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Resumo: O estudo da forma urbana é sem dúvida a chave para avançar em direção às transformações sustentáveis. 

Entretanto, observações de Sensoriamento Remoto dentro desse domínio são complexas e desafiadoras, pois esses 

ambientes apresentam muitas características espectrais semelhantes, tornando a análise de imagens de áreas urbanas 

uma difícil tarefa. Embora os sistemas de sensores tenham sido aprimorados recentemente, eles ainda são incapazes 

de atingir um nível de detalhamento suficiente para analisar qualitativa e quantitativamente os alvos de interesse em 

uma imagem urbana. Nesse sentido, a fusão de dados de múltiplos sensores surge como solução viável para a detecção 

e interpretação detalhada dos elementos que compõem uma cena urbana. Este trabalho tem como objetivo realizar a 

fusão de dados utilizando uma imagem hiperespectral (HSI), uma imagem óptica RGB de ultra-alta resolução e dados 

de detecção e alcance de luz (LiDAR) para uma caracterização detalhada de um ambiente urbano do ponto de vista da 

cobertura do solo. Sete conjuntos de dados serão empregados, incluindo os dados separados RGB, HSI e LiDAR, bem 

como sua fusão. Este último é usado para demonstrar o potencial de integração de informações de vários sensores 

quando comparados com os resultados de acurácia de um único sensor. O algoritmo escolhido para realizar tais 

classificações é o Random Forest, uma vez que é possível manipular grandes quantidades de dados e alcançar acurácia 

satisfatória. A acurácia geral alcançada pelo conjunto de fusão de dados mostra-se significativamente superior à dos 

demais conjuntos, demonstrando que o uso combinado de dados de diferentes sensores refina os resultados da 

classificação, permitindo um nível preciso e detalhado de legenda de classificação. 

Palavras-chave: Multissensor. Aprendizado de Máquina. Árvore de Decisão. Aplicações Urbanas. 

 

Abstract: The study of the urban environment is undoubtedly the key to moving towards sustainable transformations. 

However, remotely sensed observations within such domain are complex and challenging, as these areas present many 

similar spectral characteristics, making image analysis of urban areas a difficult task. Although sensors systems have 

been recently improved, they are alone still unable to attain a sufficient level of detail to qualitatively and quantitatively 

analyze targets of interest in an urban image. In this sense, multisource data fusion emerges as a feasible solution for 

detailed detection and interpretation of elements that compose an urban scene. This work aims to perform data fusion 

using a hyperspectral image (HSI), an optical RGB ultra-high-resolution image, and Light Detection and Ranging 

(LiDAR) data for a detailed characterization of an urban environment under the perspective of land cover. Seven 

datasets will be employed, including the separate RGB, HSI, and LiDAR data as well as their fusion. The latter one is 

used to demonstrate the potential of integrating information from manifold sensors when compared with the accuracy 

results of a unique sensor. The algorithm chosen to perform such classifications is Random Forest since it can handle 

large amounts of data and achieve satisfactory accuracy. The overall accuracy reached by the data fusion set shows to 

be significantly superior to the ones obtained by the other datasets, demonstrating that the combined use of multisource 

data refines the classification results, allowing for an accurate and detailed level of classification legend. 

Keywords: Multi-Sensor. Machine Learning. Decision Tree. Urban Applications.  
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1 INTRODUÇÃO 
 

As áreas urbanas demandam dados de diversas fontes a fim de caracterizar sua superfície, monitorar 

seu desenvolvimento ao longo do tempo e detectar mudanças após inesperados eventos. Nesse contexto, a 

fusão de diversos dados de Sensoriamento Remoto (SR) apresenta um grande potencial para acompanhar as 

mudanças no uso e ocupação do solo. De acordo com Yang (2011), a fusão dos dados busca, resumidamente, 

combinar informações de variados sensores apoiados em estratégias de classificação para melhorar o 

desempenho do produto final (mapas temáticos), de forma que possa ser obtida uma caracterização detalhada 

e precisa da superfície terrestre. 

De acordo com Kuras et al. (2021), os atuais sistemas sensores singularmente ainda são falhos para 

uma observação remota dos mais diferentes alvos presentes na superfície, o que consequentemente não alcança 

um nível de detalhamento suficiente para trabalho em áreas urbanas. No âmbito de tais refinamentos, convém 

mencionar as melhorias advindas com as resoluções espaciais submétricas, permitindo a identificação de alvos 

menores, o que é conhecido como ultra-alta resolução (ultra-high-resolution − UHR) (Pande et al., 2024). Os 

primeiros autores ressaltam ainda que o número de bandas dos sensores multiespectrais pode ser suficiente 

para identificar diferentes coberturas do solo. Entretanto, a capacidade de discriminação destes dados 

multiespectrais é limitada quando se trata da distinção de feições semelhantes, tais como nas análises 

detalhadas do ambiente urbano, no qual uma cena é composta por inúmeros tipos de materiais e com diferentes 

condições de intempéries. A partir de tal afirmação, podem ser utilizados os dados hiperespectrais, 

caracterizados por apresentarem bandas estreitas e contíguas. 

Os sensores hiperespectrais normalmente apresentam ricas informações, caracterizadas por uma 

amostragem espectral detalhada em uma ampla faixa de comprimentos de onda, o que faz com que as imagens 

hiperespectrais (hyperspectral images − HSI) se tornem fontes de dados essenciais para lidar com a paisagem 

heterogênea e mista (Liu et al., 2019). Comparadas às imagens multiespectrais, as HSI têm várias vantagens, 

tais como a capacidade de viabilizar: a diferenciação de classes de uso e ocupação do solo; realização de 

operações espectrais precisas; identificação de materiais de superfície; remoção dos efeitos atmosféricos com 

maior acurácia; bem como a correlação de perfis espectrais com bancos de dados espectrais (Fan et al., 2017). 

Por outro lado, Gao et al. (2018) explica que devido à limitação do instrumento, é desafiador para os sensores 

hiperespectrais adquirirem simultaneamente HSI de alta resolução espacial, e consequentemente, apresentam 

pixels mistos, degradando bastante o processamento adicional nas aplicações de SR. A estratégia, nestes casos, 

é a remoção dos recursos redundantes e a preservação de informações úteis em um subespaço de baixa 

dimensão.  

Dados oriundos de sensores ópticos ativos (LiDAR) podem ser utilizados para auxiliar na classificação 

do uso e ocupação do solo, especialmente se as coberturas de interesse tiverem alturas diferentes. O LiDAR se 

destaca por categorizar informações de altura dos objetos da cena (Ghamisi et al., 2017). Baseia-se em um 

método direto de captura de dados, já que o mesmo possui fonte de energia própria (LASER), tornando-o capaz 

de viabilizar a modelagem digital do terreno e da superfície (Fernandez-Diaz et al., 2016). 

Além da riqueza de conteúdo espectral de diferentes sensores, é essencial conceber a possibilidade de 

extrair mais informações dos dados brutos. No caso particular deste trabalho, a extração de características foi 

realizada empregando a análise de componentes principais (Principal Components Analysis − PCA) e a fração 

de ruído mínimo (Minimum Noise Fraction − MNF) (Green et al., 1988). Essas transformações de imagem 

aprimoram certas características espectrais dos alvos de interesse, que seriam difíceis de discriminar usando 

apenas as bandas originais dos sensores. De acordo com Anjos et al. (2017a), a extração de atributos visa 

prospectar importantes informações do conjunto de dados (dataset) inicial. Tais atributos são utilizados no 

processo de classificação, visto que os classificadores trabalham como mineradores de dados, identificando, 

em meio a um amplo conjunto de entrada, quais atributos são necessários para determinar a separação entre as 

classes. 

Para uma interpretação confiável de imagens urbanas, a fusão de dados é uma alternativa ideal, pois 

permite uma melhor detecção de elementos encontrados no espaço urbano, principalmente quando executada 

com classificadores automáticos de última geração (Anjos et al., 2019). Tal abordagem multidisciplinar visa à 

melhoria no desempenho de interpretação dos dados de origem para produzir representações com alta 
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qualidade de conteúdo. Zhang (2010) acrescenta que este campo de pesquisa tem se fortalecido devido à 

crescente quantidade de dados disponíveis, resultantes do desenvolvimento de novos sensores operando em 

diferentes faixas espectrais e com diversos modos de aquisição. 

Os classificadores são modelos matemáticos denominados algoritmos, e um dos mais utilizados 

ultimamente são as árvores de decisão, mais especificamente o algoritmo denominado Floresta Aleatória, ou, 

em inglês, Random Forest (RF), pois têm demonstrado excelente desempenho na análise de bases de dados de 

SR que apresentam grande complexidade. O RF é construído de maneira aleatória, ou seja, para a classe de 

uma instância, o método combina, por meio de um mecanismo de votação, o resultado de várias árvores de 

decisão, e daí vem o nome do algoritmo: Floresta Aleatória. Ao final, cada árvore resulta em uma classificação 

ou um voto para uma classe. A classificação final é dada pelo rótulo que recebeu o maior número de votos 

entre todas as árvores da floresta (Rocha et al., 2024).  

