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Abstract: Wetlands are important and valuable ecosystems in the landscape of the extreme south of Brazil. However, 

they are among the ecosystems threatened by human pressures and climate change. Monitoring and managing these 

environments is a challenge due to their high spatial and temporal dynamics. The use of remote sensing techniques, 

supervised classification, and machine learning algorithms offers a promising opportunity to map and monitor 

wetlands. The objective of this work is to develop a method to map Potential Wetlands (PW) from the integration of 

images from different satellites, sensor systems, spectral, topographic, climatological and hydrological features, made 

available on the Google Earth Engine (GEE) cloud user platform. Supervised classification was performed on the 

geomorphological units Coastal Plain (CP) and Central Depression (CD) considering two classes: Potential Wetlands, 

which encompasses all types of wetlands, and No Wetlands, for the remaining land use and occupation classes. The 

supervised pixel-by-pixel classification, individual for each geomorphological unit, allowed more accurate results 

consistent with previous, consolidated mapping. The PW were mapped with a global accuracy higher than 88% and 

consumer and producer accuracy higher than 81% in the Coastal Plain and Central Depression. These results allow us 

to affirm that the proposed methodology enabled the identification of 22% to 24% increase in potential wetlands in 

geomorphological regions, from spectral signatures, and pixel-by-pixel supervised classification of PW using different 

image collections and sensor systems. 

Keywords: Wetlands; Google Earth Engine; Random Forest. 

 

Resumo: As áreas úmidas são ecossistemas importantes e valiosos na paisagem do extremo sul do Brasil. No entanto, 

eles estão entre os ecossistemas ameaçados pelas pressões humanas e pelas mudanças climáticas. O uso de técnicas 

de sensoriamento remoto, classificação supervisionada e algoritmos de aprendizado de máquina oferece uma 

oportunidade promissora para mapear e monitorar áreas úmidas. O objetivo deste trabalho é desenvolver um método 

para mapear Áreas Úmidas Potenciais (AP) a partir da integração de imagens de diferentes satélites, sistemas de 

sensores, feições espectrais, topográficas, climatológicas e hidrológicas, disponibilizadas na plataforma Google Earth 

Engine. A classificação supervisionada e o mapeamento foram realizados para as unidades geomorfológicas Planície 

Costeira (PC) e Depressão Central (DC) considerando duas classes: Áreas Úmidas Potenciais, que engloba todos os 

tipos de áreas úmidas, e Áreas Não Úmidas, para as demais classes. A classificação, individual para cada unidade 

geomorfológica, permitiu resultados acurados frente a bases oficiais. As APs foram mapeadas com acurácia global 

superior a 88% e acurácia do consumidor e produtor superior a 81% na PC e DC. Esses resultados demonstram que a 

metodologia proposta possibilitou a identificação do aumento de 22% a 24% em áreas úmidas potenciais nas regiões 

geomorfológicas estudadas. 

Palavras-chave: Áreas úmidas; Google Earth Engine; Random Forest. 
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1 INTRODUCTION  
 

Wetlands are being drastically converted into non-wetland habitats due to agricultural activities 

(VOLK et al., 2017; ZOU et al., 2018), urbanization (ALIKHANI; NUMMI; OJALA, 2021), natural processes, 

and climate change impacts (TINER; LANG; KLEMAS, 2015; MOOMAW et al., 2018). They are among the 

ecosystems that experience the greatest anthropogenic pressure, even though they play a vital role for humans 

(SMARDON, 2014; MOOMAW et al., 2018).  

Despite the benefits of Wetlands, comprehensive inventories are lacking in most countries due to the 

high investments with mapping, the high dynamics and remote nature of these ecosystems (GALLANT, 2015; 

HALABISKY, 2019).  

These issues result in partial, fragmented, or outdated inventories. Some countries do not even have 

inventories available (MAXA; BOLSTAD, 2009; MAHDIANPARI et al., 2019). 

Wetlands are defined as water-saturated habitats that create hydric soil suitable for the growth of water-

tolerant plants (RUBEC, 2018; JAMALI et al., 2021). Wetlands mappings and classifications generally follow 

two trends. Horizontal classifications divide habitats into a series of classes or types, such as salt marshes, 

peatlands, mangroves, etc. (FRANKLIN et al., 2018; KAPLAN; AVDAN, 2019; MAHDIANPARI et al., 

2020). Hierarchical classifications separate Wetlands types into different levels and, are most commonly used 

in inventories (OLLIS et al., 2013; MEDDE, 2014; MAO et al., 2020; SALINAS et al., 2020). This approach 

facilitates regional, national, and international comparisons between similar systems and allows for greater 

detail of individual types in the landscape (TINER, 1999).  

