soil coverage in the environment, the available bands and the respective specific 

purpose. Finally, the NGWI is proposed as an alternative and improved water index, capable of effectively 

extracting large water bodies and extensive river channels. It is particularly useful for extracting water 

information in semi-arid regions, where moderately noisy results are expected due to the presence of 

macrophytes and suspended solids. This new method would also be suitable for studies detecting changes in 

surface waters, as it classifies edge pixels and significantly highlights water bodies in the images. However, a 

detailed threshold analysis was not tested in this study. 
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