Com o uso do conjunto da fusão de dados e classificadores de ponta, podem ser alcançados níveis cada 

vez mais refinados de legenda nas classificações de uso e ocupação do solo. Anjos et al. (2017b) esclarecem 

que esses produtos com níveis mais detalhados de legenda podem ser úteis para estimar com precisão a 

reflectância de materiais de superfície e, assim, avaliar sua contribuição para o fenômeno das ilhas de calor 

urbanas e sua interferência no microclima urbano. Podem ser também proveitosos para discriminar entre 

coberturas vãs e permanentes, bem como detecção de piscinas irregularmente construídas, para fins de 

tributação imobiliária urbana. Além disso, podem ser utilizados na identificação de materiais com compostos 

agressivos à saúde e/ou suposta ou reconhecidamente cancerígenos e na avaliação da sua relação com a 

incidência de patologias, entre outras finalidades investigativas e fiscalizatórias. 

Este artigo visa combinar dados multissensores com estratégias de classificação robustas para alcançar 

uma discriminação eficiente entre as classes de cobertura do solo urbano. O conjunto da fusão dos dados será 

analisado e comparado com outros seis, caracterizados individualmente por resolução espacial ultra-alta 

(RGB), HSI e LiDAR, além de combinações pareadas em cada dataset. Este trabalho não se compromete 

apenas a reunir dados de SR ativo e passivo, mas também realizar uma classificação de cobertura do solo 

urbana muito detalhada, baseada em um nível de legenda refinado composto por 17 classes, o que é ainda 

pouco explorado na literatura. 

 

2 CLASSIFICAÇÃO DOS ESPAÇOS URBANOS  
 

Os espaços urbanos se apresentam na atualidade com características diversas e são marcados por 

relações e funções cada vez mais interligadas, o que evidencia a complexidade na definição de uma abordagem 

única para sua delimitação. Apesar da dificuldade em se estabelecer distinções no meio urbano, este deve ser 

abordado com a devida cautela e de forma criteriosa, tendo em vista sua importância para fins de ações públicas 

e privadas no âmbito do planejamento territorial. A grande demanda de classificações por parte da academia, 

da administração pública e da sociedade em torno desse espectro temático não deixa dúvidas quanto à 

pertinência dessa discussão de forma contínua, considerando diversas abordagens e escalas (IBGE, 2017). 

Neste sentido, Anjos (2016) explica que o SR dispõe de fontes e instrumentos para observação da 

Terra, os quais geram diferentes tipos de imagens aéreas ou orbitais com distintas resoluções (espacial, 

espectral, radiométrica e temporal). Em particular, Kuras et al. (2021) tratam acerca do uso do SR para a 

investigação da geometria urbana tridimensional, considerando-a crucial para a modelagem da morfologia 

urbana. No entanto, os desafios crescentes exigem uma solução tecnológica de ponta em termos de sensores e 

métodos de análise. Esses, por sinal, têm sido desenvolvidos e aprimorados continuadamente, aumentando o 

interesse em se identificar tipos de cobertura do solo urbano com base em propriedades espectrais, espaciais e 

estruturais (Kuras, 2021; Anjos, 2016).  

Interligadas a esses avanços tecnológicos, encontram-se três temáticas em evidência atualmente: Big 

Data, Data Mining e Data Fusion. O termo Big Data está relacionado a conjuntos de dados de grande 

dimensionalidade. Este é um tema corrente em toda área de tecnologia, inclusive na área espacial, com o 

crescente volume de dados que descrevem a superfície terrestre gerados a bordo de inúmeros novos satélites, 

associado à popularização dos CubeSats, os nanossatélites e os picosatélites e de Veículos Aéreos Não 

Tripulados (VANTs). De igual forma, a geração massiva de dados também se encontra vinculada aos novos 
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sensores a bordo de aviões e ao boom de dados de geolocalização, em que cada indivíduo conectado ao seu 

telefone celular pode ser um produtor e consumidor de dados espaciais (Kuchler, 2021).  

Tal volume de dados, que se impõe como uma nova realidade, requer o desenvolvimento de soluções 

direcionadas para o desafio de se lidar com alta dimensionalidade de forma robusta e efetiva. O que no passado 

recente era um grande problema, atualmente pode ser visto como uma solução, considerando-se as 

possibilidades de tratamento de Big Data que viabilizam a extração de informações em grandes volumes de 

dados. Essas abordagens ancoram-se invariavelmente em Data Mining (Mineração de Dados), cujo principal 

objetivo é a identificação de padrões ocultos em grandes massas de dados para transformá-los em informação 

(Kuchler, 2021; Anjos, 2016).     

Em relação ao termo Data Fusion (Fusão de Dados), principal assunto deste trabalho, este refere-se à 

utilização de dados provenientes de diferentes fontes e que são integrados em uma mesma abordagem 

investigativa, contribuindo com uma decisão mais confiável em muitas tarefas, como detecção de mudanças, 

classificação do uso e ocupação do solo, entre outras vertentes (Li et al., 2022). Diante desse contexto, a Tabela 

1 tem como objetivo a apresentação do estado da arte na área de classificação dos espaços urbanos, onde são 

detalhados os sensores utilizados, o número de faixas espectrais, a resolução espacial, o número de classes, o  

objetivo de cada trabalho e respectivas métricas de acurácia. 

 

Tabela 1 - Estado da arte em classificação da cobertura do solo urbano. 

Referências  
Sensores (Nº de 

Bandas) 
Res. Espacial 

Nº de 

Classes 
Objetivo e Índice Kappa / Acurácia / Exatidão Global   

Lacerda 

(2020) 

WV-2 (8);  WV-3 (29) 2m; 1.24m 21 Abordagem Geobia para imagens UHR obtidas por 

aeronaves remotamente pilotadas e sensores satelitais com 

o uso de classificadores individuais e ensemble. (Kappa: 

0,65 − 0,70; Exatidão: 70,2% − 76,6%). 

Qiu et al. 

(2019) 

Sentinel-2 (13) 10m 17 Classificação de cobertura do solo urbano baseada em 

zonas climáticas locais a partir de imagens multissazonais 

do Sentinel-2 com rede residual recorrente. (Kappa: 0,74 − 

0,81; Exatidão: 77,9% − 84,0%). 

Nistor et al. 

(2021) 

CORONA KH-

4B(Panchromatic 

image); SPOT 1(3); 

Sentinel-1A SAR(C-

band); Sentinel-2 (13) 

2m;        20m;    

10m;      20m 

16 Análise baseada em SR de mudanças na paisagem urbana 

na cidade de Bucareste, Romênia. (Kappa: 0,92; Exatidão: 

94,1%). 

Siddiqui 

(2020) 

AVIRIS-NG (425) 8.1m 12 Caracterização de materiais urbanos em Dados AVIRIS-

NG usando uma abordagem de filtragem ajustada por 

mistura. (Exatidão: 79,2% − 87,7%). 

Li et al. 

(2024) 

L8-OLI (11); Sentinel-2 

(12); PlanetScope (4); 

WV-2 (8) 

15m; 10m; 3m; 

2m 

13 Revisa e analisa diferentes fontes de dados, unidades de 

classificação e abordagens de mapeamento, para o 

mapeamento do uso da terra urbana. (Kappa: 0,48 − 0,62; 

Exatidão: 78,9% − 75,0%). 

Yang et al. 

(2022) 

Sentinel-2 (13) 0.2 m; 10m  10 Identificação de áreas úmidas urbanas por meio da 

classificação de cenas com SR utilizando aprendizado 

profundo: um estudo de caso em Shenzhen, China. (Kappa: 

0,65 − 0,86; Exatidão: 70,6% − 88,7%). 

Hu et al. 

(2021) 

Sentinel-1 SAR; 

Sentinel-2 multispectral 

(13); MODIS(36)    

10m;              

10m;       500m 

8 Generalização de modelos em aplicações de aprendizado 

profundo para mapeamento de uso do solo. (Acurácia: 0,42 

− 0,71). 

Costa et al. 

(2021) 

ALOS-2/PALSAR-2; 

Sentinel-2A(13); 

PlanetScope(4);       

-; 3m; 10m 7 Benefícios da combinação de dados ALOS/PALSAR-2 e 

Sentinel-2A na classificação das classes de cobertura do 

solo no planalto sul de Santa Catarina. (Kappa: 0,62 − 0,88; 

Exatidão: 68,9% − 90,3%). 

Ouma et al. 