Different criteria are used to define the nature, boundaries, and heterogeneity of Wetlands (MEROT 

et al., 2006). In addition, several countries have their legislation and official instruments for identification and 

classification of Wetlands. Among the hierarchical methods, the Cowardin et al. (1979) and Ramsar (SCOTT; 

JONES 1995) systems have vegetation and hydrology as central classification criteria. Semeniuk; Semeniuk 

(1995; 2011), Brinson (1993; 2009) and Smith et al. (1995) adopt hydrological and geomorphological 

parameters. For these authors, vegetation should not be the main or the first classification criterion, due to its 

dependence on hydrological and geomorphological factors. In addition, some important functions for its 

maintenance and functioning are independent of vegetation (GOMES; MAGALHÃES JÚNIOR, 2018). 

In this context, the growing awareness of the role played by Wetlands in the global climate system 

(MOOMAW et al., 2018) has led to a proliferation of land surface models (LSM) designed for their 

quantification. However, these models take different approaches, with disagreements related to their extent in 

both space and time (HU et al., 2017). 

To achieve coherence between different hierarchical delineation methods, Merot et al. (2006) defined 

a functional approach based on the potential distribution of wetlands. Potential Wetlands (PW) are defined by 

topographic and pedoclimatic criteria derived from a Digital Elevation Model and a soil database (MEROT et 

al., 2006), and include those geographic situations where geomorphological or climatic criteria entail a high 

probability of wetland occurrence (BERTHIER et al., 2014). 

PW can be considered as the maximum natural extent of wetlands. They therefore include old wetlands 

that have already been disturbed as, for example, by artificial drainage, urbanization, or river rectification 

(RAPINEL et al. 2019). It can be understood as preliminary knowledge, especially in regions where inventories 

have not yet been conducted, making it readily available for policy managers and providing a comparative 

framework for wetland inventories (MEROT et al., 2006). 

Knowing the potential distribution of wetlands aids in understanding their formation and detecting 

changes, as well as in decision-making for their restoration and protection (HU et al., 2017). This approach 

was used in Durand et al.(2000), Steyaert et al. (2007) and Berthier et al. (2014) to generate a mapping of PW 

in France. Rapinel et al. (2019) used it to propose wetland management and assist in identifying sites where 

restoration measures should be prioritized.  

From a methodological standpoint, it is critical to have accessible and reproducible identification 

criteria that support multiple scales of analysis and allow for continuous monitoring. Due to the dynamic nature 

of these ecosystems, conventional mapping to monitor changes over time is difficult and time-consuming, 

requiring extensive fieldwork over large geographic areas (AYANLADE; PROSKE, 2016; HUANG et al., 
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2017; KAPLAN; AVDAN, 2018). Knowledge of the extent and distribution of wetlands through 

comprehensive monitoring programs is a research frontier with important applications in the conservation and 

management of these ecosystems, as well as to protect them from further alteration and degradation (VALENTI 

et al., 2020; HALABISKY et al., 2022).  

Remote sensing (BAN; YOUSIF 2016; ASOKAN; ANITHA, 2019) is an efficient tool that can play 

a fundamental and constructive role in assessing, studying, and measuring the extent of changes in Wetlands, 

both long-term and large-scale (MABWOGA; THUKRAL 2014; MCCARTHY; MERTON; MULLER-

KARGER, 2015). On the other hand, it requires considerable processing and storage capacity, given the 

volume of information required.  

In this regard, the development of cloud computing such as Google Earth Engine (GEE), in open access 

programs with availability of large volumes of Earth Observation (EO) data, archives, and datasets stored in 

clouds, and advances in machine learning techniques, allow creating comprehensive and large-scale 

delineation methodologies (HIRD et al., 2017; MAHDIANPARI et al., 2018; MAHDIANPARI et al., 2019; 

AHMAD et al., 2020; VALENTI et al., 2020; JAMALI et al., 2021) capable of being adapted to diverse 

geomorphological and climatic conditions.  

The GEE platform is designed to help researchers easily share their results with other researchers, 

policymakers, NGOs, and the public, and access to planetary-scale satellite data and extensive computing 

power for image processing and analysis (GORELICK et al., 2017). Considering that mappings are sometimes 

limited to local scales, GEE enables the expansion of classifications to regional or national areas (VALENTI 

et al., 2020; JAMALI et al., 2021). 

Recent efforts by Bourgeau-Chavez et al., (2015), Mahdianpari et al. (2018; 2019; 2020), Wu et al. 

(2019), Valenti et al. (2020) and Jamali et al. (2021) using remote sensing data and cloud computing programs 

have yielded significant advances in Wetlands mapping and monitoring.  

In the extreme south of Brazil, in the state of Rio Grande do Sul, a great diversity and abundance of 

Wetlands occurs, including a diversity of microhabitats that contribute to great richness and abundance of 

waterbirds (GUADAGNIN; MALTCHIK, 2007; GUADAGNIN; MALTCHIK; FONSECA, et al., 2009; 

SCHUH; GUADAGNIN, 2018). Rio Grande do Sul has international recognition with two Ramsar sites, the 

Taim Ecological Reserve and the Lagoa do Peixe National Park (ROLON; ROCHA; MALTCHIK, 2011; 

RIBEIRO et al., 2021). 

