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Resumo: O estudo da forma urbana é sem ddvida a chave para avancar em direcdo as transformac@es sustentaveis.
Entretanto, observagdes de Sensoriamento Remoto dentro desse dominio sdo complexas e desafiadoras, pois esses
ambientes apresentam muitas caracteristicas espectrais semelhantes, tornando a analise de imagens de areas urbanas
uma dificil tarefa. Embora os sistemas de sensores tenham sido aprimorados recentemente, eles ainda sdo incapazes
de atingir um nivel de detalhamento suficiente para analisar qualitativa e quantitativamente os alvos de interesse em
uma imagem urbana. Nesse sentido, a fusdo de dados de multiplos sensores surge como solucéo viavel para a detecgao
e interpretacdo detalhada dos elementos que compdem uma cena urbana. Este trabalho tem como objetivo realizar a
fusdo de dados utilizando uma imagem hiperespectral (HSI), uma imagem Optica RGB de ultra-alta resolucéo e dados
de deteccdo e alcance de luz (LiDAR) para uma caracterizacdo detalhada de um ambiente urbano do ponto de vista da
cobertura do solo. Sete conjuntos de dados serdo empregados, incluindo os dados separados RGB, HSI e LiDAR, bem
como sua fusdo. Este Gltimo é usado para demonstrar o potencial de integracéo de informagdes de varios sensores
quando comparados com os resultados de acuracia de um Unico sensor. O algoritmo escolhido para realizar tais
classificacfes é o Random Forest, uma vez que é possivel manipular grandes quantidades de dados e alcancar acuracia
satisfatoria. A acurécia geral alcancada pelo conjunto de fusdo de dados mostra-se significativamente superior a dos
demais conjuntos, demonstrando que o uso combinado de dados de diferentes sensores refina os resultados da
classificacdo, permitindo um nivel preciso e detalhado de legenda de classificagdo.

Palavras-chave: Multissensor. Aprendizado de Maquina. Arvore de Decisdo. Aplicacdes Urbanas.

Abstract: The study of the urban environment is undoubtedly the key to moving towards sustainable transformations.
However, remotely sensed observations within such domain are complex and challenging, as these areas present many
similar spectral characteristics, making image analysis of urban areas a difficult task. Although sensors systems have
been recently improved, they are alone still unable to attain a sufficient level of detail to qualitatively and quantitatively
analyze targets of interest in an urban image. In this sense, multisource data fusion emerges as a feasible solution for
detailed detection and interpretation of elements that compose an urban scene. This work aims to perform data fusion
using a hyperspectral image (HSI), an optical RGB ultra-high-resolution image, and Light Detection and Ranging
(LiDAR) data for a detailed characterization of an urban environment under the perspective of land cover. Seven
datasets will be employed, including the separate RGB, HSI, and LiDAR data as well as their fusion. The latter one is
used to demonstrate the potential of integrating information from manifold sensors when compared with the accuracy
results of a unique sensor. The algorithm chosen to perform such classifications is Random Forest since it can handle
large amounts of data and achieve satisfactory accuracy. The overall accuracy reached by the data fusion set shows to
be significantly superior to the ones obtained by the other datasets, demonstrating that the combined use of multisource
data refines the classification results, allowing for an accurate and detailed level of classification legend.

Keywords: Multi-Sensor. Machine Learning. Decision Tree. Urban Applications.
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1 INTRODUCAO

As areas urbanas demandam dados de diversas fontes a fim de caracterizar sua superficie, monitorar
seu desenvolvimento ao longo do tempo e detectar mudangas apds inesperados eventos. Nesse contexto, a
fusdo de diversos dados de Sensoriamento Remoto (SR) apresenta um grande potencial para acompanhar as
mudangas no uso e ocupac¢éo do solo. De acordo com Yang (2011), a fus@o dos dados busca, resumidamente,
combinar informacdes de variados sensores apoiados em estratégias de classificacdo para melhorar o
desempenho do produto final (mapas tematicos), de forma que possa ser obtida uma caracterizacdo detalhada
e precisa da superficie terrestre.

De acordo com Kuras et al. (2021), os atuais sistemas sensores singularmente ainda sdo falhos para
uma observacao remota dos mais diferentes alvos presentes na superficie, o que consequentemente nao alcanca
um nivel de detalhamento suficiente para trabalho em &reas urbanas. No ambito de tais refinamentos, convém
mencionar as melhorias advindas com as resolucgdes espaciais submétricas, permitindo a identificacdo de alvos
menores, 0 que é conhecido como ultra-alta resolugdo (ultra-high-resolution — UHR) (Pande et al., 2024). Os
primeiros autores ressaltam ainda que o nimero de bandas dos sensores multiespectrais pode ser suficiente
para identificar diferentes coberturas do solo. Entretanto, a capacidade de discriminacdo destes dados
multiespectrais é limitada quando se trata da distingdo de feicBes semelhantes, tais como nas analises
detalhadas do ambiente urbano, no qual uma cena é composta por inimeros tipos de materiais e com diferentes
condi¢des de intempéries. A partir de tal afirmagdo, podem ser utilizados os dados hiperespectrais,
caracterizados por apresentarem bandas estreitas e contiguas.

Os sensores hiperespectrais normalmente apresentam ricas informacfes, caracterizadas por uma
amostragem espectral detalhada em uma ampla faixa de comprimentos de onda, o que faz com que as imagens
hiperespectrais (hyperspectral images — HSI) se tornem fontes de dados essenciais para lidar com a paisagem
heterogénea e mista (Liu et al., 2019). Comparadas as imagens multiespectrais, as HSI tém varias vantagens,
tais como a capacidade de viabilizar: a diferenciacdo de classes de uso e ocupacgdo do solo; realizagdo de
operagdes espectrais precisas; identificacdo de materiais de superficie; remogéo dos efeitos atmosféricos com
maior acuracia; bem como a correlacdo de perfis espectrais com bancos de dados espectrais (Fan et al., 2017).
Por outro lado, Gao et al. (2018) explica que devido a limitagdo do instrumento, é desafiador para 0s sensores
hiperespectrais adquirirem simultaneamente HSI de alta resolucéo espacial, e consequentemente, apresentam
pixels mistos, degradando bastante o processamento adicional nas aplicaces de SR. A estratégia, nestes casos,
é a remocdo dos recursos redundantes e a preservacdo de informagfes Uteis em um subespago de baixa
dimenséo.

Dados oriundos de sensores Opticos ativos (LiDAR) podem ser utilizados para auxiliar na classificagdo
do uso e ocupacao do solo, especialmente se as coberturas de interesse tiverem alturas diferentes. O LiDAR se
destaca por categorizar informacdes de altura dos objetos da cena (Ghamisi et al., 2017). Baseia-se em um
método direto de captura de dados, ja que 0 mesmo possui fonte de energia propria (LASER), tornando-o capaz
de viabilizar a modelagem digital do terreno e da superficie (Fernandez-Diaz et al., 2016).

Além da riqueza de conteudo espectral de diferentes sensores, é essencial conceber a possibilidade de
extrair mais informagdes dos dados brutos. No caso particular deste trabalho, a extracdo de caracteristicas foi
realizada empregando a analise de componentes principais (Principal Components Analysis — PCA) e a fracdo
de ruido minimo (Minimum Noise Fraction — MNF) (Green et al., 1988). Essas transformacfes de imagem
aprimoram certas caracteristicas espectrais dos alvos de interesse, que seriam dificeis de discriminar usando
apenas as bandas originais dos sensores. De acordo com Anjos et al. (2017a), a extracdo de atributos visa
prospectar importantes informacgdes do conjunto de dados (dataset) inicial. Tais atributos s&o utilizados no
processo de classificag&o, visto que os classificadores trabalham como mineradores de dados, identificando,
em meio a um amplo conjunto de entrada, quais atributos sdo necessarios para determinar a separagao entre as
classes.

Para uma interpretacdo confiavel de imagens urbanas, a fusdo de dados é uma alternativa ideal, pois
permite uma melhor detecgdo de elementos encontrados no espago urbano, principalmente quando executada
com classificadores automaticos de dltima geracdo (Anjos et al., 2019). Tal abordagem multidisciplinar visa a
melhoria no desempenho de interpretacdo dos dados de origem para produzir representacbes com alta
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qualidade de contetido. Zhang (2010) acrescenta que este campo de pesquisa tem se fortalecido devido a
crescente quantidade de dados disponiveis, resultantes do desenvolvimento de novos sensores operando em
diferentes faixas espectrais e com diversos modos de aquisicéo.

