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Abstract: The Lower Nhecolândia region is one of the most iconic landscapes in the Pantanal Basin. Its unique 

morphology comprises more than 10,000 lakes with saline-alkaline water and fresh water that coexist in an area of 

approximately 12,000 km². This region is subject to seasonal flooding that acts on runoff; however, little is known 

about its flooding dynamics. Recent advances in the area of geoprocessing have helped expand our knowledge about 

lacustrine environments. This work evaluates the performance of two supervised classifiers based on machine learning 

(Support Vector Machine and Random Forest), for characterizing the hydrological dynamics of the Nhecolândia 

region. The classifiers were applied to nanosatellite images (PlanetScope) using the Google Earth Engine cloud 

computing platform. The results showed satisfactory and similar performance of these two classifiers. 

Keywords:  Nanosatellites. Google Earth Engine. Supervised Classifiers. Lakes. 

 

Resumo: A região da Baixa Nhecolândia é uma das paisagens mais icônicas da Bacia do Pantanal. Sua morfologia 

única é composta por mais de 10.000 lagoas com águas salino-alcalinas e água doce que coexistem em uma área 

aproximada de 12.000 km². Essa região está sujeita a alagamentos sazonais que atuam no escoamento superficial, 

porém, pouco se conhece sobre sua dinâmica de inundação. Avanços recentes na área do geoprocessamento têm 

ajudado a ampliar nosso conhecimento sobre ambientes lacustres. Este trabalho teve como objetivo avaliar o 

desempenho de dois classificadores supervisionados baseados em aprendizado de máquina (Support Vector Machine 

e Random Forest), para a caracterização da dinâmica hidrológica da região da Nhecolândia. Os classificadores foram 

aplicados em imagens de nanossatélites (PlanetScope) por meio da plataforma de computação em nuvem Google Earth 

Engine. Os resultados evidenciaram o desempenho satisfatório e semelhante dos dois classificadores.  

Palavras-chave:  Nanossatélites. Google Earth Engine. Classificadores Supervisionados. Lagoas. 
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1 INTRODUCTION  
 

Remote sensing stands out due to its relevance in studies of continental aquatic resources, especially 

for identifying and monitoring large flooded areas, namely, wetlands (OZESMI; BAUER, 2002). The use of 

orbital images, obtained by radar and multispectral sensors, is largely responsible for the systematic mapping 

of these areas, as well as for studying their characteristics and uses (FINLAYSON; MILTON; PRENTICE, 

2018). The Pantanal Basin is considered one of the largest continuous wetland regions in the world, with an 

approximate area of 150,000 km², occupying part of the Brazilian states Mato Grosso and Mato Grosso do Sul 

and also covering part of Bolivia and Paraguay (ASSINE et al., 2015; KEDDY et al., 2009). 

 The water dynamics involving the flood pulse and different hydrosedimentological patterns along the 

Pantanal Basin result in distinct and complex ecosystems, which can guide the division of this wetland into 

subregions of unique landscapes that configure the valuable biodiversity of the Pantanal (JUNK; BAYLEY; 

SPARKS, 1989; JUNK et al., 2006). The region known as Nhecolândia stands out because it has, in its southern 

portion, more than 10,000 lakes distributed in an approximate area of 12,000 km². 

 The lakes of Nhecolândia differ in their hydrobiogeochemical characteristics, ranging from the 

occurrence of saline-alkaline water to fresh water, and also present different types of aquatic vegetation 

(ALMEIDA et al., 2003). In addition to the unique concentration of lakes, this lacustrine environment has a 

dense network of shallow channels sporadically flooded and of variable widths, locally known as vazantes 

(MERINO; ASSINE, 2020). The processes that involve the hydrological dynamics of the Nhecolândia region 

are highly seasonal, such as the flooding of lakes and the action of vazantes on surface runoff. Although 

Nhecolândia presents unique characteristics and is the subject of much research, there are no studies analyzing 

the temporal and spatial detail of the runoff and flooding in the region (COSTA; TELMER, 2006). 