With the growing concern of researchers to highlight the importance of these areas, in the ecological, 

social and microclimatic spheres, and to improve mapping techniques, studies have been developed that 

address delineation and classification of improved remote sensing techniques, such as object-oriented 

classification (GUASSELLI; SIMIONI; LAURENT, 2020; SIMIONI et al., 2020; RUIZ et al., 2021), but in 

small-scale wetlands. 

Our proposal, however, is to map potential wetlands on a large scale. According to Tassi and Vizzari 

(2020), GEE sometimes does not allow object-oriented classification processing at large scales. GEOBIA, 

which includes both object segmentation and texture analysis of objects, is not yet common in GEE, probably 

due to the difficulty of concatenating the appropriate functions and adjusting the various parameters to 

overcome the computational limitations of GEE (TASSI; VIZZARI, 2020). 

Existing inventories from remote sensing products, which include the spatial distribution of Wetlands 

in Rio Grande do Sul, incorporate different data sources, methods and mapping scales, making them of limited 

use for rigorous monitoring of wetlands (FZB, 2013; SEMA, 2018; SOUZA et al., 2020). Thus, we propose in 

this study a new approach to delineate PW from remote sensing data, including spectral, topographic, and 

hydrological features, made available on the Google Earth Engine cloud user platform. 

From the data set, we sought to verify the most important variables to identify and delimit the PW in 

two geomorphological units in the state of Rio Grande do Sul, Brazil. 

 

 

 

 

 



Rev. Bras. Cartogr, vol. 75, 2023                                            DOI: http://dx.doi.org/10.14393/rbcv75n0a-69753 

    4 

2 METHODOLOGY 
 

2.1 Study Area 
 

To map the PW, two compartments of geomorphologic units in the State of Rio Grande do Sul were 

used: Coastal Plain (CP) in Figure 1 and Central Depression (CD) in Figure 2. The spatial distribution of the 

geomorphological units is shown in Figure 3. 

Geomorphology and hydrology are important factors for Wetlands classification (SEMENIUK; 

SEMENIUK, 1995; 2011) because structuring factors tend to be less dynamic and changeable over time 

compared to biological ones, which allows categorizing Wetlands into more stable classes, even when they are 

substantially altered by vegetation or soil removal (GOMES; JUNIOR, 2018). In this sense, it was chosen to 

consider the geomorphological compartments and units as regions of interest. 

The Coastal Plain occupies an area of approximately 33,000 km in the outer coastal portion. It 

preserves the geological and geomorphological record of the Quaternary (TOMAZELLI; VILLWOCK, 2000) 

and depositional systems of the Lagoon-Barrier type (VILLWOCK ET AL., 1986; VILLWOCK; 

TOMAZELLI, 1995), marked by transgressive-regressive events. It is a suite of ecosystems dominated by 

pioneer plant formations of marine and fluvial influence, and grassland and forest formations (SCHAFER, 

2013). Mosaics differentiated by landscape morphology and water availability occur, characterized by sparse 

vegetation in the dry grasslands and dune areas and lush vegetation in the humid areas of depressions and old 

dune forests (SCHAFER, 2013). 

 

Figure 1 - Wetland in the Coastal Plain, municipality of Palmares do Sul. 

 
Source: Schafer (2013). 

The Central Depression, located in the center of the state, corresponds to an area of low altitudes, 

represented by Mesozoic sediments of the Paraná Basin and express the process of peripheral erosion from the 

events of the late Mesozoic and Cenozoic. The geomorphology is characterized by a surface consisting of 

differentiated patterns of hills with either flat tops or convex tops (SUERTEGARAY; GUASSELLI, 2012). It 

consists predominantly of areas of cleared fields and pastures, an intensive summer agricultural zone, and an 

agricultural zone of diversified crops (SPGM, 2021). 

 
Figure 2 - Wetland in the Environmental Preservation Area (EPA) of Banhado Grande. 

 
Source: SEMA (2021).  
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Figure 3 - Geomorphological units: Central Depression (CD) and Coastal Plain (CP) and altimetry, Rio Grande do 

Sul 

 
Elaboration: The authors (2023). 

 

2.2 Selection of samples for classification 
 

To determine the number of samples, varying amounts of samples were tested until a sufficient 

threshold was attained that would enable processing of images and yield satisfactory outcomes. Initial 

classification tests involved fewer than 8000 samples, but these yielded unacceptable results due to the 

heterogeneity of wetland patterns in the Geomorphological Units and the breadth of the study area.  

Regarding the number of samples, in applications that require image classification, the availability of 

labeled samples (training data) is associated with the choice that the analyst will make for extracting 

information from the images (ZANOTTA; ZORTEA; FERREIRA, 2019). In addition, the number of training 

samples available to model each class of interest, and how well these samples represent the diversity of land 

cover patterns in the image to be analyzed, are crucial factors for the success of supervised classification.  It is 

well understood that the more complex the classification model being adopted, the greater the need for training 

samples (ZANOTTA; ZORTEA; FERREIRA, 2019). 

We created 4,000 sampling points randomly, according to pre-existing limits in the inventory of the 

Zoobotanical Foundation of Rio Grande do Sul (FZB, 2013), considering that this inventory has consolidated 

information. Although there are different types of Wetlands, in this work, due to the main objective, which is 

to identify Potential Wetlands, only the Wetland and No Wetland classes were defined.  