Os classificadores sdo modelos matematicos denominados algoritmos, e um dos mais utilizados
ultimamente sdo as arvores de decisdo, mais especificamente o algoritmo denominado Floresta Aleatdria, ou,
em inglés, Random Forest (RF), pois tém demonstrado excelente desempenho na analise de bases de dados de
SR que apresentam grande complexidade. O RF é construido de maneira aleatdria, ou seja, para a classe de
uma instancia, 0 método combina, por meio de um mecanismo de votacao, o resultado de varias arvores de
decisdo, e dai vem o nome do algoritmo: Floresta Aleatoria. Ao final, cada arvore resulta em uma classificagéo
ou um voto para uma classe. A classificacdo final é dada pelo rétulo que recebeu o maior nimero de votos
entre todas as arvores da floresta (Rocha et al., 2024).

Com o uso do conjunto da fuséo de dados e classificadores de ponta, podem ser alcan¢ados niveis cada
vez mais refinados de legenda nas classificacfes de uso e ocupacgdo do solo. Anjos et al. (2017b) esclarecem
que esses produtos com niveis mais detalhados de legenda podem ser Uteis para estimar com precisdo a
reflectancia de materiais de superficie e, assim, avaliar sua contribuicdo para o fenémeno das ilhas de calor
urbanas e sua interferéncia no microclima urbano. Podem ser também proveitosos para discriminar entre
coberturas vds e permanentes, bem como deteccdo de piscinas irregularmente construidas, para fins de
tributacdo imobiliaria urbana. Além disso, podem ser utilizados na identificacdo de materiais com compostos
agressivos a saude e/ou suposta ou reconhecidamente cancerigenos e na avaliagdo da sua relagdo com a
incidéncia de patologias, entre outras finalidades investigativas e fiscalizatorias.

Este artigo visa combinar dados multissensores com estratégias de classificagéo robustas para alcangar
uma discriminacdo eficiente entre as classes de cobertura do solo urbano. O conjunto da fusdo dos dados sera
analisado e comparado com outros seis, caracterizados individualmente por resolucdo espacial ultra-alta
(RGB), HSI e LIDAR, além de combinagdes pareadas em cada dataset. Este trabalho ndo se compromete
apenas a reunir dados de SR ativo e passivo, mas também realizar uma classificacdo de cobertura do solo
urbana muito detalhada, baseada em um nivel de legenda refinado composto por 17 classes, o que é ainda
pouco explorado na literatura.

2 CLASSIFICACAO DOS ESPACOS URBANOS

Os espagos urbanos se apresentam na atualidade com caracteristicas diversas e sdo marcados por
relacdes e funcbes cada vez mais interligadas, o que evidencia a complexidade na definicdo de uma abordagem
Unica para sua delimitacdo. Apesar da dificuldade em se estabelecer distingGes no meio urbano, este deve ser
abordado com a devida cautela e de forma criteriosa, tendo em vista sua importancia para fins de a¢oes pablicas
e privadas no ambito do planejamento territorial. A grande demanda de classificagdes por parte da academia,
da administragdo publica e da sociedade em torno desse espectro teméatico ndo deixa ddvidas quanto a
pertinéncia dessa discussdo de forma continua, considerando diversas abordagens e escalas (IBGE, 2017).

Neste sentido, Anjos (2016) explica que o SR dispOe de fontes e instrumentos para observacdo da
Terra, 0s quais geram diferentes tipos de imagens aéreas ou orbitais com distintas resolu¢Ges (espacial,
espectral, radiométrica e temporal). Em particular, Kuras et al. (2021) tratam acerca do uso do SR para a
investigacdo da geometria urbana tridimensional, considerando-a crucial para a modelagem da morfologia
urbana. No entanto, os desafios crescentes exigem uma solucdo tecnoldgica de ponta em termos de sensores e
métodos de analise. Esses, por sinal, ttm sido desenvolvidos e aprimorados continuadamente, aumentando o
interesse em se identificar tipos de cobertura do solo urbano com base em propriedades espectrais, espaciais e
estruturais (Kuras, 2021; Anjos, 2016).

Interligadas a esses avangos tecnoldgicos, encontram-se trés teméticas em evidéncia atualmente: Big
Data, Data Mining e Data Fusion. O termo Big Data esta relacionado a conjuntos de dados de grande
dimensionalidade. Este é um tema corrente em toda area de tecnologia, inclusive na area espacial, com o
crescente volume de dados que descrevem a superficie terrestre gerados a bordo de inimeros novos satélites,
associado a popularizacdo dos CubeSats, 0os nanossatélites e os picosatélites e de Veiculos Aéreos Nao
Tripulados (VANTS). De igual forma, a geracdo massiva de dados também se encontra vinculada aos novos
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sensores a bordo de avifes e ao boom de dados de geolocalizacdo, em que cada individuo conectado ao seu
telefone celular pode ser um produtor e consumidor de dados espaciais (Kuchler, 2021).

Tal volume de dados, que se impde como uma nova realidade, requer o desenvolvimento de solucBes
direcionadas para o desafio de se lidar com alta dimensionalidade de forma robusta e efetiva. O que no passado
recente era um grande problema, atualmente pode ser visto como uma solucdo, considerando-se as
possibilidades de tratamento de Big Data que viabilizam a extracdo de informacGes em grandes volumes de
dados. Essas abordagens ancoram-se invariavelmente em Data Mining (Mineracdo de Dados), cujo principal
objetivo é a identificacdo de padrdes ocultos em grandes massas de dados para transforméa-los em informacéo
(Kuchler, 2021; Anjos, 2016).

Em relacdo ao termo Data Fusion (Fusdo de Dados), principal assunto deste trabalho, este refere-se a
utilizacdo de dados provenientes de diferentes fontes e que sdo integrados em uma mesma abordagem
investigativa, contribuindo com uma decisdo mais confiavel em muitas tarefas, como detec¢do de mudancas,
classificacdo do uso e ocupacéo do solo, entre outras vertentes (Li et al., 2022). Diante desse contexto, a Tabela
1 tem como objetivo a apresentacdo do estado da arte na &rea de classificagdo dos espacos urbanos, onde séo
detalhados os sensores utilizados, 0 nimero de faixas espectrais, a resolucdo espacial, 0 nimero de classes, 0
objetivo de cada trabalho e respectivas métricas de acuréacia.

Tabela 1 - Estado da arte em classificacdo da cobertura do solo urbano.

Referéncias SensBores (N°de Res. Espacial N° de Obijetivo e Indice Kappa / Acuréacia / Exatiddo Global
andas) Classes
Lacerda WV-2 (8); WV-3 (29) 2m; 1.24m 21 Abordagem Geobia para imagens UHR obtidas por
(2020) aeronaves remotamente pilotadas e sensores satelitais com
0 uso de classificadores individuais e ensemble. (Kappa:
0,65 — 0,70; Exatiddo: 70,2% — 76,6%).
Qiuetal. Sentinel-2 (13) 10m 17 Classificacéo de cobertura do solo urbano baseada em
(2019) zonas climéticas locais a partir de imagens multissazonais
do Sentinel-2 com rede residual recorrente. (Kappa: 0,74 —
0,81; Exatidédo: 77,9% — 84,0%).
Nistor et al. CORONA KH- 2m; 20m; |16 Anélise baseada em SR de mudancas na paisagem urbana
(2021) 4B(Panchromatic 10m;  20m na cidade de Bucareste, Roménia. (Kappa: 0,92; Exatid&o:
image); SPOT 1(3); 94,1%).
Sentinel-1A SAR(C-
band); Sentinel-2 (13)
Siddiqui AVIRIS-NG (425) 8.1m 12 Caracterizac8o de materiais urbanos em Dados AVIRIS-
(2020) NG usando uma abordagem de filtragem ajustada por
mistura. (Exatid&o: 79,2% — 87,7%).
Lietal. L8-OLI (11); Sentinel-2 | 15m; 10m; 3m; | 13 Revisa e analisa diferentes fontes de dados, unidades de
(2024) (12); PlanetScope (4); 2m classificagéo e abordagens de mapeamento, para o
WV-2 (8) mapeamento do uso da terra urbana. (Kappa: 0,48 — 0,62;
Exatiddo: 78,9% — 75,0%).
Yang et al. Sentinel-2 (13) 0.2 m; 10m 10 Identificacdo de areas Umidas urbanas por meio da
(2022) classificagéo de cenas com SR utilizando aprendizado
profundo: um estudo de caso em Shenzhen, China. (Kappa:
0,65 — 0,86, Exatiddo: 70,6% — 88,7%).
Hu et al. Sentinel-1 SAR; 10m; 8 Generalizagdo de modelos em aplicagdes de aprendizado
(2021) Sentinel-2 multispectral | 10m;  500m profundo para mapeamento de uso do solo. (Acuracia: 0,42
(13); MODIS(36) —-0,72).
Costa et al. ALOS-2/PALSAR-2; -;3m; 10m 7 Beneficios da combinagdo de dados ALOS/PALSAR-2 e
(2021) Sentinel-2A(13); Sentinel-2A na classificacdo das classes de cobertura do
PlanetScope(4); solo no planalto sul de Santa Catarina. (Kappa: 0,62 — 0,88;
Exatiddo: 68,9% — 90,3%).
Ouma et al. L4-MSS (7); L5-TM (7); | 60; 30m; 30m; |6 Classificagdo da cobertura e uso do solo em ambientes
(2023) L7-ETM+ (8); L8-OLI 30m urbanos, utilizando diferentes classificadores baseados em
(11) arvores de decisdo. (Kappa: 0,70 — 0,94; Exatiddo: 87,8% —
92,8%).