(2023) 

L4-MSS (7); L5-TM (7); 

L7-ETM+ (8); L8-OLI 

(11) 

60; 30m; 30m; 

30m 

6 Classificação da cobertura e uso do solo em ambientes 

urbanos, utilizando diferentes classificadores baseados em 

árvores de decisão. (Kappa: 0,70 − 0,94; Exatidão: 87,8% − 

92,8%).  

Elaboração: Os autores (2025).  

 

Considerando-se que este trabalho objetiva identificar 17 classes de cobertura do solo urbano, os 

trabalhos listados na Tabela 1, compreendendo de 16 a 21 classes, atuam como balizadores no que diz respeito 

às métricas de exatidão e acurácia a serem obtidas nos experimentos aqui reportados. Neste sentido, os valores 

de Índice Kappa a serem considerados oscilam de 0,70 a 0,92, e os de exatidão global, de 70,2% a 94,1%.  
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3 MATERIAL E MÉTODOS  

 

3.1 Área de Estudo 
 

A área de estudo está localizada no campus da Universidade de Houston e seus arredores, no estado 

do Texas, EUA, e possui coordenadas geográficas centrais 29°45'58,53" N e 95°21'33,69" O. Os dados foram 

disponibilizados pelo National Center for Airborne Laser Mapping (NCALM) e Hyperspectral Image Analysis 

Laboratory (HIALab) da Universidade de Houston por meio do Concurso de Fusão de Dados (Data Fusion 

Contest), realizado anualmente pelo Instituto de Engenheiros Elétricos e Eletrônicos (Institute of Electrical 

and Electronics Engineers − IEEE), através da Sociedade de Geociências e Sensoriamento Remoto 

(Geoscience and Remote Sensing Society − GRSS). 

Os conjuntos de dados foram adquiridos em 16 de fevereiro de 2017, a bordo de uma aeronave Piper 

PA-31-350 Navajo Chieftan entre 16h31 e 18h18 GMT. Os sensores usados nesta pesquisa incluíram: 

• Optech Titan MW com câmera digital integrada, sensor LiDAR multiespectral operando em três 

diferentes comprimentos de onda, sendo 1.550 nm, 1.064 nm e 532 nm, com resolução de 50 cm; 

• DiMAC ULTRALIGHT+, caracterizado por gerar imagens RGB com resolução de 5 cm; 

• ITRES CASI 1500, sensor hiperespectral com 48 bandas na região espectral variando de 380 nm a 

1.050 nm, com resolução de 100 cm.  

 

3.2 Desenvolvimento Metodológico  
 

As seções a seguir apresentam os principais procedimentos metodológicos deste trabalho, que dizem 

respeito ao pré-processamento de imagens e extração de características, segmentação e classificação de dados 

e, finalmente, validação estatística dos resultados. Todas essas etapas consideram a avaliação dos dados de 

forma: (1) individual, compreendendo os conjuntos de dados constituídos pelo óptico (RGB), HSI e dados de 

elevação e intensidade (intensity) LiDAR separadamente; (2) pareada e (3) fusionada com os três conjuntos 

originais. A Figura 1 apresenta o fluxograma metodológico deste trabalho.  

 

Figura 1 - Fluxograma metodológico. 

 
Elaboração: Os autores (2025). 
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3.2.1 PRÉ-PROCESSAMENTO DAS IMAGENS E EXTRAÇÃO DOS ATRIBUTOS 

 

A primeira etapa realizada no pré-processamento foi a extração da região de interesse (Region of 

Interest − ROI) da cena original nas imagens multiespectrais, hiperespectrais e nos dados LiDAR. A razão de 

se trabalhar com um subconjunto de imagens reside no alto custo computacional envolvido com a fusão de 

dados, que exige uma máquina com alta capacidade de memória e processamento. A desvantagem de se 

trabalhar com um ROI é a redução da diversidade de alvos, já que a imagem original possui 20 classes. No 

ROI, o número de alvos reduziu-se para 17 classes (incluindo-se sombra). Este processo foi realizado com a 

ferramenta Spatial Subset, utilizando-se o software Envi 5.3, modificando-se as dimensões das cenas conforme 

a Tabela 2. 

 

Tabela 2 - Dimensão das cenas após extração do ROI. 

Cena Dimensão original [Pixels] Nova dimensão após recorte [Pixels] 

DiMAC ULTRALiGHT+ 47.680 x 12.020 11.920 x 12.020 

ITRES CASI 1500 2.384 x 601 597 x 601 

Optech Titan MW 4.768 x 1.202 1.193 x 1.202 

Elaboração: Os autores (2025). 
 

A Figura 2 mostra o resultado da extração do ROI. 

 

Figura 2 - Visão geral do dataset. (a) Treinamento e teste (vermelho) destacado na cena original, (b) 

DiMAC ULTRALiGHT+ (3R2G1B) cena, (c) ITRES CASI 1500 (27R15G10B) cena, (d) a (j) Optech 

Titan MW scenes. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Elaboração: Os autores (2025). 

 

As Figuras 2d a 2j mostram sete variações de dados LiDAR. As Figuras 2d e 2e correspondem a duas 

formas distintas de visualização de um modelo digital de elevação (Digital Elevation Model − DEM) com 

interpolação de 50 cm dentro de um raio de busca de 3 m, proporcionando uma melhor avaliação das estruturas 

presentes na cena (DEM_C123_3msr e DEM_C123_TLI, sendo que este último é obtido através de rede 

triangular irregular com interpolação linear). A Figura 2f é um modelo de elevação digital híbrido que combina 

retornos provenientes de edifícios ou do solo, submetidos a uma interpolação por krigagem com resolução de 

50 cm e raio de 5 m (DEM+B_C123). A Figura 2g é um modelo digital de superfície (DSM), interpolado com 

resolução de 50 cm e raio de 5 m (DSM_C12). Além disso, as Figuras 2h (C1), 2i (C2) e 2j (C3) correspondem 

a diferentes intensidades associadas a três comprimentos de onda distintos: 1.550 nm, 1.064 nm e 532 nm, 

respectivamente. Elas também foram interpolados por krigagem, com resolução de 50 cm e raio de busca de 3 

m. 

Após o recorte das imagens, a extração de atributos foi realizada para dados multiespectrais e 

hiperespectrais. Tal procedimento tem como objetivo utilizar operações aritméticas para gerar novos atributos, 

destinados a separar as classes de interesse de forma mais eficaz. Entretanto, tem-se a preocupação da perda 
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de informações, sendo assim optou-se por utilizar a Fração Mínima de Ruído (Minimum Noise Fraction − 

MNF) e a Análise de Componentes Principais (Principal Components Analysis − PCA), uma vez que trabalham 

na redução de dimensionalidade sem perda de informações.  

Neste sentido, as transformações MNF e PCA foram geradas por meio de suas ferramentas no software 

Envi 5.3 e utilizadas como atributos na classificação. No entanto, como o atributo MNF realiza o ordenamento 

conforme a qualidade da imagem, expressa pelo nível de ruído presente na cena, consideraram-se somente as 

componentes com o limiar de autovalores superiores a 5. Com isso, foram utilizadas as três primeiras 

componentes MNF para os dados DiMAC ULTRALIGHT+. 

Em termos de PCA, o critério de seleção foi o valor do maior percentual de variação dos dados, ou 

seja, a quantidade de informação disponível. Todos os três componentes do PCA foram considerados no caso 

dos dados DiMAC ULTRALIGHT+, pois não apresentaram ruído. No entanto, apenas os primeiros seis 

componentes dos dados do ITRES CASI 1500 foram selecionados (Tabela 3). Vale ressaltar que os não 

selecionados tiveram valores zerados, que correspondem aos componentes com alto nível de ruído e, portanto, 

sem variação nos dados.   

 

Tabela 3 - Dados de entrada e quantitativo de camadas para os Datasets de 1 a 7. 

 Dados de Entrada Camadas 

D
a

ta
se

t 
1
 Cena DiMAC ULTRALiGHT+ 3 

Extração de atributos - MNF 3 

Extração de atributos - PCA 3 

Total 9 

D
a

ta
se

t 
2
 Cena ITRES CASI 1500 48 

Extração de atributos - MNF 13 

Extração de atributos - PCA 6 

Total 67 

D
a

ta
se

t 
3
 

DEM_C123_3msr 1 

DEM_C123_TLI 1 

DEM+B_C123 1 

DSM_C12 1 

Intensity_C1 1 

Intensity_C2 1 

Intensity_C3 1 

Total 7 

D
a

ta
se

t 
4
 Dataset 1 9 

Dataset 2 67 

Total 76 

D
a

ta
se

t 
5
 Dataset 2 67 

Dataset 3 7 

Total 74 

D
a

ta
se

t 
6
 Dataset 1 9 

Dataset 3 7 

Total 16 

D
a

ta
se

t 
7
 Dataset 1  9 

Dataset 2  67 

Dataset 3  7 

Total 83 

Elaboração: Os autores (2025). 
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3.2.2 SEGMENTAÇÃO E CLASSIFICAÇÃO DOS DADOS 

 

O objetivo da segmentação é a partição de imagens, agregando pixels e grupos de pixels em segmentos 

homogêneos, chamados de regiões ou objetos. A segmentação multirresolução adotada é baseada na 

abordagem de crescimento de região, que examina pixels vizinhos de pixels-sementes iniciais e determina se 

os pixels vizinhos devem ou não ser adicionados à região. O processo é iterativo, baseado em definições de 

homogeneidade em combinação com técnicas de otimização local e global (Baatz; Schäpe, 2000). Esta classe 

de algoritmo tem sido adotada mundialmente em aplicações de SR (Blaschke, 2010). No entanto, tem a 

desvantagem de altos custos computacionais associados ao uso de dados de entrada de alta dimensão (Happ et 

al., 2009). 