Samples from the No Wetland class were allocated to regions not covered by the FZB (2013) database 

and polygons. For this class, 4,000 sample points were also used randomly. To consolidate the samples inserted 

in the image classification, the databases were joined, totaling 8,000 points, to extract, later, information from 

each pixel of the stack of images intersected by the points, Figure 4. 
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Figure 4- Distribution of sampling points for Wetland and No Wetland classes, in the Central Depression 

(CD) and Coastal Plain (CP), Rio Grande do Sul. 

 
Elaboration: The authors (2023). 

 

2.3 Image collections, different sensors, and spectral indices 
 

Satellite images from Landsat 8 Operational Land Imager (OLI), Sentinel-1C-band SAR (C-SAR), 

Shuttle Radar Topography Mission (SRTM) and MODIS Evapotranspiration (MOD16A2 Version 6) sensors 

were selected for the period between 01/January/2015 and 31/December/2020, Table 1. 

Table 1 - Datasets available in Google Earth Engine to classify PW. 

Sensor Processing Resolution 

(m) 

Use Acquisition 

(days) 

Landsat 8 OLI Level 2 SR Tier 1 30 Surface Reflectance 8 to 16 days 

Sentinel-C-SAR Level 1 GRD 10 Backscatter intensity 5  

SRTM Level 2 Version 3 30 Elevation;slope;hillshade, aspect - 

MOD16A2 Version 6 500 Total Evapotranspiration (ET), 

Potential Total Evapotranspiration 

(PET) 

8  

Elaboration: The authors (2022). 

 

From Landsat 8 (OLI), the following indices were calculated: Normalized Difference Water Index 

(NDWI); Modified Normalized Difference Water Index (MNDWI); Normalized Difference Vegetation Index 

(NDVI); Enhanced Vegetation Index (EVI); Land Surface Water Index (LSWI) used to highlight features 

associated with vegetation, water, and soil moisture, Table 2. 

 

 Table 2 - Spectral index Vegetation and water used in the composition of the classification. 

Index Formulation Reference 

Normalized Difference Vegetation Index 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Rouse et al.(1973) 

Normalized Difference Water Index 𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

McFeeters (1996) 

Modified Normalized Difference Water 

Index 
𝑀𝑁𝐷𝑊𝐼 =

𝐺𝑅𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
 

Xu (2005) 

Land Surface Water Index 𝐿𝑆𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅
 

Gao (1996), Chandrasekar et al.(2010) 

Enhanced Vegetation Index 𝐸𝑉𝐼 = 𝐺 × (
(𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝐶1 ×𝑅−𝐶2 ×𝐵+𝐿)
) Huete (2002) 

Elaboration: The authors (2022). 
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Sentinel-1 imagery was used to assist in the identification of PW due to its sensitivity to herbaceous 

and wetland vegetation features, as well as the change from exposed soil to vegetation, wetlands, and water 

due to backscatter (VALENTI et al., 2020; JAMALI et al., 2021). In addition, Sentinel-1 images detect 

vegetation features on cloudy days or nights (PETIT et al., 2022).  

To understand the importance of the elevation and slope variables, the SRTM digital elevation model 

(DEM), 30 m spatial resolution, was used. 

The regions where the wetlands are located have different behavior and responses from the others, and 

thus, it was sought to verify how the processes related to evapotranspiration occur in these regions. MOD16A2 

Version 6, an 8-day composite product with 500 m spatial resolution, was used for evapotranspiration. The 

algorithm used to collect the MOD16 data product is based on the logic of the Penman-Monteith equation, 

which includes daily meteorological reanalysis data inputs along with MODIS remote sensing data products, 

such as dynamics of vegetation properties, albedo and land cover. 

Mapping approaches that use imagery and sensors that capture evapotranspiration can be useful in 

short-term wetland recovery assessment projects that occur during the dry season or long-term projects that 

compare ET rates from the dry season site to other seasons (CERON et al., 2015).  

Different sensors and satellites allow significant results to be obtained to distinguish spectral behaviors 

that aid in the separation of distinct classes or uses. In works similar to what we propose in this paper, 

collections of images and different sensors have been used in wetland classification (VALENTI et al., 2020; 

JAMALI et al., 2021; LONG et al., 2021). 

 

2.4 Workflow and Data Processing 
 

Javascript language code structures in Google Earth Engine's Code Editor platform were used to 

acquire and digitally process the images. Advanced supervised machine learning and deep learning algorithms, 

such as support vector machine (SVM), k-means neighbor, random forest (RF), convolutional neural networks, 

and fully convolutional networks, have been successfully applied for wetland classification (HAN; DEVLIN, 

2018). 

The proposed mapping and supervised classification method considered data from different platforms 

and sensors, and made use of the pixel-based Random Forest machine learning algorithm, considering 

predefined classes and regions. Two mapping classes were generated: Wetlands and No Wetlands. The 

mapping of the PW was performed from supervised classification using Machine Learning techniques and 

cloud image processing using Google Earth Engine, as per the flowchart in Figure 5. 