Elaboracéo: Os autores (2025).

Considerando-se que este trabalho objetiva identificar 17 classes de cobertura do solo urbano, os

trabalhos listados na Tabela 1, compreendendo de 16 a 21 classes, atuam como balizadores no que diz respeito
as métricas de exatiddo e acurécia a serem obtidas nos experimentos aqui reportados. Neste sentido, os valores
de indice Kappa a serem considerados oscilam de 0,70 a 0,92, e os de exatiddo global, de 70,2% a 94,1%.
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3 MATERIAL E METODOS
3.1 Areade Estudo

A &rea de estudo esta localizada no campus da Universidade de Houston e seus arredores, no estado
do Texas, EUA, e possui coordenadas geogréficas centrais 29°45'58,53" N e 95°21'33,69" O. Os dados foram
disponibilizados pelo National Center for Airborne Laser Mapping (NCALM) e Hyperspectral Image Analysis
Laboratory (HIALab) da Universidade de Houston por meio do Concurso de Fusdo de Dados (Data Fusion
Contest), realizado anualmente pelo Instituto de Engenheiros Elétricos e Eletronicos (Institute of Electrical
and Electronics Engineers — IEEE), através da Sociedade de Geociéncias e Sensoriamento Remoto
(Geoscience and Remote Sensing Society — GRSS).

Os conjuntos de dados foram adquiridos em 16 de fevereiro de 2017, a bordo de uma aeronave Piper
PA-31-350 Navajo Chieftan entre 16h31 e 18h18 GMT. Os sensores usados nesta pesquisa incluiram:

e Optech Titan MW com camera digital integrada, sensor LiDAR multiespectral operando em trés
diferentes comprimentos de onda, sendo 1.550 nm, 1.064 nm e 532 nm, com resolugéo de 50 cm;

e DIMAC ULTRALIGHT+, caracterizado por gerar imagens RGB com resolucdo de 5 cm;

o ITRES CASI 1500, sensor hiperespectral com 48 bandas na regido espectral variando de 380 nm a

1.050 nm, com resolucdo de 100 cm.

3.2 Desenvolvimento Metodol6gico

As secOes a seguir apresentam os principais procedimentos metodologicos deste trabalho, que dizem
respeito ao pré-processamento de imagens e extracdo de caracteristicas, segmentacao e classificacdo de dados
e, finalmente, validacdo estatistica dos resultados. Todas essas etapas consideram a avaliagcdo dos dados de
forma: (1) individual, compreendendo os conjuntos de dados constituidos pelo éptico (RGB), HSI e dados de
elevacao e intensidade (intensity) LiDAR separadamente; (2) pareada e (3) fusionada com os trés conjuntos
originais. A Figura 1 apresenta o fluxograma metodolégico deste trabalho.

Figura 1 - Fluxograma metodologico.

! Cena DIMAC Cena ITRES CASI Cena Optech Titan
| ULTRALIGHT+ 1500 MW
3 Recorte ROI Recorte ROI Recorte ROI
321,
Extragdo de atributos Extrag8o de atributos
(MNF e PCA) (MNF e PCA)
,,,,,,,,,,,,,,,,,,, [ I R
‘ Segmentagdo multirresolucdo e Diferenga espectral ‘
Coleta de amostras
322 ; ) ) l 7 I I }
D a?fi:ijl Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
L‘LTR‘(ELLIGHTJr and (ITRES CASI 1500 (Optech (Dataset 1 & (Dataset2 e (Dataset 1 e (Fus3o de
MNF & PCA) and MNF ¢ PCA) Titan MW) 2) 3) 3) Dados)

Acuracia Geral

Comparagdo da acuracia da
classificacfo entre os diferentes
conjuntos de dados

323,

Elaboracédo: Os autores (2025).
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3.2.1 PRE-PROCESSAMENTO DAS IMAGENS E EXTRACAO DOS ATRIBUTOS

A primeira etapa realizada no pré-processamento foi a extracdo da regido de interesse (Region of
Interest — ROI) da cena original nas imagens multiespectrais, hiperespectrais e nos dados LiDAR. A razéo de
se trabalhar com um subconjunto de imagens reside no alto custo computacional envolvido com a fuséo de
dados, que exige uma maquina com alta capacidade de memoria e processamento. A desvantagem de se
trabalhar com um ROI é a reducdo da diversidade de alvos, ja que a imagem original possui 20 classes. No
ROI, o nimero de alvos reduziu-se para 17 classes (incluindo-se sombra). Este processo foi realizado com a
ferramenta Spatial Subset, utilizando-se o software Envi 5.3, modificando-se as dimensdes das cenas conforme
a Tabela 2.

Tabela 2 - Dimenséo das cenas apds extracdo do ROI.

Cena Dimensao original [Pixels] Nova dimensao apds recorte [Pixels]
DIMAC ULTRALIGHT+ 47.680 x 12.020 11.920 x 12.020
ITRES CASI 1500 2.384 x 601 597 x 601
Optech Titan MW 4,768 x 1.202 1.193 x 1.202

Elaboracéo: Os autores (2025).

A Figura 2 mostra o resultado da extragédo do ROI.

Figura 2 - Vis8o geral do dataset. (a) Treinamento e teste (vermelho) destacado na cena original, (b)
DIMAC ULTRALIGHT+ (3R2G1B) cena, (c) ITRES CASI 1500 (27R15G10B) cena, (d) a (j) Optech
Titan MW scenes.

Elaboracdo: Os autores (2025).

As Figuras 2d a 2j mostram sete varia¢fes de dados LiDAR. As Figuras 2d e 2e correspondem a duas
formas distintas de visualizagdo de um modelo digital de eleva¢do (Digital Elevation Model — DEM) com
interpolacéo de 50 cm dentro de um raio de busca de 3 m, proporcionando uma melhor avaliagdo das estruturas
presentes na cena (DEM_C123_3msr e DEM_C123 TLI, sendo que este Ultimo é obtido através de rede
triangular irregular com interpolagdo linear). A Figura 2f € um modelo de elevacéo digital hibrido que combina
retornos provenientes de edificios ou do solo, submetidos a uma interpolagdo por krigagem com resolucao de
50 cm e raio de 5 m (DEM+B_C123). A Figura 2g € um modelo digital de superficie (DSM), interpolado com
resolucdo de 50 cm e raio de 5 m (DSM_C12). Aléem disso, as Figuras 2h (C1), 2i (C2) e 2j (C3) correspondem
a diferentes intensidades associadas a trés comprimentos de onda distintos: 1.550 nm, 1.064 nm e 532 nm,
respectivamente. Elas também foram interpolados por krigagem, com resolucéo de 50 cm e raio de busca de 3
m.

Apobs o recorte das imagens, a extracdo de atributos foi realizada para dados multiespectrais e
hiperespectrais. Tal procedimento tem como objetivo utilizar operagBes aritméticas para gerar novos atributos,
destinados a separar as classes de interesse de forma mais eficaz. Entretanto, tem-se a preocupacao da perda
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de informac@es, sendo assim optou-se por utilizar a Fragdo Minima de Ruido (Minimum Noise Fraction —
MNF) e a Anélise de Componentes Principais (Principal Components Analysis — PCA), uma vez que trabalham
na reducdo de dimensionalidade sem perda de informacdes.

Neste sentido, as transformagdes MNF e PCA foram geradas por meio de suas ferramentas no software
Envi 5.3 e utilizadas como atributos na classificacdo. No entanto, como o atributo MNF realiza o ordenamento
conforme a qualidade da imagem, expressa pelo nivel de ruido presente na cena, consideraram-se somente as
componentes com o limiar de autovalores superiores a 5. Com isso, foram utilizadas as trés primeiras
componentes MNF para os dados DIMAC ULTRALIGHT+.

Em termos de PCA, o critério de selecdo foi o valor do maior percentual de varia¢do dos dados, ou
seja, a quantidade de informacdo disponivel. Todos os trés componentes do PCA foram considerados no caso
dos dados DIMAC ULTRALIGHT+, pois ndo apresentaram ruido. No entanto, apenas 0s primeiros seis
componentes dos dados do ITRES CASI 1500 foram selecionados (Tabela 3). Vale ressaltar que os néao
selecionados tiveram valores zerados, que correspondem aos componentes com alto nivel de ruido e, portanto,
sem variagao nos dados.