Esta pesquisa utiliza segmentação multirresolução seguida de um ajuste de diferença espectral. A 

primeira etapa é o algoritmo proposto por Baatz e Schäpe (2000), o qual utiliza essencialmente um 

procedimento de otimização heurística, que minimiza localmente a heterogeneidade média dos objetos na 

imagem para uma determinada resolução em toda a cena (Matsuoka, 2007). A segmentação pode ser realizada 

em múltiplas resoluções por uma variação dos parâmetros de segmentação (Leonardi, 2010). Esses parâmetros 

são divididos em escala, forma, compacidade e suavidade. Após definir tais parâmetros, também é necessário 

atribuir pesos às imagens de acordo com seu grau de importância. Quanto maior o peso atribuído a uma camada 

de imagem, maior o papel dessa camada durante o processo de ajuste (Definiens, 2012).  

Ambas as etapas de segmentação foram realizadas utilizando o software eCognition Developer versão 

9.0, 64 bits. Ressalta-se que os procedimentos foram realizados na imagem com melhor resolução espacial 

(DiMAC ULTRALIGHT+ com resolução de 5cm), a fim de proporcionar ao intérprete uma melhor 

visualização da cena e, consequentemente, garantir maior precisão nas amostras. Os parâmetros de 

segmentação empregados são fornecidos na Tabela 4. 

 

Tabela 4 - Parâmetros de segmentação. 
Parâmetros Valores 

Escala 12 

Forma 0,3 

Compacidade 0,5 

Peso 1 (todas as bandas) 

Diferença espectral 3 

Elaboração: Os autores (2025). 

 

O processo de segmentação em duas etapas totalizou 983.224 segmentos. Após a segmentação, foram 

coletados pontos amostrais para 17 classes encontradas no ROI da imagem, conforme apresentado na Tabela 

5. 

Vale destacar que a coleta dos segmentos amostrais foi igual para os sete diferentes conjuntos de dados, 

buscando atender uma “regra de ouro” disposta por Lillesand et al. (2015) e Congalton e Green (2009), os 

quais sugerem que o tamanho do conjunto amostral adequado para cada projeto deve ter um planejamento para 

coleta de no mínimo 50 amostras por classe para mapas de menos de 1 milhão de acres em tamanho e menos 

de 12 classes. Congalton e Green (2009) complementam que grandes áreas ou mapas mais complexos devem 

receber de 75 a 100 amostras por classe. No entanto, como pode ser notado na Tabela 5, nem todas as classes 

conseguiram atingir o objetivo, visto que algumas apresentaram quantidade reduzida de segmentos, o que não 

comporta um grande número de amostras. 

As amostras foram coletadas com o auxílio de um mapa de referência fornecido em conjunto pelo 

NCALM e HIALab, conforme mostrado na Figura 2. Ressalta-se que a classe sombra não foi incluída no mapa 

de referência. 
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Tabela 5 - Coleta de amostras. 

Classe 
Conjunto de 

treinamento 
Cor da classe 

Água 10 

  

  

  

Árvore Decídua 68   

Árvore Perenifólia 67   

Assentos de Estádio 58   

Calçada 58   

Carro 62   

Edifício Não Residencial 74   

Edifício Residencial 74   

Estacionamento Não Pavimentado 10   

Estacionamento Pavimentado 45   

Faixa de Pedestre 30   

Grama Artificial 11   

Grama Estressada 59   

Grama Saudável 62   

Rua 72   

Sombra 11   

Via Principal 63   

Elaboração: Os autores (2025). 

 

Figura 2 – Mapa de referência com a localização da área de estudo. 

 
Elaboração: Os autores (2023). 

 

Os atributos para a classificação dos sete conjuntos de dados foram gerados no eCognition 9.0 por 

meio da ferramenta “Atributos do objeto - Customizados” (Object Features - Customized). Alguns atributos 

customizados, como as razões de banda, reduzem muitas formas de ruído presentes em múltiplas bandas de 

imagens (Jensen & Cowen, 1999). Entre os atributos utilizados, alguns serão denominados de AC (Atributo 

Customizado), ao passo que os índices de vegetação OSAVI, NDVI, GRVI, GNDVI, DVI, bastante utilizados 

na literatura, mantiveram seus nomes originais, assim como os índices atrelados a assimetria, número de pixels, 

máxima diferença e direção principal.  
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O  Índice de Vegetação Ajustado pelo Solo Otimizado (Optimal Soil Adjustment Vegetation Index − 

OSAVI) é utilizado como ferramenta para monitoramento de áreas com vegetação de baixa densidade em áreas 

de solo exposto. Por sua vez, o Índice de Vegetação por Diferença Normalizada (Normalized Difference 

Vegetation Index − NDVI) é eficaz para expressar o status e atributos quantificados da vegetação (Huang et 

al., 2021). Outro índice utilizado foi o Índice de Vegetação Verde-Vermelho (Green Red Vegetation Index − 

GRVI), o qual apresenta a capacidade de detectar mudanças na vegetação do dossel e em estádios fenológicos 

(Motohka et al., 2010). O Índice de Vegetação por Diferença Normalizada Verde (Green Normalized 

Difference Vegetation Index − GNDVI) foi sugerido para avaliar as variações de biomassa verde na escala do 

dossel (Zhou & Zhong, 2020; Ali et al., 2019), e, por fim, o Índice de Vegetação por Diferença (Difference 

Vegetation Index − DVI), que apesar de ser considerado simples, é sensível à vegetação (Martins, 2017).  

As equações e as referências bibliográficas referentes aos atributos utilizados neste trabalho são 

apresentadas na Tabela 6. 

 

Tabela 6 - Atributos utilizados nas classificações por RF. 
Atributo Equação Referência 

OSAVI 
𝜌832𝑛𝑚 − 𝜌660𝑛𝑚

𝜌832𝑛𝑚 + 𝜌𝑟 + 0.16
 Rondeaux et al. (1996) 

NDVI 
𝜌832𝑛𝑚 − 𝜌660𝑛𝑚

𝜌832𝑛𝑚 + 𝜌660𝑛𝑚
 Rouse et al. (1974) 

GRVI 
𝜌545𝑛𝑚 − 𝜌660𝑛𝑚

𝜌535𝑛𝑚 + 𝜌660𝑛𝑚
 Tucker (1979) 

GNDVI 
𝜌832𝑛𝑚 − 𝜌545𝑛𝑚

𝜌832𝑛𝑚 + 𝜌545𝑛𝑚
 Gitelson et al. (1996) 

DVI 𝜌832𝑛𝑚 − 𝜌660𝑛𝑚 Richardson e Wiegand (1977) 

AC1 𝐴𝐶1 =  
𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝐵𝑎𝑛𝑑𝑎480𝑛𝑚

𝐵𝑎𝑛𝑑𝑎660𝑛𝑚
 Leonardi (2010) 

AC2 𝐴𝐶2 =  
𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝐵𝑎𝑛𝑑𝑎480𝑛𝑚

𝐵𝑎𝑛𝑑𝑎725𝑛𝑚
 

Adaptado de 

Leonardi (2010) 

AC3 𝐴𝐶3 = 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝐵𝑎𝑛𝑑𝑎480𝑛𝑚 − 𝐵𝑎𝑛𝑑𝑎660𝑛𝑚 Leonardi (2010) 

AC4 𝐴𝐶4 = 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝐵𝑎𝑛𝑑𝑎480𝑛𝑚 − 𝐵𝑎𝑛𝑑𝑎725𝑛𝑚 
Adaptado de 

Leonardi (2010) 

AC5 𝐴𝐶5 = 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝐵𝑎𝑛𝑑𝑎832𝑛𝑚 Leonardi (2010) 

*Nota: 𝜌 é a reflectância espectral. 

Elaboração: Os autores (2025). 