The processing began with the definition of the study area and the filtering of the images in the analysis 

period and region of interest. The initial proposal was to apply a single classification for the entire territory of 

the State of Rio Grande do Sul. However, during the development of the classification process, Google Earth 

Engine processing limitations (errors and time-outs) appeared, which did not allow the advance of the 

classification for the entire state with the adequate number of samples to obtain good results. By decreasing 

the number of samples, partial results showed confusion of the classifier. Areas known and consolidated as 

wetlands were not being mapped, or were mapped partially. 

In this sense, it was chosen to perform the classification in a fragmented way by geomorphological 

regions. In this study, the PW classification was performed for the Central Depression and Coastal Plain Units. 

Limitations in large-scale image processing are pointed out by Noel et al., (2017); Valenti et al., (2020). 

The data used in the classification has atmospheric, radiometric and geometric calibration and 

correction. Radar images were converted from decibels to obtain natural backscatter values for the VV and 

VH bands (VALENTI et al., 2020; JAMALI et al., 2021). On the Landsat images (OLI) a cloud mask function, 

and the scale and offset factor were applied. On the MOD16A2 images, the scale factor described in its 

properties was applied for the bands used PET and ET (USGS, 2018).  

Spectral indices (NDWI, MNDWI, NDVI, EVI, LSWI, VV and VH backscatter and VV/VH ratio) 

used as input to the classification model were calculated, and commonly used for wetland classification due to 

their ability to distinguish vegetation and water characteristics from other land cover types (VALENTI et al., 

2020; LONG et al., 2021).  
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To delineate the water bodies and to avoid overlap and confusion in the classification of wetlands, the 

JRC Global Surface Water Mapping Layers database was used (PEKEL et al., 2016). 

 

Figure 5 - Flowchart of the activities for mapping the PW. 

 
Elaboration: The authors (2022). 

 

To identify inundated wetlands, radar data and VV and VH backscatter values and the VV/VH ratio 

were used. Areas of apparent water have low backscatter values due to soft surface scattering (VALENTI et 

al., 2020; LONG et al., 2021). Flooded wetlands have high backscattering values due to double-bounce 

scattering (AHMAD et al., 2020; VALENTI et al., 2020). The VV/VH ratio is particularly useful for wetland 

classification due to sensitivity to soil moisture and correction for terrain effects (VALENTI et al., 2020; 

LONG et al., 2021). 

Random Forest (RF), a non-parametric machine learning algorithm that creates decision trees (DT) 

based on training data and spectral bands organized into a stack of input images, was used (JAMALI et al., 

2020; VALENTI et al., 2020). The Random-based classification approach combines classifier trees generated 

using a random training sample data set. Each tree provides a vote for the class in which an input vector should 

be located (BREIMAN 2001). 

When a sample is entered into the RF model, each decision tree performs a separate evaluation to 

determine the category to which the sample should belong, and the category that is selected most often is 

considered the category of the sample. The RF method can effectively reduce the uncertainty of a specific 

algorithm and improve the accuracy of classification. The information dimension of RF processing is larger 

and more complex than that of other classification algorithms (HU et al., 2017). 

The literature indicates that RF outperforms other classifiers, including Naive Bayes (NB), 

Classification and Regression Tree (CART), and Support Vector Machine (SVM), in wetland mapping. In 

their study, Gxokwe, Dube and Mazvimavi (2022) evaluated various classifiers and found that RF yielded the 

most satisfactory results, achieving the following accuracies: RF (80.55%), NB (25%), SVM (66.60%), and 

CART (62.30%). Amani (2018) and Amani et al. (2019) used the RF algorithm based on studies where the RF 

algorithm was superior to other classifiers commonly used for wetland mapping. In Mahdianpari et al., (2020) 

research, the RF yields more accurate results than CART and Minimum Distance (MD) for large-scale wetland 

monitoring. 

The RF pixel-by-pixel method was used because of the high processing capacity of the GEE and 

because it produces satisfactory results that are not significantly different from object-based approaches in 

wetlands (VALENTI et al., 2020; JAMALI et al., 2020; LONG et al., 2021; HU et al., 2017).  

This method is often used in wetland mapping because it can handle datasets from multiple sources, 
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has few observations, and is not normally distributed, remaining insensitive to overfitting and noise 

(VALENTI et al., 2020; JAMALI et al., 2020; LONG et al., 2021). 

In the classification process, the samples were randomized, and divided into training and validation 

samples, in the proportion of 70% for classifier training samples and 30% for accuracy testing. The trained RF 

classifier was applied to the database containing the different image collections, spectral bands and sensors to 

create a PW classification. An RF classifier with 500 trees and the default GEE settings was used. The RF uses 

decision trees to classify, selecting the class with the most votes among all trees. In this work, the output mode 

is assigned the variable “PROBABILITY” which indicates the probability that the classification is correct, 

with values ranging from 0 to 100%.  