Tabela 3 - Dados de entrada e quantitativo de camadas para os Datasets de 1 a 7.

Dados de Entrada Camadas
Cena DIMAC ULTRALIGHT+ 3
% Extracéo de atributos - MNF 3
g Extracédo de atributos - PCA 3
Total 9
Cena ITRES CASI 1500 48
% Extracéo de atributos - MNF 13
§ Extracédo de atributos - PCA 6
Total 67
DEM_C123_3msr 1
DEM_C123 TLI 1
DEM+B_C123 1
% DSM_C12 1
g Intensity_C1 1
Intensity_C2 1
Intensity_C3 1
Total 7
< Dataset 1 9
% Dataset 2 67
al Total 76
o Dataset 2 67
% Dataset 3 7
at Total 74
© | Dataset 1 9
% Dataset 3 7
8 Total 16
Dataset 1 9
~
3 Dataset 2 67
§ Dataset 3 7
Total 83

Elaboracéo: Os autores (2025).
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3.2.2 SEGMENTACAO E CLASSIFICACAO DOS DADOS

O objetivo da segmentacao é a particdo de imagens, agregando pixels e grupos de pixels em segmentos
homogéneos, chamados de regifes ou objetos. A segmentacdo multirresolucdo adotada é baseada na
abordagem de crescimento de regido, que examina pixels vizinhos de pixels-sementes iniciais e determina se
0s pixels vizinhos devem ou ndo ser adicionados a regido. O processo é iterativo, baseado em definicdes de
homogeneidade em combinagdo com técnicas de otimizacéo local e global (Baatz; Schépe, 2000). Esta classe
de algoritmo tem sido adotada mundialmente em aplicacBes de SR (Blaschke, 2010). No entanto, tem a
desvantagem de altos custos computacionais associados ao uso de dados de entrada de alta dimensao (Happ et
al., 2009).

Esta pesquisa utiliza segmentacdo multirresolucdo seguida de um ajuste de diferenca espectral. A
primeira etapa é o algoritmo proposto por Baatz e Schépe (2000), o qual utiliza essencialmente um
procedimento de otimizacdo heuristica, que minimiza localmente a heterogeneidade média dos objetos na
imagem para uma determinada resolucdo em toda a cena (Matsuoka, 2007). A segmentacdo pode ser realizada
em multiplas resolucbes por uma variagao dos parametros de segmentacdo (Leonardi, 2010). Esses parametros
sdo divididos em escala, forma, compacidade e suavidade. Apos definir tais parametros, também é necessario
atribuir pesos as imagens de acordo com seu grau de importancia. Quanto maior o peso atribuido a uma camada
de imagem, maior o papel dessa camada durante o processo de ajuste (Definiens, 2012).

Ambas as etapas de segmentagdo foram realizadas utilizando o software eCognition Developer versdo
9.0, 64 bits. Ressalta-se que os procedimentos foram realizados na imagem com melhor resolugédo espacial
(DIMAC ULTRALIGHT+ com resolucdo de 5cm), a fim de proporcionar ao intérprete uma melhor
visualizacdo da cena e, consequentemente, garantir maior precisdo nas amostras. Os pardmetros de
segmentacdo empregados sdo fornecidos na Tabela 4.

Tabela 4 - Pardmetros de segmentacdo.

Parametros Valores
Escala 12
Forma 0,3
Compacidade 0,5
Peso 1 (todas as bandas)
Diferenca espectral 3

Elaboracdo: Os autores (2025).

O processo de segmentacdo em duas etapas totalizou 983.224 segmentos. Apés a segmentacao, foram
coletados pontos amostrais para 17 classes encontradas no ROI da imagem, conforme apresentado na Tabela
5.

Vale destacar que a coleta dos segmentos amostrais foi igual para os sete diferentes conjuntos de dados,
buscando atender uma “regra de ouro” disposta por Lillesand et al. (2015) e Congalton e Green (2009), os
guais sugerem que o tamanho do conjunto amostral adequado para cada projeto deve ter um planejamento para
coleta de no minimo 50 amostras por classe para mapas de menos de 1 milh&o de acres em tamanho e menos
de 12 classes. Congalton e Green (2009) complementam que grandes areas ou mapas mais complexos devem
receber de 75 a 100 amostras por classe. No entanto, como pode ser notado na Tabela 5, nem todas as classes
conseguiram atingir o objetivo, visto que algumas apresentaram quantidade reduzida de segmentos, o que nao
comporta um grande nimero de amostras.

As amostras foram coletadas com o auxilio de um mapa de referéncia fornecido em conjunto pelo
NCALM e HIALab, conforme mostrado na Figura 2. Ressalta-se que a classe sombra nao foi incluida no mapa
de referéncia.
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Tabela 5 - Coleta de amostras.

DOI: http://dx.doi.org/10.14393/rbcv77n0a-70502

Classe

Conjunto de
treinamento

Cor da classe

Agua

Arvore Decidua

Arvore Perenifélia

Assentos de Estadio

Calgada

Carro

Edificio N&o Residencial
Edificio Residencial
Estacionamento Né&o Pavimentado
Estacionamento Pavimentado
Faixa de Pedestre

Grama Artificial

Grama Estressada

Grama Saudével

Rua

Sombra

Via Principal

10
68
67
58
58
62
74
74
10
45
30
11
59
62
72
11
63

Elaboracdo: Os autores (2025).

Figura 2 — Mapa de referéncia com a localizagdo da area de estudo.
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Elaboracéo: Os autores (2023).

Os atributos para a classificacdo dos sete conjuntos de dados foram gerados no eCognition 9.0 por
meio da ferramenta “Atributos do objeto - Customizados” (Object Features - Customized). Alguns atributos
customizados, como as razdes de banda, reduzem muitas formas de ruido presentes em multiplas bandas de
imagens (Jensen & Cowen, 1999). Entre os atributos utilizados, alguns serdo denominados de AC (Atributo
Customizado), ao passo que os indices de vegetacdo OSAVI, NDVI, GRVI, GNDVI, DVI, bastante utilizados
na literatura, mantiveram seus nomes originais, assim como os indices atrelados a assimetria, nimero de pixels,

maxima diferenca e direcdo principal.
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O Indice de Vegetacdo Ajustado pelo Solo Otimizado (Optimal Soil Adjustment Vegetation Index —
OSAVI) é utilizado como ferramenta para monitoramento de areas com vegetagdo de baixa densidade em areas
de solo exposto. Por sua vez, o indice de Vegetacdo por Diferenca Normalizada (Normalized Difference
Vegetation Index — NDVI) é eficaz para expressar o status e atributos quantificados da vegetacdo (Huang et
al., 2021). Outro indice utilizado foi o indice de Vegetacdo Verde-Vermelho (Green Red Vegetation Index —
GRVI), o qual apresenta a capacidade de detectar mudangas na vegetacdo do dossel e em estadios fenoldgicos
(Motohka et al., 2010). O indice de Vegetacdo por Diferenca Normalizada Verde (Green Normalized
Difference Vegetation Index — GNDVI) foi sugerido para avaliar as variacdes de biomassa verde na escala do
dossel (Zhou & Zhong, 2020; Ali et al., 2019), e, por fim, o indice de Vegetagdo por Diferenca (Difference
Vegetation Index — DVI), que apesar de ser considerado simples, é sensivel a vegetacdo (Martins, 2017).

As equacOes e as referéncias bibliogréaficas referentes aos atributos utilizados neste trabalho sdo
apresentadas na Tabela 6.

Tabela 6 - Atributos utilizados nas classificaces por RF.
Atributo Equacédo Referéncia

Pg32nm — Pe6onm
OSAVI Rondeaux et al. (1996
P832nm + Pr + 0.16 ( )

P —p
NDVI —Ssznm -~ setmm Rouse et al. (1974)
Pg3znm + Pesonm

GRVI Psssnm — Peconm Tucker (1979)
Ps3snm + Pesonm

P832nm ~ Ps45nm

GNDVI U — Gitelson et al. (1996)
Pg32nm + Ps4s5nm
DVI Ps32nm — Pesonm Richardson e Wiegand (1977)
Brightness + Banda
AC1 Ac1= 29 48onm Leonardi (2010)
Banda660nm
_ Brightness + Bandasgonm Adaptado de

AC2 Ac2 = Banda;ys,m Leonardi (2010)
AC3 AC3 = Brightness + Banda,gonm — Bandageonm Leonardi (2010)

po _ Adaptado de
AC4 AC4 = Brightness + Banda,gonm — Banda;;5nm Leonardi (2010)
AC5 ACS5 = Brightness + Bandagznm Leonardi (2010)

*Nota: p é a reflectancia espectral.
Elaboracéo: Os autores (2025).