 

As formas originais das equações apresentadas na Tabela 6 correspondem ao uso das seguintes bandas: 

B8 azul (centrada em 480nm), B12 verde (centrada em 545nm), B21 vermelho (centrada em 660 nm) e B33 

infravermelho próximo (centrada em 832 nm). No entanto, os dados do ITRES CASI 1500 possuem 

adicionalmente outras bandas na região espectral do azul B5 (centrada em 430 nm), do vermelho B19 (centrada 

em 630 nm) e outra banda do infravermelho próximo B27 (centrada em 950 nm). Logo, foram gerados cinco 

atributos customizados (AC), juntamente com OSAVI, NDVI, GRVI, GNDVI e DVI. 

 

3.2.2.1 Classificação utilizando Random Forest 

 

O princípio de funcionamento do RF baseia-se em uma grande coleção de árvores de decisão 

descorrelacionadas. A partir das amostras de treinamento originais, são criados diferentes conjuntos amostrais 

aleatórios, tantos conjuntos quantas forem as árvores de decisão, para permitir que árvores independentes 

sejam criadas (Anjos et al., 2017b). É utilizado um meta-algoritmo, visando melhorar classificação e regressão 

de modelos referentes à estabilidade e precisão da classificação. Este além de reduzir a variância, ajuda a evitar 

o overfitting (Son et al., 2009). 

De acordo com Son et al. (2009) e Lopes et al. (2017), esse procedimento extrai aleatoriamente casos 

dos conjuntos de dados de treinamento originais, os quais são utilizados para construir cada uma das árvores 

de decisão que compõem a RF. Cada árvore classificadora é identificada como um componente preditor. RF 

constrói sua decisão contando os votos dos componentes preditivos em cada classe e então seleciona a classe 

bem-sucedida em termos do número acumulado de votos. Desta forma, todo o algoritmo inclui duas fases 

cruciais: a formação de cada árvore e a etapa de votação.  
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A primeira fase consiste em treinar cada árvore de decisão, e os subconjuntos de dados são 

selecionados do dataset de treinamento e definidos usando a estratégia de ensacamento aleatório (bagging). 

Em seguida, os dados de teste são classificados por maioria de votos. Cerca de um terço dos casos são deixados 

de fora das amostras de inicialização (bootstrap) e não são usados para construir uma árvore específica. 

Amostras deixadas fora da árvore de ordem k são executadas na k-ésima árvore para obter uma classificação 

(Lopes et al., 2017). 

A RF foi gerada no Orange Canvas versão 3.25.0 com a indicação de 100 árvores para cada um dos 

sete datasets, totalizando assim 700 árvores. Vale destacar que o Orange Canvas é um software que possui 

uma biblioteca de objetos e rotinas para a programação visual baseado em componentes intitulados widgets. 

Estes oferecem funcionalidades básicas, como seleção de recursos, predição de treinamento, comparação de 

algoritmos de aprendizado, entre outros variados recursos. A partir disto, o usuário pode explorar 

interativamente as visualizações ou alimentar o subconjunto selecionado em outros widgets. É um software de 

código aberto e codificado em Python. 

Os resultados com o método RF foram visualizados e validados no software QGis 3.4.12. 

 

3.2.3 VALIDAÇÃO DOS DADOS 

 

A validação dos resultados visa estimar a acurácia da classificação. Foram obtidas sete classificações, 

uma para cada um dos sete conjuntos de dados. Com base nessas classificações e no mapa de referência, foi 

possível validar os resultados de acordo com Congalton (1988), bem como Congalton e Green (2009).  

A avaliação estatística é fundamental na análise de dados provenientes de quaisquer processos em que 

exista variabilidade, estando, assim, interessada nos métodos e processos quantitativos que servem para a 

coleta, organização, resumo, apresentação e análise desses dados, bem como na obtenção de conclusões válidas 

e na tomada de decisões a partir de tais análises (Panosso, 2019). Congalton e Green (2009) afirmam que, com 

um teste de hipótese Z, é possível comparar estatisticamente duas classificações e assim verificar qual produz 

a maior acurácia. Foi realizado um teste de hipótese Z, com nível de significância de 5%, entre pares de 

classificadores de um mesmo dataset, para avaliar se existe diferença significativa. 

 

Figura 3 – Exemplo do conjunto de pontos aleatórios utilizados para validação. 

 
Elaboração: Os autores (2025). 

 

 



Rev. Bras. Cartogr, vol. 77, 2025                                            DOI: http://dx.doi.org/10.14393/rbcv77n0a-70502 

    12 

4 RESULTADOS E DISCUSSÕES 

 
Os resultados das classificações utilizando os sete conjuntos de dados sob a análise dos mesmos  

atributos por meio do classificador RF serão apresentados a seguir, assim como os parâmetros considerados 

para a validação. Logo, a presente seção se divide em: resultados para Dataset 1 (Seção 4.1), resultados para 

Dataset 2 (Seção 4.2), resultados para Dataset 3 (Seção 4.3), resultados para Dataset 4 (Seção 4.4), resultados 

para Dataset 5 (Seção 4.5), resultados para Dataset 6 (Seção 4.6) e resultados para Dataset 7 (Seção 4.7). Além 

disso, serão apresentados os resultados comparativos da exatidão global, erros de omissão e inclusão e teste de 

hipótese (Seção 4.8). Para uma análise visual das classificações, comparando-as com a referência, o leitor 

poderá recorrer ao mapa de referência, apresentado anteriormente na Seção 3.2.3. 

 

4.1 Resultados do Dataset 1 
 

O resultado da classificação do Dataset 1, baseado na cena DiMAC ULTRALIGHT+, é apresentado 

na Figura 5. Neste caso, o dataset compreendeu 3 bandas originais deste sensor, 3 MNF e 3 componentes PCA, 

resultando em 9 camadas de entrada. A classificação do Dataset 1 executada com o algoritmo RF resultou em 

uma exatidão global de 51,60%. As classes com os melhores percentuais de classificações corretas foram C15 

(Estacionamento Não Pavimentado), com 100,00%, e C9 (Estacionamento Pavimentado), com 81,82% de 

acertos.  

No entanto, algumas classes tiveram porcentagens de sucesso abaixo de 50%, como C1 (Grama 

Artificial), 23,08% das quais confundidas com C6 (Grama Saudável). Durán et al. (2018) explicam que a grama 

artificial é fabricada com materiais derivados de plásticos e polímeros com a finalidade de simular seu 

congênere natural. Portanto, no espectro visível, apresenta um tom de cor verde semelhante ao da grama 

natural, gerando confusão. Além disso, a classe C6 (Grama Saudável) teve 54,88% dos casos classificados 

erroneamente como C4 (Árvore Caducifólia), devido às sutis diferenças em suas condições fitofisiológicas.  

Tais confusões são compreensíveis quando se trabalha com um sensor de ultra-alta resolução espacial 

e baixa resolução espectral (RGB), dada a similaridade espectral nas respostas visíveis dos alvos. Para resolver 

este problema, é necessário refinar o espectro eletromagnético, tanto adicionando mais bandas espectrais 

quanto estreitando o alcance das bandas contíguas, como é o caso das imagens hiperespectrais do sensor ITRES 

CASI 1500. 

Porém, outras confusões ocorreram com esses dados multiespectrais, como, por exemplo, a classe C7 

(Via Principal), que teve 12,11% dos casos classificados erroneamente como C9 (Estacionamento 

Pavimentado); C8 (Edifício Não Residencial), que teve 11,11% de suas amostras classificadas erroneamente 

como C10 (Edifício Residencial); C11 (Estrada), que apresentou 24,86% dos casos erroneamente classificados 

como C7 (Via Principal), e C9 (Estacionamento Pavimentado), que teve 09,10% de suas amostras 

erroneamente classificadas como C10 (Edifício Residencial).  

As dificuldades em separar essas classes de cobertura e pavimentação se justificam pela semelhança 

em suas assinaturas espectrais, ou seja, são constituídas pelos mesmos materiais, como o concreto, por 

exemplo. Durán et al. (2018) reforçam que o cimento e o concreto são os materiais mais comuns no meio 

urbano, sendo utilizados para calçadas de pedestres e estacionamentos de veículos, na forma de blocos pré-

moldados ou em superfície lisa, bem como para a cobertura de edifícios e telhas. Espera-se, então, que essas 

classes possam ser diferenciadas pelo uso de imagens hiperespectrais, destinadas a discriminar seus materiais 

de composição, associadas ao uso de dados do sensor Optech Titan MW, projetado para diferenciar classes em 

alturas distintas. 
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Figura 4 – Classificação com Dataset 1. 

 
Elaboração: Os autores (2025). 

 

4.2 Resultados do Dataset 2 
 

Conforme explicado anteriormente, o Dataset 2 compreende a cena do ITRES CASI 1500 e os 

respectivos componentes MNF e PCA. Desta forma, foram empregadas 48 bandas originais deste sensor, 13 

MNF e 6 PCA, o que resultou em 67 camadas de entrada. O resultado da classificação do Dataset 2 é mostrado 

na Figura 6. 