To evaluate the Wetlands mapping for the CP and CD geomorphological units, we performed the 

overlay of the FZB (2013) database over the supervised classification obtained for the WP. 

Classification accuracy was performed based on the training samples and a consistency evaluation 

based on the FZB Wetlands mapping (2013). The accuracy evaluation was performed with randomly 

distributed verification samples, and used confusion matrices, producer accuracy (sample fractions of pixels 

of each class correctly assigned to their classes by the classifiers, associated with omission error) and user 

accuracy (estimates of the fractions of mapping pixels, for each class, correctly classified, associated with 

commission error) according to Hu et al. (2017); Valenti et al., (2020); Long et al., (2021). 

 

3 RESULTS AND DISCUSSION  
 

3.1 Spectral response of bands and indices per class 
 

The boxplot analysis, Figure 6 shows the spectral response and index values for the Wetlands and No 

Wetlands samples for the Central Depression (CD) and Coastal Plain (CP) geomorphological units. 

In relation to the vegetation (NDVI and EVI) and water (LSWI, NDWI and MNDWI) indices, as well 

as the bands (VV, VH, Blue, Green, Nir, Red, Swir1, Swir2, Slope, Elevation, Temperature, Aspect, ET and 

PET) it is possible to identify a similar behavior of the spectral responses for the classes analyzed in the two 

units (CP and CD). The classes tend to present maximum and minimum values in close proportions and 

distributions.  

The NDVI analysis allows us to observe that the Wetlands samples show higher maximum and median 

values when compared to the No Wetlands samples in CP and CD. The maximum NDVI values are higher and 

distinct between the classes, as the Wetlands show higher concentrations of vegetation than the No Wetlands 

in the geomorphological regions.  

For EVI this behavior was distinct, and it was not possible to identify a pattern in the maximum values 

and medians in the two regions as in the case of NDVI and other indices. It is noted that the medians of the 

CD samples are very close between the Wetlands and No Wetlands classes, differently from what is identified 

in the CP.  

Long et al., (2021), in a similar mapping, used spectral indices with good separability between classes. 

When considering a larger number of classes, EVI, for example, showed spectral responses providing a better 

degree of discrimination, however distinguishing wetland vegetation types using NDVI and NDWI was 

difficult. 

The NDWI and MNDWI indices highlight water bodies and allow monitoring of dynamic changes in 

wetlands. Water has a direct impact on wetland ecosystem dynamics, and hydrological variables such as 

evapotranspiration, flood duration, flow velocity, and flow variability, and can be used to assess wetland health 

(CERON et al., 2015). In addition, understanding the seasonality of streams in relation to their permanence 

and hydrological regime is important for this ecosystem (ASHOK et al., 2021). 

In this context, work done for monitoring wetlands has shown the significant perception of change in 

terms of pixel range with the presence of water and changing locations in terms of seasonality and resilience 

(ASHOK et al., 2021; VALENTI et al., 2021, HALABISKY et al., 2022). The box plot outliers concerning 

the wetland samples for the two units (CD and CP) are estimated to be the presence of water sheet or moisture 

in periods of flooding pulses (Figure 6). 
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Figure 6 - Spectral and index values of the randomly selected samples for the Central Depression (CD) and 

Coastal Plain (CP). 

 

 

 

 
Elaboration: The authors (2023). 
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Considering climatological aspects, wetland regions, due to the presence of soil moisture, flood pulses, 

and water sheet, tend to have lower temperatures than their surroundings. In addition, wetlands have a cooling 

effect in tropical regions (WU et al., 2021). 

Wetlands tend to have higher volumes for evapotranspiration and potential evapotranspiration. In 

addition, evapotranspiration is a reliable indicator of wetland health (CERON et al., 2015). Expected behaviors 

for temperature, ET and PET, described in Ceron et al., (2015); Moreira et al., (2019), were observed in our 

results for the two mapped geomorphological units. Although, they have distinct maximum values, wetlands 

show lower temperatures than the other No Wetlands regions, while the results for ET and PET are higher. 

The spectral responses of the indices and bands for the CD and CP regions are distinct due to the 

different land cover, land use and land cover compositions in these geomorphological units. In Figure 8 and 

Figure 10 it is observed that the CP unit presents a greater extension of water bodies, for example. However, 

even with distinct land uses, it was possible to observe patterns in the spectral responses of the Wetlands and 

No Wetlands. 

Another aspect verified in the graphical analysis is that all 5 indices analyzed for CP, have significant 

interquartile range. This amplitude may be due to the heterogeneity found in the soil cover of the region. 

The VV/VH ratio showed different results for the CP and CD units. Such divergences may have 

occurred due to the effects of terrain and soil moisture. The VV/VH ratio is particularly useful for wetland 

classification because of its sensitivity to soil moisture, and it also corrects for terrain effects (VALENTI et 

al., 2020). 

In the analysis of elevation, slope, and aspect of the samples in the image classification, the results 

were similar in the two units. The wetlands occur in regions of lower elevation and lower slope in both 

geomorphological units. In a study conducted for wetlands in Canada, slope and elevation had a strong 

influence on classification (VALENTI et al., 2020). 