As formas originais das equacdes apresentadas na Tabela 6 correspondem ao uso das seguintes bandas:
B8 azul (centrada em 480nm), B12 verde (centrada em 545nm), B21 vermelho (centrada em 660 nm) e B33
infravermelho proximo (centrada em 832 nm). No entanto, os dados do ITRES CASI 1500 possuem
adicionalmente outras bandas na regido espectral do azul B5 (centrada em 430 nm), do vermelho B19 (centrada
em 630 nm) e outra banda do infravermelho préximo B27 (centrada em 950 nm). Logo, foram gerados cinco
atributos customizados (AC), juntamente com OSAVI, NDVI, GRVI, GNDVI e DVI.

3.2.2.1 Classificagdo utilizando Random Forest

O principio de funcionamento do RF baseia-se em uma grande colecdo de arvores de decisdo
descorrelacionadas. A partir das amostras de treinamento originais, séo criados diferentes conjuntos amostrais
aleatorios, tantos conjuntos quantas forem as arvores de decisdo, para permitir que arvores independentes
sejam criadas (Anjos et al., 2017b). E utilizado um meta-algoritmo, visando melhorar classificacio e regresséo
de modelos referentes a estabilidade e precisdo da classificacdo. Este além de reduzir a variancia, ajuda a evitar
o overfitting (Son et al., 2009).

De acordo com Son et al. (2009) e Lopes et al. (2017), esse procedimento extrai aleatoriamente casos
dos conjuntos de dados de treinamento originais, 0s quais sdo utilizados para construir cada uma das arvores
de decisdo que comp8dem a RF. Cada arvore classificadora é identificada como um componente preditor. RF
constroi sua decisdo contando os votos dos componentes preditivos em cada classe e entdo seleciona a classe
bem-sucedida em termos do nimero acumulado de votos. Desta forma, todo o algoritmo inclui duas fases
cruciais: a formacéao de cada arvore e a etapa de votacao.
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A primeira fase consiste em treinar cada arvore de decisdo, e os subconjuntos de dados séo
selecionados do dataset de treinamento e definidos usando a estratégia de ensacamento aleatorio (bagging).
Em seguida, os dados de teste sdo classificados por maioria de votos. Cerca de um tergo dos casos sao deixados
de fora das amostras de inicializacdo (bootstrap) e ndo sdo usados para construir uma arvore especifica.
Amostras deixadas fora da arvore de ordem k sdo executadas na k-ésima arvore para obter uma classificagédo
(Lopes et al., 2017).

A RF foi gerada no Orange Canvas versdo 3.25.0 com a indicacdo de 100 arvores para cada um dos
sete datasets, totalizando assim 700 arvores. Vale destacar que o Orange Canvas é um software que possui
uma biblioteca de objetos e rotinas para a programacéo visual baseado em componentes intitulados widgets.
Estes oferecem funcionalidades basicas, como selecdo de recursos, predi¢do de treinamento, comparagéo de
algoritmos de aprendizado, entre outros variados recursos. A partir disto, o usuario pode explorar
interativamente as visualizagdes ou alimentar o subconjunto selecionado em outros widgets. E um software de
cddigo aberto e codificado em Python.

Os resultados com o0 método RF foram visualizados e validados no software QGis 3.4.12.

3.23 VALIDAGCAO DOS DADOS

A validagdo dos resultados visa estimar a acuracia da classificacdo. Foram obtidas sete classificacdes,
uma para cada um dos sete conjuntos de dados. Com base nessas classificacdes e no mapa de referéncia, foi
possivel validar os resultados de acordo com Congalton (1988), bem como Congalton e Green (2009).

A avaliacdo estatistica é fundamental na analise de dados provenientes de quaisquer processos em que
exista variabilidade, estando, assim, interessada nos métodos e processos quantitativos que servem para a
coleta, organizagdo, resumo, apresentacdo e analise desses dados, bem como na obtencéo de conclusdes validas
e natomada de decisdes a partir de tais analises (Panosso, 2019). Congalton e Green (2009) afirmam que, com
um teste de hipotese Z, é possivel comparar estatisticamente duas classificacfes e assim verificar qual produz
a maior acuracia. Foi realizado um teste de hipo6tese Z, com nivel de significancia de 5%, entre pares de
classificadores de um mesmo dataset, para avaliar se existe diferenca significativa.

Figura 3 — Exemplo do conjunto de pontos aleatorios utilizados para validag&o.
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Elaboracédo: Os autores (2025).
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4 RESULTADOS E DISCUSSOES

Os resultados das classificagdes utilizando os sete conjuntos de dados sob a analise dos mesmos
atributos por meio do classificador RF serdo apresentados a seguir, assim como os parametros considerados
para a validacdo. Logo, a presente secdo se divide em: resultados para Dataset 1 (Secédo 4.1), resultados para
Dataset 2 (Secéo 4.2), resultados para Dataset 3 (Se¢éo 4.3), resultados para Dataset 4 (Secédo 4.4), resultados
para Dataset 5 (Se¢do 4.5), resultados para Dataset 6 (Secdo 4.6) e resultados para Dataset 7 (Secéo 4.7). Além
disso, serdo apresentados os resultados comparativos da exatiddo global, erros de omisséo e incluséo e teste de
hipétese (Secdo 4.8). Para uma analise visual das classificacbes, comparando-as com a referéncia, o leitor
poderé recorrer ao mapa de referéncia, apresentado anteriormente na Se¢édo 3.2.3.

4.1 Resultados do Dataset 1

O resultado da classificacdo do Dataset 1, baseado na cena DIMAC ULTRALIGHT+, é apresentado
na Figura 5. Neste caso, o dataset compreendeu 3 bandas originais deste sensor, 3 MNF e 3 componentes PCA,
resultando em 9 camadas de entrada. A classificacdo do Dataset 1 executada com o algoritmo RF resultou em
uma exatiddo global de 51,60%. As classes com os melhores percentuais de classificagdes corretas foram C15
(Estacionamento Ndo Pavimentado), com 100,00%, e C9 (Estacionamento Pavimentado), com 81,82% de
acertos.

No entanto, algumas classes tiveram porcentagens de sucesso abaixo de 50%, como C1 (Grama
Artificial), 23,08% das quais confundidas com C6 (Grama Saudavel). Duran et al. (2018) explicam que a grama
artificial é fabricada com materiais derivados de plasticos e polimeros com a finalidade de simular seu
congénere natural. Portanto, no espectro visivel, apresenta um tom de cor verde semelhante ao da grama
natural, gerando confusdo. Além disso, a classe C6 (Grama Saudavel) teve 54,88% dos casos classificados
erroneamente como C4 (Arvore Caducifélia), devido as sutis diferencas em suas condices fitofisiologicas.

Tais confusdes sdo compreensiveis quando se trabalha com um sensor de ultra-alta resolugéo espacial
e baixa resolucdo espectral (RGB), dada a similaridade espectral nas respostas visiveis dos alvos. Para resolver
este problema, é necessario refinar o espectro eletromagnético, tanto adicionando mais bandas espectrais
quanto estreitando o alcance das bandas contiguas, como € o caso das imagens hiperespectrais do sensor ITRES
CASI 1500.

Porém, outras confusdes ocorreram com esses dados multiespectrais, como, por exemplo, a classe C7
(Via Principal), que teve 12,11% dos casos classificados erroneamente como C9 (Estacionamento
Pavimentado); C8 (Edificio Nao Residencial), que teve 11,11% de suas amostras classificadas erroneamente
como C10 (Edificio Residencial); C11 (Estrada), que apresentou 24,86% dos casos erroneamente classificados
como C7 (Via Principal), e C9 (Estacionamento Pavimentado), que teve 09,10% de suas amostras
erroneamente classificadas como C10 (Edificio Residencial).

As dificuldades em separar essas classes de cobertura e pavimentagéo se justificam pela semelhanca
em suas assinaturas espectrais, ou seja, sdo constituidas pelos mesmos materiais, como o concreto, por
exemplo. Durén et al. (2018) reforcam que o cimento e 0 concreto sdo 0s materiais mais comuns no meio
urbano, sendo utilizados para calgadas de pedestres e estacionamentos de veiculos, na forma de blocos pré-
moldados ou em superficie lisa, bem como para a cobertura de edificios e telhas. Espera-se, entdo, que essas
classes possam ser diferenciadas pelo uso de imagens hiperespectrais, destinadas a discriminar seus materiais
de composicdo, associadas ao uso de dados do sensor Optech Titan MW, projetado para diferenciar classes em
alturas distintas.
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Figura 4 — Classificacdo com Dataset 1.
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Elaboracdo: Os autores (2025).
4.2 Resultados do Dataset 2

Conforme explicado anteriormente, o Dataset 2 compreende a cena do ITRES CASI 1500 e os
respectivos componentes MNF e PCA. Desta forma, foram empregadas 48 bandas originais deste sensor, 13
MNF e 6 PCA, o que resultou em 67 camadas de entrada. O resultado da classificacdo do Dataset 2 € mostrado
na Figura 6.