A classificação do Dataset 2 com o algoritmo RF obteve 60,99% de exatidão global. A classe com o 

melhor percentual de acerto na classificação foi a C9 (Estacionamento Pavimentado), 95,45%. Algumas 

classes, no entanto, apresentaram confusões, como a classe C7 (Via Principal), que teve 16,87% de suas 

amostras classificadas erroneamente como C11 (Estrada) e 11,04% como C12 (Calçada). Este problema era 

de certa forma esperado, uma vez que os materiais possuem a mesma constituição estrutural e condições de 

superfície. Além disso, também foram relatadas confusões em que a classe C11 (Estrada) apresentou 13,75% 

dos casos classificados erroneamente como C10 (Edifício Residencial) e 14,81% como C7 (Via Principal), e 

o caso da classe C8 (Edifício Não Residencial), que teve 18,93% de suas amostras classificadas erroneamente 

como C10 (Edifício Residencial). 

As confusões ocorridas com as classes de cobertura e pavimentação são aceitáveis devido à 

semelhança espectral, conforme mencionado anteriormente. Para classificá-las corretamente, o uso de 

informações de altura derivadas da cena do sensor Optech Titan MW é crucial (Stewart & Oke, 2012). O 

aspecto positivo da classificação resultante do Dataset 2 é a redução da confusão entre algumas classes, como 

C1 (Grama Artificial) e C6 (Grama Saudável). Tal melhoria demonstra o potencial dos dados hiperespectrais 

para uma discriminação refinada de alvos em um ambiente urbano. 
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Figura 5 – Classificação com Dataset 2. 

 
Elaboração: Os autores (2025). 

 

4.3 Resultados do Dataset 3 
 

O resultado referente à classificação do Dataset 3 usando a cena Optech Titan MW é apresentado na 

Figura 7. Foram 3 camadas de modelo digital de elevação, 1 camada de modelo digital de superfície e 3 bandas 

de imagem de intensidade LiDAR em diferentes comprimentos de onda (G, NIR, SWIR), resultando em 7 

camadas de entrada. A classificação do Dataset 3 com o algoritmo de RF alcançou 45,71% de exatidão global. 

Este dataset compreendeu a maior ocorrência de confusão entre classes. 

A classe C7 (Via Principal) teve 26,80% dos casos classificados erroneamente como C11 (Estrada); 

C9 (Estacionamento Pavimentado) apresentou 49,12% de ocorrências classificadas erroneamente como C11 

(Estrada), e C11 (Estrada) teve 22,95% de suas amostras confundidas com C7 (Via Principal). É claramente 

perceptível que essas imprecisões são justificadas pela semelhança de altura. De acordo com Xu et al. (2019) 

e Rasti et al. (2020), a vantagem do uso de dados LiDAR para classificação urbana é justamente a 

discriminação de materiais de superfície caracterizados por diferentes alturas. Apesar dessas confusões e dos 

baixos percentuais de acertos, algumas classes da classificação RF, mesmo com pequena diferença de altura, 

apresentaram resultados marcantes, como a distinção entre as classes C12 (Calçada) e C11 (Estrada) com 

apenas 1,92% de confusão. Além disso, C3 (Faixa de Pedestre) e C13 (Assentos de Estádio) foram totalmente 

diferenciados entre si (0%). 
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Figura 6 - Classificação com Dataset 3. 

 
Elaboração: Os autores (2025). 

 

4.4 Resultados do Dataset 4 (Datasets 1 e 2) 
 

O resultado da classificação do Dataset 4, baseado no conjunto das cenas DiMAC ULTRALIGHT+ e 

ITRES CASI 1500 é apresentado na Figura 8. Os valores a serem apresentados correspondem respectivamente 

aos dois sensores utilizados em questão. Desta forma, foram empregadas, respectivamente, 3 e 48 bandas 

originais dos sensores. Dentre as componentes, foram respectivamente utilizadas 3 e 13 bandas de MNF, 3 e 

6 bandas de PCA, resultando, portanto, em 76 camadas de entrada. 

A classificação deste dataset resultou em uma exatidão global de 65,39%. As classes com os melhores 

percentuais de acerto foram C16 (Água), C9 (Estacionamento Pavimentado) e C15 (Estacionamento Não 

Pavimentado), atingindo, nessa ordem, 100%, 96,61% e 93,65%. Entretanto, algumas classes apresentaram 

confusões, que de certa forma eram esperadas, como, por exemplo, a classe C8 (Edifício Não Residencial), 

que apresentou 20,05% dos casos erroneamente classificados como C10 (Edifício Residencial); e a classe C11 

(Estrada), tendo sido 16,87% das amostras classificadas como C7 (Via Principal) e 12% como C9 

(Estacionamento Pavimentado). Estes resultados não são surpreendentes, como citado anteriormente, devido 

a suas semelhanças espectrais.   

O mesmo é observado em relação à confusão existente na classe C7 (Via Principal), com 16,22% das 

ocorrências erroneamente classificadas como C11 (Estrada). Outro resultado interessante é a classificação de 

C4 (Árvore Caducifólia) como C14 (Grama Estressada), totalizando 11,36%. Tal confusão respalda-se no 

aspecto de ambas, já que se apresentam de forma seca e sem vida. Freire (2016) demonstra tais características, 

submetendo uma espécie de vegetação a variados processos de adaptação e estresse. Outro destaque diz 

respeito à falta de um sensor de elevação para distinguir as variações dos alvos.   

Apesar dessas variações, é significativa a mudança nos resultados quando comparados aos conjuntos 

individuais. Em todo caso, é necessário conduzirem-se os testes de hipótese, a fim de se confirmar tais 

evidências. 
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Figura 7 - Classificação com Dataset 4. 

 
Elaboração: Os autores (2025). 

 

4.5 Resultados do Dataset 5 (Datasets 2 e 3) 
 

O resultado referente à classificação do Dataset 5 usando o conjunto das cenas ITRES CASI 1500 e 

Optech Titan MW é apresentado na Figura 9. Para este conjunto, foram utilizadas 74 camadas de entrada, das 

quais 48 bandas originais do sensor hiperespectral, além de 13 e 6 componentes MNF e PCA, respectivamente. 

Ademais, foram empregadas 3 camadas de modelo digital de elevação, 1 camada de modelo digital de 

superfície e 3 bandas de imagem de intensidade LiDAR em diferentes comprimentos de onda (G, NIR, SWIR). 

A classificação do Dataset 5 com o algoritmo RF alcançou 72,70% de exatidão global, o que claramente indica 

uma melhoria significativa de resultados quando comparados com os demais conjuntos apresentados. 

Apesar deste importante resultado, algumas classes apresentaram confusões, como: C11 (Estrada) 

classificada erroneamente como C7 (Via Principal) e 12,10% como C9 (Estacionamento Pavimentado). Tais 

resultados já eram esperados, pois apesar da presença dos sensores para determinar tais diferenças, as 

composições materiais são as mesmas. 

Outro resultado interessante, porém não aguardado, é a confusão obtida entre as classes C6 (Grama 

Saudável) e C14 (Grama Estressada), com 27,78% de erro na classificação. Embora o sensor hiperespectral 

tenha a capacidade de caracterizar com precisão a composição química de vários materiais, houve falta de 

resolução espacial, já que esta determina as relações geométricas dos pixels da imagem (entre si), propiciando, 

portanto, a extração de informações adicionais. 
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Figura 8 - Classificação com Dataset 5. 

 
Elaboração: Os autores (2025). 

 

4.6 Resultados do Dataset 6 (Datasets 1 e 3) 
 

Conforme explicado anteriormente (Tabela 3), o Dataset 6 compreende as cenas DiMAC 

ULTRALIGHT+ e Optech Titan MW, portanto, foram trabalhadas 16 camadas de entrada, das quais 3 são 

bandas originais da câmera multiespectral, 3 componentes MNF e 3 PCA, e da outra cena, 3 camadas de 

modelo digital de elevação, 1 camada de modelo digital de superfície e 3 bandas de imagem de intensidade 

LiDAR em diferentes comprimentos de onda (G, NIR, SWIR). Este conjunto alcançou 67,48% de exatidão 

global. 

Em comparação com os últimos resultados, é visível em termos de porcentagem da exatidão global 

uma queda nos resultados. Entretanto, deve-se considerar a diferença de camadas de entrada empregadas. 