 

3.2 Mapping Evaluation 
 

The results of the geomorphological unit's classification (Figure 8, 9, 10 and Figure 11) show that the 

pixels classified by the RF algorithm with the highest probability of being PW overlap the database of the FZB. 

The classification differentiated Wetlands and No Wetlands in unsampled regions (Figure 7). It is estimated, 

however, that some areas may have been misclassified due to the limitations of the pixel-by-pixel classification 

method, as well as by the results pointed out in the statistical analyses presented in Table 3. 

Pixels near or within the FZB polygons were also more likely to have been correctly classified as 

Potential Wetlands (Figure 8 and Figure 10). 

A Table 3 presents the areas of the existing Wetlands in each geomorphological unit (CD and CP), 

against the result of the total area obtained after classification. It can be seen that for both regions, the area 

classified for the PW is larger than the reference database. For the CP, the percentage difference was 22% 

between the area mapped, and the area classified as PW, as well as for the CD, the difference was 24%.  

In this context, it can be said that, on average, in the two regions, more than 20% of the existing areas 

are PW that are not mapped in existing inventories. 

Table 3 - Statistical Analysis for Wetlands and No Wetlands, in the Central Depression (CD) and Coastal 

Plain (CP). 

Area km² Central Depression Area km² Coastal Plain 

FZB Area Classified Area  Difference Difference % FZB Area Classified Area  Difference Difference % 

1452.33 1923.10 470.77 24% 3495.2 4453.85 958.65 22% 

Elaboration: The authors (2023). 
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Figure 7 - PW in relation to the FZB Wetlands database (black outline) in the Central Depression (CD). 

 
Elaboration: The Authors (2023). 

 

Figure 8 - PW (pink) in relation to the FZB Wetlands database (black outline) in the Central Depression 

(CD). 

 
Elaboration: The Authors (2023). 

Our study sought to understand and define the spectral responses, topographic, geomorphological and 

hydrological characteristics to define regions that present similarities and can be classified as PW. In this sense, 

it is also observed that some pixels, beyond the boundaries of existing polygons and already classified as 

wetlands, also presented high probability of being wetlands according to the classification (above 80%, see 

Table 3).  

In studies using similar methodologies, errors in wetlands mapping were also observed. In this case, the 

extent of Potential Wetlands was sometimes overestimated on slopes or, conversely, underestimated on small 

alluvial ridges or road embankments (RAPINEL et al., 2019). 

The analysis of the importance of the variables in the classification process (Figure 9), shows that the 

bands referring to Elevation, Temperature, VH, VV/VH, ET, NIR, VV, BLUE, LSWI, PET, and SWIR2 

presented, in this order, greater importance for the RF classifier.  

Based on the spectral responses of the bands and indices identified as of greatest importance during image 

classification, it stands out that elevation and temperature had the greatest influence on the classifier, as well 

as presenting strongly distinct spectral responses for the Wetlands and No Wetlands classes.  
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According to Breiman (2001) variable importance analysis allows identifying why a certain variable 

seems important, and how the insertion of others may help or hinder image classification once inserted. In 

image classification, the analysis of the importance of variables also illustrates the relevance of the data aiming 

for higher overall classification accuracy in the proposed model (KELLEY; PITCHER; BACON, 2018). In 

this case, these bands would be the variables that most influence the classifier to distinguish Wetlands from 

No Wetlands. 

Stream delineation databases from the JRC Global Surface Water Mapping Layers collection (PEKEL et 

al., 2016) were used to aid wetland classification. However, this information did not carry weight in the RF 

decision-making (ocurrence e max extent bands).  

 
Figure 9 - Importance of variables for Random Forest classification, Central Depression (CD). 

 

Elaboration: The Authors (2023). 

For the Coastal Plain (CP) the results show a similar behavior to the PW of the Central Depression 

(CD) in terms of spectral responses and importance of the variables in the classifier. Furthermore, as mentioned 

earlier, the classification covers other areas beyond the FZB inventory, identifying, from the spectral response, 

other regions that can be framed as PW and that have not yet been mapped in existing inventories. 

Although the importance of the variables alternated between the units, our results allow us to identify 

areas that fit as PW from the spectral signatures and reinforce that the methodology employed was satisfactory. 

Rapinel et al., (2019); Valenti et al., (2020); Ashok et al., (2021) used different image and sensor bases for 

classification and were also able to separate classes from spectral and topographic signatures. 
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Figure 10 - PW (pink) in relation to the wetland's database (black outline) of the FZB, Coastal Plain (CP) 

region. 

 

Elaboration: The Authors (2023). 

Comparing the results between the Central Depression units (Figure 9) and Coastal Plain (Figure 11) 

shows that the bands corresponding to Elevation, Temperature, VH, VV, BLUE, VV/VH and LSWI are the 

most important variables for the RF classifier.  

 

Figure 11 - Importance of variables for Random Forest classification, Coastal Plain (CP). 

 

Elaboration: The Authors (2023). 