A classificagdo do Dataset 2 com o algoritmo RF obteve 60,99% de exatiddo global. A classe com o
melhor percentual de acerto na classificacdo foi a C9 (Estacionamento Pavimentado), 95,45%. Algumas
classes, no entanto, apresentaram confus@es, como a classe C7 (Via Principal), que teve 16,87% de suas
amostras classificadas erroneamente como C11 (Estrada) e 11,04% como C12 (Calgada). Este problema era
de certa forma esperado, uma vez que os materiais possuem a mesma constitui¢do estrutural e condicGes de
superficie. Além disso, tambeém foram relatadas confusdes em que a classe C11 (Estrada) apresentou 13,75%
dos casos classificados erroneamente como C10 (Edificio Residencial) e 14,81% como C7 (Via Principal), e
0 caso da classe C8 (Edificio Ndo Residencial), que teve 18,93% de suas amostras classificadas erroneamente
como C10 (Edificio Residencial).

As confusdes ocorridas com as classes de cobertura e pavimentacdo sdo aceitaveis devido a
semelhanga espectral, conforme mencionado anteriormente. Para classifica-las corretamente, o uso de
informacdes de altura derivadas da cena do sensor Optech Titan MW ¢é crucial (Stewart & Oke, 2012). O
aspecto positivo da classificagdo resultante do Dataset 2 é a reducdo da confusdo entre algumas classes, como
C1 (Grama Atrtificial) e C6 (Grama Saudavel). Tal melhoria demonstra o potencial dos dados hiperespectrais
para uma discriminacao refinada de alvos em um ambiente urbano.
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Figura 5 — Classificacdo com Dataset 2.
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Elaboracdo: Os autores (2025).
4.3 Resultados do Dataset 3

O resultado referente a classificacdo do Dataset 3 usando a cena Optech Titan MW ¢é apresentado na
Figura 7. Foram 3 camadas de modelo digital de elevacédo, 1 camada de modelo digital de superficie e 3 bandas
de imagem de intensidade LIiDAR em diferentes comprimentos de onda (G, NIR, SWIR), resultando em 7
camadas de entrada. A classificagdo do Dataset 3 com o algoritmo de RF alcancou 45,71% de exatidao global.
Este dataset compreendeu a maior ocorréncia de confusdo entre classes.

A classe C7 (Via Principal) teve 26,80% dos casos classificados erroneamente como C11 (Estrada);
C9 (Estacionamento Pavimentado) apresentou 49,12% de ocorréncias classificadas erroneamente como C11
(Estrada), e C11 (Estrada) teve 22,95% de suas amostras confundidas com C7 (Via Principal). E claramente
perceptivel que essas imprecisdes sao justificadas pela semelhanca de altura. De acordo com Xu et al. (2019)
e Rasti et al. (2020), a vantagem do uso de dados LiDAR para classificacdo urbana é justamente a
discriminacdo de materiais de superficie caracterizados por diferentes alturas. Apesar dessas confusdes e dos
baixos percentuais de acertos, algumas classes da classificacdo RF, mesmo com pequena diferenga de altura,
apresentaram resultados marcantes, como a distin¢éo entre as classes C12 (Calcada) e C11 (Estrada) com
apenas 1,92% de confusdo. Além disso, C3 (Faixa de Pedestre) e C13 (Assentos de Estadio) foram totalmente
diferenciados entre si (0%).
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Figura 6 - Classificagdo com Dataset 3.
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Elaboracdo: Os autores (2025).
4.4 Resultados do Dataset 4 (Datasets 1 e 2)

O resultado da classificacdo do Dataset 4, baseado no conjunto das cenas DIMAC ULTRALIGHT+ e
ITRES CASI 1500 é apresentado na Figura 8. Os valores a serem apresentados correspondem respectivamente
aos dois sensores utilizados em questdo. Desta forma, foram empregadas, respectivamente, 3 e 48 bandas
originais dos sensores. Dentre as componentes, foram respectivamente utilizadas 3 e 13 bandas de MNF, 3 e
6 bandas de PCA, resultando, portanto, em 76 camadas de entrada.

A classificacdo deste dataset resultou em uma exatiddo global de 65,39%. As classes com os melhores
percentuais de acerto foram C16 (Agua), C9 (Estacionamento Pavimentado) e C15 (Estacionamento N&o
Pavimentado), atingindo, nessa ordem, 100%, 96,61% e 93,65%. Entretanto, algumas classes apresentaram
confusdes, que de certa forma eram esperadas, como, por exemplo, a classe C8 (Edificio Nao Residencial),
que apresentou 20,05% dos casos erroneamente classificados como C10 (Edificio Residencial); e a classe C11
(Estrada), tendo sido 16,87% das amostras classificadas como C7 (Via Principal) e 12% como C9
(Estacionamento Pavimentado). Estes resultados ndo sdo surpreendentes, como citado anteriormente, devido
a suas semelhancas espectrais.

O mesmo é observado em relacdo a confusdo existente na classe C7 (Via Principal), com 16,22% das
ocorréncias erroneamente classificadas como C11 (Estrada). Outro resultado interessante ¢ a classificacdo de
C4 (Arvore Caducifélia) como C14 (Grama Estressada), totalizando 11,36%. Tal confusio respalda-se no
aspecto de ambas, ja que se apresentam de forma seca e sem vida. Freire (2016) demonstra tais caracteristicas,
submetendo uma espécie de vegetacdo a variados processos de adaptacdo e estresse. Outro destaque diz
respeito a falta de um sensor de elevacdo para distinguir as variac@es dos alvos.

Apesar dessas variagdes, € significativa a mudanca nos resultados quando comparados aos conjuntos
individuais. Em todo caso, é necessario conduzirem-se os testes de hipotese, a fim de se confirmar tais
evidéncias.
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Figura 7 - Classificagdo com Dataset 4.
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Elaboracdo: Os autores (2025).
4.5 Resultados do Dataset 5 (Datasets 2 e 3)

O resultado referente a classificacdo do Dataset 5 usando o conjunto das cenas ITRES CASI 1500 e
Optech Titan MW é apresentado na Figura 9. Para este conjunto, foram utilizadas 74 camadas de entrada, das
quais 48 bandas originais do sensor hiperespectral, além de 13 e 6 componentes MNF e PCA, respectivamente.
Ademais, foram empregadas 3 camadas de modelo digital de elevacdo, 1 camada de modelo digital de
superficie e 3 bandas de imagem de intensidade LiDAR em diferentes comprimentos de onda (G, NIR, SWIR).
A classificacdo do Dataset 5 com o algoritmo RF alcangou 72,70% de exatiddo global, o que claramente indica
uma melhoria significativa de resultados quando comparados com os demais conjuntos apresentados.

Apesar deste importante resultado, algumas classes apresentaram confusdes, como: C11 (Estrada)
classificada erroneamente como C7 (Via Principal) e 12,10% como C9 (Estacionamento Pavimentado). Tais
resultados ja eram esperados, pois apesar da presenca dos sensores para determinar tais diferencas, as
composi¢Oes materiais sdo as mesmas.

Outro resultado interessante, porém ndo aguardado, é a confuséo obtida entre as classes C6 (Grama
Saudavel) e C14 (Grama Estressada), com 27,78% de erro na classificacdo. Embora o sensor hiperespectral
tenha a capacidade de caracterizar com precisdo a composi¢cdo quimica de varios materiais, houve falta de
resolucdo espacial, ja que esta determina as relaces geométricas dos pixels da imagem (entre si), propiciando,
portanto, a extracdo de informac@es adicionais.
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Figura 8 - Classificagdo com Dataset 5.
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Elaboracdo: Os autores (2025).
4.6 Resultados do Dataset 6 (Datasets 1 e 3)

Conforme explicado anteriormente (Tabela 3), o Dataset 6 compreende as cenas DIMAC
ULTRALIGHT+ e Optech Titan MW, portanto, foram trabalhadas 16 camadas de entrada, das quais 3 sdo
bandas originais da cadmera multiespectral, 3 componentes MNF e 3 PCA, e da outra cena, 3 camadas de
modelo digital de elevacdo, 1 camada de modelo digital de superficie e 3 bandas de imagem de intensidade
LiDAR em diferentes comprimentos de onda (G, NIR, SWIR). Este conjunto alcangou 67,48% de exatiddo
global.

Em comparacdo com os ultimos resultados, é visivel em termos de porcentagem da exatiddo global
uma queda nos resultados. Entretanto, deve-se considerar a diferenca de camadas de entrada empregadas.
Consequentemente, este grupo apresentou algumas confusées, como C14 (Grama Estressada) com C6 (Grama
Saudavel), em que 22,58% foi erroneamente classificado. Este resultado é consequéncia direta do menor
namero de bandas da camera multiespectral. Outros resultados, como as confusdes entre materiais de mesma
composicao, sdo também apresentados neste dataset, como, por exemplo, C3 (Faixa de Pedestre) classificada
em 28% como C7 (Via Principal); e C11 (Estrada) erroneamente classificada em 19,58% como C7 (Via
Principal).
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Figura 9 - Classificagdo com Dataset 6.
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Elaboracdo: Os autores (2025).