Consequentemente, este grupo apresentou algumas confusões, como C14 (Grama Estressada) com C6 (Grama 

Saudável), em que 22,58% foi erroneamente classificado. Este resultado é consequência direta do menor 

número de bandas da câmera multiespectral. Outros resultados, como as confusões entre materiais de mesma 

composição, são também apresentados neste dataset, como, por exemplo, C3 (Faixa de Pedestre) classificada 

em 28% como C7 (Via Principal); e C11 (Estrada) erroneamente classificada em 19,58% como C7 (Via 

Principal). 
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Figura 9 - Classificação com Dataset 6. 

 
Elaboração: Os autores (2025). 

 

4.7 Resultados do Dataset 7 (Datasets 1, 2 e 3) 
 

O resultado referente à classificação do Dataset 7 é mostrado na Figura 11. Este dataset é a combinação 

dos três conjuntos de dados apresentados anteriormente, sendo 9 camadas do Dataset 1, 67 camadas do Dataset 

2 e 7 camadas do Dataset 3, resultando em 83 camadas de entrada (Tabela 3). 

A classificação do Dataset 7 com o algoritmo RF atingiu 75,18% de exatidão global. As classes C1 

(Grama Artificial), C9 (Estacionamento Pavimentado), C15 (Estacionamento Não Pavimentado) e C16 (Água) 

apresentaram 100,0% de acerto. Todas as demais classes resultaram em valores de acerto superiores a 50,0% 

e com redução da confusão. Esse dataset atendeu às expectativas, pois apresentou a melhor exatidão global 

em comparação com os outros conjuntos de dados. No entanto, destaca-se que C7 (Via Principal) teve 15,59% 

de suas amostras classificadas erroneamente como C11 (Estrada). Tal confusão é aceitável, pois essas classes 

possuem características semelhantes, já que são feitas do mesmo material e têm a mesma altura, dificultando 

consideravelmente sua discriminação. 
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Figura 10 - Classificação com Dataset 7. 

 
Elaboração: Os autores (2025). 

 

4.8 Comparativos de exatidão global, erros de comissão e omissão e teste de hipótese 
 

A Figura 11 ilustra a comparação entre as classificações e reforça a eficiência do conjunto da fusão de 

dados. 

Figura 11 – Exatidão global para todos os datasets. 

 
Dataset 1 é composto por 9 camadas, sendo 3 do sensor DiMAC ULTRALiGHT+, 3 MNF e 3 PCA. Dataset 2 possui 67 

camadas, sendo 48 da Cena ITRES CASI 1500, 13 MNF e 6 PCA. Dataset 3 é formado por 7 camadas LiDAR. Datasets 

4, 5, 6 e 7 são dados fusionados, sendo respectivamente a junção dos Datasets 1 e 2; 2 e 3; 1 e 3; e 1, 2 e 3. 

 

Elaboração: Os autores (2025). 
 

Além dessa comparação, as Tabelas S1 a S4 apresentam os valores para acurácia do produtor por 

classe, acurácia do usuário da classe, erro de comissão por classe e erro de omissão por classe. Esses valores 

reforçam os resultados já apresentados para a classificação RF. Tais tabelas estão ilustradas no Apêndice.  
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Três testes de hipótese Z com 5% de nível de significância foram realizados. O objetivo é analisar 

comparativamente as classificações, verificando-se se os valores de exatidão global e índice Kappa 

comparados são ou não significativamente diferentes. As hipóteses testadas e os resultados são apresentados 

resumidamente na Tabela 7 para os conjuntos de dados não fusionados, e na Tabela 8 para os conjuntos de 

dados fusionados.  

 

Tabela 7 – Valores resultantes do teste de hipótese Z para os Datasets 1 a 3. 

Dataset 1 

H0: Kappa1 = 0 

Dataset 2 

H0: Kappa2 = 0 

Dataset 3 

H0: Kappa3 = 0 

H1: Kappa1 > 0 H1: Kappa2 > 0 H1: Kappa3 > 0 

Z = 4,78 Z = 8,63 Z = 3,90 

Valor-P = 0,0000 Valor-P = 0,0000 Valor-P = 0,0000 

Alfa = 0,05 Alfa = 0,05 Alfa = 0,05 

Kappa =  0,4665 Kappa = 0,5574 Kappa = 0,3956 

Conclusão 

rejeito H0, o Kappa1 é 

significativamente 

superior a zero. 

Conclusão 

rejeito H0, o Kappa 2 é 

significativamente 

superior a zero. 

Conclusão 

rejeito H0, o Kappa 3 é 

significativamente 

superior a zero. 

H0: hipótese nula; H1: hipótese alternativa; Z: estatística do teste de hipótese Z com distribuição normal; Valor-P: probabilidade de se 

observar uma diferença tão grande ou maior do que aquela observada sob a hipótese nula; Alfa: nível de significância correspondente 

a 1 – IC, em que IC é o intervalo de confiança.  

Elaboração: Os autores (2025). 

 

Tabela 8 - Valores resultantes do teste de hipótese Z para os Datasets 4 a 7. 

Dataset 4 

H0: Kappa4 = 0 

Dataset 5 

H0: Kappa5 = 0 

Dataset 6 

H0: Kappa6 = 0 

Dataset 7 

H0: Kappa7 = 0 

H1: Kappa4 > 0 H1: Kappa5 > 0 H1: Kappa6 > 0 H1: Kappa7 > 0 

Z = 11,74 Z = 20,34 Z = 10,79 Z = 24,97 

Valor

-P = 

0,0000 Valor

-P = 

0,0000 Valor

-P = 

0,0000 Valor

-P = 

0,0000 

Alfa 

= 

0,05 Alfa 

= 

0,05 Alfa 

= 

0,05 Alfa 

= 

0,05 

Kappa 

= 

0,6121 
 

Kappa 

= 

0,6941 Kappa 

= 

0,6393 Kappa 

= 
0,7231 

Conclusão 

rejeito H0, o 

Kappa 4 é 

significativa-

mente superior a 

zero 

Conclusão 

rejeito H0, o 

Kappa 5 é 

significativa-

mente superior a 

zero 

Conclusão 

rejeito H0, o 

Kappa 6 é 

significativa-

mente superior a 

zero. 

Conclusão 

rejeito H0, o 

Kappa 7 é 

significativa-

mente superior a 

zero. 

H0: hipótese nula; H1: hipótese alternativa; Z: estatística do teste de hipótese Z com distribuição normal; Valor-P: probabilidade de se 

observar uma diferença tão grande ou maior do que aquela observada sob a hipótese nula; Alfa: nível de significância correspondente 

a 1 – IC, em que IC é o intervalo de confiança. 

Elaboração: Os autores (2025). 
 

Um sumário comparativo dos resultados dos testes para os conjuntos fusionados é apresentado na 

sequência: 

• Teste 1 - Comparação entre os Datasets 4 e 7.  

o Resultado: o índice Kappa do Dataset 4 (0,6121) é significativamente menor que o índice 

Kappa do Dataset 7 (0,7231). 

• Teste 2 - Comparação entre os Datasets 5 e 7.  

o Resultado: o índice Kappa do Dataset 5 (0,6941) é significativamente menor que o índice 

Kappa do Dataset 7 (0,7231). 

• Teste 3 - Comparação entre os Datasets 6 e 7.  

o Resultado: o índice Kappa do Dataset 6 (0,6393) é significativamente menor que o índice 

Kappa do Dataset 7 (0,7231). 

A validação dos dados foi feita com diversos indicadores da qualidade das classificações, mas somente 

o teste de hipótese pode afirmar se o índice Kappa de uma classificação é significativamente superior ao de 

outra. De acordo com estes testes de hipótese e comparando-se o desempenho dos distintos datasets, constata-

se que o método de fusão de dados é significativamente superior aos demais. 
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5 CONCLUSÃO 

 
Foram realizadas sete diferentes classificações visando detalhar a cobertura do solo urbano. Para isso, 

foram utilizadas imagens com alta resolução espacial e espectral e dados de elevação. Esses dados 

compreendem, respectivamente, cenas dos sensores DiMAC ULTRALIGHT+, ITRES CASI 1500 e Optech 

Titan MW fornecidos pelo NCALM e HIALab da Universidade de Houston por meio de um concurso realizado 

anualmente pelo GRSS–IEEE (Data Fusion Contest). 

Este conjunto de dados original foi subdividido em sete novos conjuntos de dados diferentes, 

caracterizados pelos dados multiespectrais de resolução espacial muito alta, os dados hiperespectrais, os dados 

de elevação, conjuntos pareados e a fusão de dados. O mesmo conjunto de amostras aleatórias foi adotado para 

os sete diferentes conjuntos de dados para fins de padronização do treinamento. A coleta das amostras de 

treinamento foi precedida por uma etapa de extração de características, uma vez que foram utilizadas não 

apenas as bandas dos sensores originais, mas também os componentes MNF e PCA no caso dos sensores 

passivos. Além disso, foram utilizados atributos customizados e índices espectrais, como os de vegetação.  