Unlike what was obtained for the Central Depression, the variables corresponding to ET and PET do 

not have similar importance for the Coastal Plain, which may be associated with the differences in land use 

and occupation in the two geomorphological units.  

On the other hand, PW are estimated to have higher evapotranspiration potential than the other classes 

that were grouped as No Wetlands (CERON et al., 2015). In this sense, it was expected that the spectral 

responses for ET and PET would be among the most important values for the Random Forest classifier.  

The similarities found in the two mapped units allow us to affirm that the spectral responses are 

determining variables for the classification of PW and the use of different sensors and satellites allows the 

classification algorithm to establish distinct thresholds and, based on this, to more accurately determine the 

class associated with each sample.  

In wetland inventories and mapping using different sensors (CERON et al., 2019; RAPINEL et al., 
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2019; VALENTI et al., 2020; ASHOK et al., 2021; LONG et al., 2021; WU et al., 2021) besides obtaining 

distinct spectral responses for the classes and allowing separation from thresholds, more accurate results were 

obtained. 

 

3.3 Accuracy of the RF classification 
 

The proposed methodology, based on the data set for the Central Depression and Coastal Plain units, 

achieved Overall Accuracy of 89% and 88%, respectively (Table 4). 

Consumer accuracy averaged 83% for No Wetland and 93% for Wetland (PW) for the Central 

Depression unit. For producer accuracy, the values obtained were 87% and 91% for No Wetland and Wetland. 

For the Coastal Plain unit, the overall accuracy was 88%, while the Producer and Consumer accuracy was 89% 

and 81% for No Wetland and 88% and 94% for Wetland (PW).  

As to the Kappa index, both units averaged results between 75% and 77%, suggesting that the 

classifications were in generally high agreement with the validation data, even considering the random 

agreement between the datasets. 

Based on the results of accuracy and Kappa index, it is understood that the methodology proposed for 

the classification of Potential Wetlands produced results consistent with previous inventories already 

conducted in the region, as in the case of the study produced by FZB (2013).  

 

Table 4 - Statistical Analysis for Wetlands and No Wetlands in the geomorphological units 
Accuracy Classification Central Depression 

Class Consumer Accuracy Producer Accuracy Overall validation accuracy Kappa Coefficient 

In the Wetland 83% 87% - - 

Wetland 93% 91% - - 

General - - 89% 77% 

Accuracy Classification of Coastal Plain 

Class Consumer Accuracy Producer Accuracy Overall validation accuracy Kappa Coefficient 

In the Wetland 89% 81% - - 

Wetland 88% 94% - - 

General - - 88% 75% 

Elaboration: The Authors (2023). 

 

3.4 Mapping limitations  
 

According to Valenti et al., (2020), GEE has a high potential for global processing and analysis. 

However, there are limitations in terms of user memory and computational time, which may pose problems in 

the development of in-depth methodologies or large-scale studies, as reported in the mapping of wetlands with 

similar methodology. 

The methodological proposal for the classification of potential wetlands based on the 

geomorphological units of the State of Rio Grande do Sul aims to understand the spectral behavior and define 

mapping patterns. However, when developing the classification process, there were processing limitations 

(errors and timeouts) in Google Earth Engine. 

When performing the classification for the entire area of the State of Rio Grande do Sul using 8000 

samples, the processing capacity was exceeded due to the size of the area, the number of bands, and the 

complexity of the analysis. To make the classification of AUs feasible, different sampling methods and sample 

quantities were tested to define wetlands and non-wetlands. The approach with the best results was a 

fragmented classification into geomorphological regions using 8000 samples to overcome the limitations of 

large scale processing. These limitations have also been pointed out by Noel et al. (2017); Valenti et al. (2020). 

 

4 CONCLUSIONS 
 

The approach to classify Potential wetlands had as reference different methodological proposals that 
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suggest the use of remote sensing data and techniques, digital image processing and image classifications from 

machine learning for large areas using Google Earth Engine (GEE). 

In this sense, we developed the mapping for two geomorphological units of the state of Rio Grande do 

Sul, to identify potential wetlands. The separate classification of the units Central Depression and Coastal Plain 

allowed the results to be more accurate and consistent with the reality found in previous mappings and 

consolidated by competent environmental agencies.  

Potential wetlands were mapped with a global accuracy higher than 88% and consumer and producer 

accuracies higher than 85% in the Coastal Plain and Central Depression. Such results allow concluding that 

the proposed methodology allows the identification, from spectral signatures, and pixel-by-pixel supervised 

classification of PW using different image collections and sensor systems.  

Our results indicate that it is necessary to re-evaluate and update the existing inventories, as wetlands 

may be larger than the current maps represent. 

The use of passive optical data and radar images optimized the results obtained, as did the use of 

phenology and water indices, as well as temperature, evapotranspiration, elevation, and slope data that were 

considered important variables and influenced the classification of the images.  

Finally, it is understood that the mapping of PW can assist in the identification and enlargement of 

sites that have not been correctly classified in the existing inventories. However, field data collection and 

photographic records at sites that have been identified as potential wetlands can be gauged to result in a more 

accurate and updated inventory. 
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