4.7 Resultados do Dataset 7 (Datasets 1, 2 e 3)

O resultado referente a classificacdo do Dataset 7 € mostrado na Figura 11. Este dataset é a combinacao
dos trés conjuntos de dados apresentados anteriormente, sendo 9 camadas do Dataset 1, 67 camadas do Dataset

2 e 7 camadas do Dataset 3, resultando em 83 camadas de entrada (Tabela 3).

A classificacdo do Dataset 7 com o algoritmo RF atingiu 75,18% de exatidao global. As classes C1
(Grama Atrtificial), C9 (Estacionamento Pavimentado), C15 (Estacionamento N&o Pavimentado) e C16 (Agua)
apresentaram 100,0% de acerto. Todas as demais classes resultaram em valores de acerto superiores a 50,0%
e com reducdo da confusdo. Esse dataset atendeu as expectativas, pois apresentou a melhor exatiddo global
em comparagao com os outros conjuntos de dados. No entanto, destaca-se que C7 (Via Principal) teve 15,59%
de suas amostras classificadas erroneamente como C11 (Estrada). Tal confusdo é aceitavel, pois essas classes
possuem caracteristicas semelhantes, ja que séo feitas do mesmo material e tém a mesma altura, dificultando
consideravelmente sua discriminacao.
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Figura 10 - Classificagdo com Dataset 7.
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Elaboracdo: Os autores (2025).
4.8 Comparativos de exatidao global, erros de comisséo e omissao e teste de hipdtese
A Figura 11 ilustra a comparacao entre as classificacdes e reforca a eficiéncia do conjunto da fuséo de

dados.
Figura 11 — Exatiddo global para todos os datasets.

m Dados ndo fusionados = Dados fusionados
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Exatiddo Global

Classificacdo pelo método RF

Dataset 1 é composto por 9 camadas, sendo 3 do sensor DIMAC ULTRALIGHT+, 3 MNF e 3 PCA. Dataset 2 possui 67
camadas, sendo 48 da Cena ITRES CASI 1500, 13 MNF e 6 PCA. Dataset 3 é formado por 7 camadas LiDAR. Datasets
4,5, 6 e 7 sdo dados fusionados, sendo respectivamente a juncdo dos Datasets 1e2;2e3;1e3;e1,2e 3.

Elaboracédo: Os autores (2025).

Além dessa comparacdo, as Tabelas S1 a S4 apresentam os valores para acurécia do produtor por
classe, acuracia do usuério da classe, erro de comissao por classe e erro de omissao por classe. Esses valores
reforgcam os resultados ja apresentados para a classificacdo RF. Tais tabelas estéo ilustradas no Apéndice.
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Trés testes de hipotese Z com 5% de nivel de significAncia foram realizados. O objetivo é analisar
comparativamente as classificagbes, verificando-se se os valores de exatiddo global e indice Kappa
comparados sdo ou ndo significativamente diferentes. As hipoteses testadas e os resultados sdo apresentados
resumidamente na Tabela 7 para os conjuntos de dados ndo fusionados, e na Tabela 8 para os conjuntos de
dados fusionados.

Tabela 7 — Valores resultantes do teste de hipdtese Z para os Datasets 1 a 3.

Ho: Kappal =0 Ho: Kappa2 =0 Ho: Kappa3 =0

Hi: Kappal >0 Hi: Kappa2 >0 Hi: Kappa3 >0

Z= 4,78 Z= 8,63 Z= 3,90
Dataset 1 alor-p = | 0,0000 Dataset 2 "Valor-p= | 0,0000 Dataset 3 Valor-p = | 0,0000

Alfa= 0,05 Alfa= 0,05 Alfa= 0,05

Kappa = 0,4665 Kappa = 0,5574 Kappa = 0,3956

rejeito Ho, o Kappal é rejeito Ho, 0 Kappa 2 é rejeito Ho, 0 Kappa 3 é
Conclusdo | significativamente Conclusdo | significativamente Conclusdo | significativamente

superior a zero. superior a zero. superior a zero.

Ho: hip6tese nula; Hi: hipotese alternativa; Z: estatistica do teste de hipdtese Z com distribuigdo normal; Valor-P: probabilidade de se
observar uma diferenca tdo grande ou maior do que aquela observada sob a hipdtese nula; Alfa: nivel de significancia correspondente
al-1C, em que IC é o intervalo de confianca.

Elaboracéo: Os autores (2025).

Tabela 8 - Valores resultantes do teste de hipdtese Z para os Datasets 4 a 7.

Ho: Kappa4 =0 Ho: Kappa5 =0 Ho: Kappa6 =0 Ho: Kappa7 =0
Hi: Kappa4 >0 Hi: Kappa5 >0 Hi: Kappa6 >0 Hi: Kappa7 >0
Z= 11,74 Z= 20,34 Z= 10,79 Z= 24,97
Valor | 0,0000 | Dataset5 | Valor | 0,0000 Valor | 0,0000 Valor | 0,0000
Dataset4 | -p = -P= Dataset6 | -p = Dataset7 | -P =
Alfa 0,05 Alfa 0,05 Alfa 0,05 Alfa 0,05
Kappa | 0,6121 Kappa | 0,6941 Kappa | 0,6393 Kappa | 0,7231
rejeito Ho, 0 rejeito Ho, 0 rejeito Ho, 0 rejeito Ho, 0
Kappa 4 é Kappa 5 é Kappa 6 é Kappa 7 é
Concluséo | significativa- Concluséo | significativa- Concluséo | significativa- Concluséo | significativa-
mente superior a mente superior a mente superior a mente superior a
zZero zero zZero. Zero.

Ho: hipdtese nula; Ha: hipotese alternativa; Z: estatistica do teste de hipotese Z com distribui¢do normal; Valor-P: probabilidade de se
observar uma diferenca tdo grande ou maior do que aquela observada sob a hipdtese nula; Alfa: nivel de significancia correspondente
al-IC, emque IC é o intervalo de confianca.

Elaboracdo: Os autores (2025).

Um sumario comparativo dos resultados dos testes para os conjuntos fusionados é apresentado na
sequéncia:
o Teste 1 - Comparacéo entre os Datasets 4 e 7.
o Resultado: o indice Kappa do Dataset 4 (0,6121) é significativamente menor que o indice
Kappa do Dataset 7 (0,7231).
o Teste 2 - Comparacéo entre os Datasets 5 e 7.
o Resultado: o indice Kappa do Dataset 5 (0,6941) é significativamente menor que o indice
Kappa do Dataset 7 (0,7231).
e Teste 3 - Comparacéo entre os Datasets 6 e 7.
o Resultado: o indice Kappa do Dataset 6 (0,6393) é significativamente menor que o indice
Kappa do Dataset 7 (0,7231).
A validacéo dos dados foi feita com diversos indicadores da qualidade das classifica¢fes, mas somente
o teste de hipétese pode afirmar se o indice Kappa de uma classificacdo é significativamente superior ao de
outra. De acordo com estes testes de hipdtese e comparando-se o desempenho dos distintos datasets, constata-
se que o método de fusdo de dados é significativamente superior aos demais.
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5 CONCLUSAO

Foram realizadas sete diferentes classificacBes visando detalhar a cobertura do solo urbano. Para isso,
foram utilizadas imagens com alta resolucdo espacial e espectral e dados de elevacdo. Esses dados
compreendem, respectivamente, cenas dos sensores DIMAC ULTRALIGHT+, ITRES CASI 1500 e Optech
Titan MW fornecidos pelo NCALM e HIALab da Universidade de Houston por meio de um concurso realizado
anualmente pelo GRSS-IEEE (Data Fusion Contest).

Este conjunto de dados original foi subdividido em sete novos conjuntos de dados diferentes,
caracterizados pelos dados multiespectrais de resolugdo espacial muito alta, os dados hiperespectrais, 0s dados
de elevacdo, conjuntos pareados e a fusdo de dados. O mesmo conjunto de amostras aleatérias foi adotado para
os sete diferentes conjuntos de dados para fins de padronizacdo do treinamento. A coleta das amostras de
treinamento foi precedida por uma etapa de extragdo de caracteristicas, uma vez que foram utilizadas néo
apenas as bandas dos sensores originais, mas também os componentes MNF e PCA no caso dos sensores
passivos. Além disso, foram utilizados atributos customizados e indices espectrais, como os de vegetacao.