As classificações foram geradas usando o classificador RF. Sete matrizes de confusão baseadas em 

conjuntos de validação independentes foram geradas, e seus índices de acurácia calculados. Os resultados 

gerados para os conjuntos de dados (Datasets) 1, 2, 3, 4, 5 e 6 apresentaram algumas tendências de acertos e 

erros, todos eles com confusão significativa e acurácia limitada em comparação com o conjunto de fusão total 

de dados.  

O conjunto de dados 1 (Dataset 1), por exemplo, apresentou baixa exatidão global (51,60%), dada a 

similaridade dos alvos na região espectral do visível. O conjunto de dados 2 (Dataset 2) reduziu um pouco a 

confusão entre as classes mais semelhantes, mas não conseguiu distinguir materiais semelhantes com alturas 

diferentes. O conjunto de dados 3 (Dataset 3), por sua vez, abordou com mais acurácia a diferença de altura 

dos alvos, embora não contivesse informações espectrais suficientes para atingir uma elevada exatidão. O 

conjunto de dados 7 (Dataset 7), diferentemente dos anteriores, foi capaz de discriminar os alvos de interesse 

no ambiente urbano, atingindo 75,18% de exatidão global, valor próximo ao reportado na literatura.  

Com o objetivo de analisar a similaridade entre as classificações, foram realizados os testes de 

hipótese. O teste de similaridade Z demonstrou que, em 100% dos casos, o conjunto de dados em que foi 

empregada a fusão total apresentou superioridade de desempenho. 

Portanto, o uso combinado de dados de múltiplos sensores (RGB, HSI e LiDAR) melhorou 

substancialmente os resultados da classificação. Desta maneira, este trabalho demonstrou as possibilidades 

promissoras de combinar informações de vários sensores para uma caracterização acurada de alvos em um 

ambiente urbano. Como diretrizes para trabalhos futuros, pretende-se enriquecer a etapa de extração de 

características, adicionando índices espectrais personalizados existentes e novos, bem como métricas de 

textura especificamente relatadas na literatura como adequadas para detecção de alvos urbanos. Além disso, 

deve-se reconhecer que é necessário avaliar outros classificadores, como CNN, devido aos refinamentos desta 

abordagem, de modo a explorar todo o seu potencial para realizar classificações de cobertura do solo urbano 

com um nível de legenda detalhada e atingir ao mesmo tempo índices de acurácia elevados. 
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APÊNDICE 

 

Tabelas Suplementares 

 
Tabela S1 - Acurácia do produtor por classe. 

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

C1 42,31% 60,00% 12,50% 72,41% 77,78% 62,50% 100,00% 

C2 73,77% 45,61% 55,10% 68,00% 78,63% 86,21% 84,21% 

C3 38,00% 58,33% 38,00% 70,37% 77,92% 70,00% 90,00% 

C4 63,46% 89,66% 55,41% 62,50% 86,96% 85,48% 91,38% 

C5 33,33% 93,33% 40,00% 92,86% 93,33% 100,00% 94,74% 

C6 25,61% 90,91% 30,43% 86,67% 84,62% 82,05% 88,89% 

C7 46,09% 47,55% 34,97% 53,38% 58,97% 56,37% 52,88% 

C8 42,54% 50,16% 41,75% 50,42% 64,86% 62,04% 68,62% 

C9 81,82% 95,45% 35,09% 96,61% 100,00% 85,92% 100,00% 

C10 73,63% 79,11% 72,39% 80,81% 80,12% 83,79% 83,88% 

C11 29,38% 47,62% 31,15% 48,00% 53,85% 37,50% 56,50% 

C12 33,33% 56,76% 19,23% 54,76% 65,71% 50,88% 63,16% 

C13 35,38% 75,64% 31,88% 73,00% 97,17% 81,25% 90,91% 

C14 65,45% 65,96% 62,75% 67,44% 58,33% 68,82% 87,23% 

C15 100,00% 62,16% 95,35% 93,65% 86,96% 98,04% 100,00% 

C16 74,29% 78,26% 67,74% 100,00% 94,55% 76,47% 100,00% 

Elaboração: Os autores (2025). 

 

 
Tabela S2 - Acurácia do usuário por classe. 

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

C1 73,33% 100,00% 85,71% 100,00% 98,00% 100,00% 100,00% 

C2 38,46% 29,55% 24,11% 32,08% 70,77% 35,21% 40,00% 

C3 48,72% 32,56% 51,35% 71,70% 81,08% 50,72% 60,00% 

C4 24,63% 41,27% 27,52% 63,95% 37,74% 59,55% 63,86% 

C5 21,43% 53,85% 19,35% 48,15% 48,28% 54,17% 81,82% 

C6 25,00% 38,46% 14,89% 30,95% 39,29% 45,07% 47,06% 

C7 59,00% 76,35% 53,50% 70,54% 81,17% 69,41% 80,41% 

C8 75,28% 88,83% 67,54% 92,35% 90,00% 92,63% 95,71% 

C9 38,03% 45,00% 19,42% 42,22% 47,48% 38,36% 52,27% 

C10 69,39% 68,49% 72,39% 69,15% 73,66% 76,11% 77,41% 

C11 50,98% 55,90% 30,32% 58,33% 65,77% 85,71% 68,48% 

C12 33,33% 22,34% 29,85% 30,26% 25,00% 49,15% 55,81% 

C13 38,33% 56,19% 29,33% 68,87% 86,55% 78,31% 76,19% 

C14 39,56% 72,09% 35,96% 50,88% 63,64% 62,14% 64,06% 

C15 78,13% 82,14% 74,55% 92,19% 96,77% 80,65% 95,74% 

C16 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 

Elaboração: Os autores (2025). 
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Tabela S3 - Erro de comissão por classe. 

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

C1 26,67% 0,00% 14,29% 0,00% 2,00% 0,00% 0,00% 

C2 61,54% 70,45% 75,89% 67,92% 29,23% 64,79% 60,00% 

C3 51,28% 67,44% 48,65% 28,30% 18,92% 49,28% 40,00% 

C4 75,37% 58,73% 72,48% 36,05% 62,26% 40,45% 36,14% 

C5 78,57% 46,15% 80,65% 51,85% 51,72% 45,83% 18,18% 

C6 75,00% 61,54% 85,11% 69,05% 60,71% 54,93% 52,94% 

C7 41,00% 23,65% 46,50% 29,46% 18,83% 30,59% 19,59% 

C8 24,72% 11,17% 32,46% 7,65% 10,00% 7,37% 4,29% 

C9 61,97% 55,00% 80,58% 57,78% 52,52% 61,64% 47,73% 

C10 30,61% 31,51% 27,61% 30,85% 26,34% 23,89% 22,59% 

C11 49,02% 44,10% 69,68% 41,67% 34,23% 14,29% 31,52% 

C12 66,67% 77,66% 70,15% 69,74% 75,00% 50,85% 44,19% 

C13 61,67% 43,81% 70,67% 31,13% 13,45% 21,69% 23,81% 

C14 60,44% 27,91% 64,04% 49,12% 36,36% 37,86% 35,94% 

C15 21,88% 17,86% 25,45% 7,81% 3,23% 19,35% 4,26% 

C16 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

Elaboração: Os autores (2025). 

 

 
Tabela S4 - Erro de omissão por classe. 

Classes Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

C1 57,69% 40,00% 87,50% 27,59% 22,22% 37,50% 0,00% 

C2 26,23% 54,39% 44,90% 32,00% 21,37% 13,79% 15,79% 

C3 62,00% 41,67% 62,00% 29,63% 22,08% 30,00% 10,00% 

C4 36,54% 10,34% 44,59% 37,50% 13,04% 14,52% 8,62% 

C5 66,67% 6,67% 60,00% 7,14% 6,67% 0,00% 5,26% 

C6 74,39% 9,09% 69,57% 13,33% 15,38% 17,95% 11,11% 

C7 53,91% 52,45% 65,03% 46,62% 41,03% 43,63% 47,12% 

C8 57,46% 49,84% 58,25% 49,58% 35,14% 37,96% 31,38% 

C9 18,18% 4,55% 64,91% 3,39% 0,00% 14,08% 0,00% 

C10 26,37% 20,89% 27,61% 19,19% 19,88% 16,21% 16,12% 

C11 70,62% 52,38% 68,85% 52,00% 46,15% 62,50% 43,50% 

C12 66,67% 43,24% 80,77% 45,24% 34,29% 49,12% 36,84% 

C13 64,62% 24,36% 68,12% 27,00% 2,83% 18,75% 9,09% 

C14 34,55% 34,04% 37,25% 32,56% 41,67% 31,18% 12,77% 

C15 0,00% 37,84% 4,65% 6,35% 13,04% 1,96% 0,00% 

C16 25,71% 21,74% 32,26% 0,00% 5,45% 23,53% 0,00% 

Elaboração: Os autores (2025). 