As classificages foram geradas usando o classificador RF. Sete matrizes de confusdo baseadas em
conjuntos de validacdo independentes foram geradas, e seus indices de acurécia calculados. Os resultados
gerados para os conjuntos de dados (Datasets) 1, 2, 3, 4, 5 e 6 apresentaram algumas tendéncias de acertos e
erros, todos eles com confusdo significativa e acuracia limitada em comparagdo com o conjunto de fuséo total
de dados.

O conjunto de dados 1 (Dataset 1), por exemplo, apresentou baixa exatidao global (51,60%), dada a
similaridade dos alvos na regido espectral do visivel. O conjunto de dados 2 (Dataset 2) reduziu um pouco a
confusdo entre as classes mais semelhantes, mas ndo conseguiu distinguir materiais semelhantes com alturas
diferentes. O conjunto de dados 3 (Dataset 3), por sua vez, abordou com mais acurécia a diferenca de altura
dos alvos, embora ndo contivesse informacgdes espectrais suficientes para atingir uma elevada exatiddo. O
conjunto de dados 7 (Dataset 7), diferentemente dos anteriores, foi capaz de discriminar os alvos de interesse
no ambiente urbano, atingindo 75,18% de exatiddo global, valor préximo ao reportado na literatura.

Com o objetivo de analisar a similaridade entre as classificagdes, foram realizados os testes de
hipétese. O teste de similaridade Z demonstrou que, em 100% dos casos, 0 conjunto de dados em que foi
empregada a fusdo total apresentou superioridade de desempenho.

Portanto, 0 uso combinado de dados de mudltiplos sensores (RGB, HSI e LiDAR) melhorou
substancialmente os resultados da classificagdo. Desta maneira, este trabalho demonstrou as possibilidades
promissoras de combinar informacGes de varios sensores para uma caracterizagdo acurada de alvos em um
ambiente urbano. Como diretrizes para trabalhos futuros, pretende-se enriquecer a etapa de extracdo de
caracteristicas, adicionando indices espectrais personalizados existentes e novos, bem como métricas de
textura especificamente relatadas na literatura como adequadas para deteccéo de alvos urbanos. Além disso,
deve-se reconhecer que é necessario avaliar outros classificadores, como CNN, devido aos refinamentos desta
abordagem, de modo a explorar todo o seu potencial para realizar classificacfes de cobertura do solo urbano
com um nivel de legenda detalhada e atingir ao mesmo tempo indices de acuracia elevados.
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Tabelas Suplementares

APENDICE

DOI: http://dx.doi.org/10.14393/rbcv77n0a-70502

Tabela S1 - Acurdcia do produtor por classe.

Classes Dataset 1 Dataset 2 | Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
C1l 42,31% 60,00% 12,50% 72,41% 77,78% 62,50% 100,00%
C2 73,77% 45,61% 55,10% 68,00% 78,63% 86,21% 84,21%
C3 38,00% 58,33% 38,00% 70,37% 77,92% 70,00% 90,00%
C4 63,46% 89,66% 55,41% 62,50% 86,96% 85,48% 91,38%
C5 33,33% 93,33% 40,00% 92,86% 93,33% 100,00% 94,74%
C6 25,61% 90,91% 30,43% 86,67% 84,62% 82,05% 88,89%
C7 46,09% 47,55% 34,97% 53,38% 58,97% 56,37% 52,88%
C8 42,54% 50,16% 41,75% 50,42% 64,86% 62,04% 68,62%
C9 81,82% 95,45% 35,09% 96,61% 100,00% 85,92% 100,00%
C10 73,63% 79,11% 72,39% 80,81% 80,12% 83,79% 83,88%
Cl1 29,38% 47,62% 31,15% 48,00% 53,85% 37,50% 56,50%
C12 33,33% 56,76% 19,23% 54,76% 65,71% 50,88% 63,16%
C13 35,38% 75,64% 31,88% 73,00% 97,17% 81,25% 90,91%
C14 65,45% 65,96% 62,75% 67,44% 58,33% 68,82% 87,23%
C15 100,00% 62,16% 95,35% 93,65% 86,96% 98,04% 100,00%
C16 74,29% 78,26% 67,74% 100,00% 94,55% 76,47% 100,00%

Elaboracéo: Os autores (2025).
Tabela S2 - Acuracia do usuério por classe.

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
C1 73,33% 100,00% 85,71% 100,00% 98,00% 100,00% 100,00%
c2 38,46% 29,55% 24,11% 32,08% 70,77% 35,21% 40,00%
c3 48,72% 32,56% 51,35% 71,70% 81,08% 50,72% 60,00%
C4 24,63% 41,27% 27,52% 63,95% 37,74% 59,55% 63,86%
c5 21,43% 53,85% 19,35% 48,15% 48,28% 54,17% 81,82%
c6 25,00% 38,46% 14,89% 30,95% 39,29% 45,07% 47,06%
c7 59,00% 76,35% 53,50% 70,54% 81,17% 69,41% 80,41%
c8 75,28% 88,83% 67,54% 92,35% 90,00% 92,63% 95,71%
Cc9 38,03% 45,00% 19,42% 42,22% 47,48% 38,36% 52,27%
Cc10 69,39% 68,49% 72,39% 69,15% 73,66% 76,11% 77,41%
C11 50,98% 55,90% 30,32% 58,33% 65,77% 85,71% 68,48%
C12 33,33% 22,34% 29,85% 30,26% 25,00% 49,15% 55,81%
C13 38,33% 56,19% 29,33% 68,87% 86,55% 78,31% 76,19%
C14 39,56% 72,09% 35,96% 50,88% 63,64% 62,14% 64,06%
Cc15 78,13% 82,14% 74,55% 92,19% 96,77% 80,65% 95,74%
C16 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Elaboracéo: Os autores (2025).
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Tabela S3 - Erro de comisséo por classe.

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
Cc1 26,67% 0,00% 14,29% 0,00% 2,00% 0,00% 0,00%
c2 61,54% 70,45% 75,89% 67,92% 29,23% 64,79% 60,00%
c3 51,28% 67,44% 48,65% 28,30% 18,92% 49,28% 40,00%
C4 75,37% 58,73% 72,48% 36,05% 62,26% 40,45% 36,14%
c5 78,57% 46,15% 80,65% 51,85% 51,72% 45,83% 18,18%
Cc6 75,00% 61,54% 85,11% 69,05% 60,71% 54,93% 52,94%
C7 41,00% 23,65% 46,50% 29,46% 18,83% 30,59% 19,59%
c8 24,72% 11,17% 32,46% 7,65% 10,00% 7,37% 4,29%
Cc9 61,97% 55,00% 80,58% 57,78% 52,52% 61,64% 47,73%
Cc10 30,61% 31,51% 27,61% 30,85% 26,34% 23,89% 22,59%
C11 49,02% 44,10% 69,68% 41,67% 34,23% 14,29% 31,52%
C12 66,67% 77,66% 70,15% 69,74% 75,00% 50,85% 44,19%
C13 61,67% 43,81% 70,67% 31,13% 13,45% 21,69% 23,81%
Cl4 60,44% 27,91% 64,04% 49,12% 36,36% 37,86% 35,94%
Cc15 21,88% 17,86% 25,45% 7,81% 3,23% 19,35% 4,26%
C16 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Elaboracéo: Os autores (2025).
Tabela S4 - Erro de omissdo por classe.

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
c1 57,69% 40,00% 87,50% 27,59% 22,22% 37,50% 0,00%
c2 26,23% 54,39% 44,90% 32,00% 21,37% 13,79% 15,79%
c3 62,00% 41,67% 62,00% 29,63% 22,08% 30,00% 10,00%
c4 36,54% 10,34% 44,59% 37,50% 13,04% 14,52% 8,62%
c5 66,67% 6,67% 60,00% 7,14% 6,67% 0,00% 5,26%
c6 74,39% 9,09% 69,57% 13,33% 15,38% 17,95% 11,11%
Cc7 53,91% 52,45% 65,03% 46,62% 41,03% 43,63% 47,12%
c8 57,46% 49,84% 58,25% 49,58% 35,14% 37,96% 31,38%
Cc9 18,18% 4,55% 64,91% 3,39% 0,00% 14,08% 0,00%
C10 26,37% 20,89% 27,61% 19,19% 19,88% 16,21% 16,12%
C11 70,62% 52,38% 68,85% 52,00% 46,15% 62,50% 43,50%
C12 66,67% 43,24% 80,77% 45,24% 34,29% 49,12% 36,84%
C13 64,62% 24,36% 68,12% 27,00% 2,83% 18,75% 9,09%
C14 34,55% 34,04% 37,25% 32,56% 41,67% 31,18% 12,77%
C15 0,00% 37,84% 4,65% 6,35% 13,04% 1,96% 0,00%
C16 25,71% 21,74% 32,26% 0,00% 5,45% 23,53% 0,00%

Elaboracéo: Os autores (2025).
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