 To study flood flow or monitor lacustrine environments such as Nhecolândia, the main challenges of 

remote sensing are related to the limitations of orbital systems, such as low temporal resolution, and the fact 

that some flood dynamics have a cycle or a high seasonality not compatible with the revisit time of a satellite 

(CARVALHO JÚNIOR, 2018; PEREIRA; ABREU; MAILLARD, 2017; POURSANIDIS et al., 2019). 

Spatial resolution is also a limitation to be considered: many rivers have their bed with a smaller extension 

than the spatial resolution of the sensor system (CARVALHO JÚNIOR, 2018; POURSANIDIS et al., 2019). 

One can mention the series of Landsat 8 satellites, which have a resolution of 30 m, making it unviable to 

apply collections of Landsat images for monitoring or studying water bodies that have a smaller extension, as 

well as ephemeral events of less than 16 days duration. 

 Currently, the incorporation and use of nanosatellites in water studies is gaining ground in the debate 

on technological innovations and their contribution to scientific development (COOLEY et al., 2019). 

Nanosatellites are characterized by having reduced dimensions and weight compared to traditional 

conventional satellites due to the reduction of their sensors and electronic components. They are designed to 

orbit in constellations composed of dozens of satellites with the intention of overcoming gaps in temporal 

resolution, achieving imaging of the entire globe with daily revisits, as well as spatial resolution, with sensors 

capable of capturing information of submetric dimensions (CARVALHO JUNIOR, 2018). The largest 

constellation of nanosatellites today is from Planet Labs, with more than 200 PlanetScope sensor systems in 

orbit (STRICK et al., 2019; PEREIRA et al., 2019). This constellation manages to capture daily images of the 

entire globe with an average spatial resolution of three meters (PLANET LABS, 2016). 

 PlanetScope sensors generate multispectral products in the red (R), green (G), blue (B) and near 

infrared (NIR) bands, and the use of these nanosatellites has been explored by the academic community 

considering the information gain obtained by high spatial and temporal resolutions. Regarding the study and 

monitoring of water resources, Planet Labs images have already been used in research on quantification of 

sediment load and flow (STRICK et al., 2019), water level monitoring (EHRET et al., 2021), quality of water 

after extreme events (NIROUMAND-JADIDI et al., 2020), concentration of suspended sediments in 

intermittent rivers (PEREIRA et al., 2019), bathymetric studies in shallow waters (POURSANIDIS et al., 

2019) and monitoring of lake flooding dynamics (COOLEY et al., 2019). 

 Despite highlighting some difficulties generated by the low spectral resolutions and different 

radiometric calibrations between the constellation of sensors, the use of PlanetScope images for developing 



Rev. Bras. Cartogr, vol. 75, 2023                                      DOI: http://dx.doi.org/10.14393/rbcv75n0a-67656 

    3 

the aforementioned research showed positive and relevant results for the understanding of the dynamics of the 

water resources, mainly of the events of high seasonality. As alternatives for maximizing space-time data from 

nanosatellites, there are image processing techniques that use artificial intelligence and cloud computing 

(BARBOSA; NOVO; MARTINS, 2019; CARVALHO JÚNIOR, 2018). 

 The use of artificial intelligence, such as the supervised classification process based on machine 

learning, has been explored in several applications of remote sensing, including improving mapping capacity 

and quality (ADUGNA; XU; FAN, 2022; SOUZA et al., 2020) guidance on strategies for preventing 

disturbances (LUZ et al., 2022) and quality monitoring models for preserving fauna and flora (ANANIAS et 

al., 2022). Cloud computing also represents a great novelty for geoprocessing due to the possibility of 

manipulating data on a large scale; the Google Earth Engine (GEE) platform is one of the main ones today 

using cloud computing of spatial data and orbital images (WANG et al., 2022; SOUZA et al., 2020; TASSI; 

VIZZARI, 2020; GORELICK et al., 2017). 

 Considering the gain of spatial and temporal information generated by nanosatellites, as well as the 

ability to process these data on a large scale with cloud computing, the present work aimed to evaluate the 

performance of different supervised classifiers, Support Vector Machine (SVM) and Random Forest (RF), 

available on the GEE platform, with the aim of establishing a workflow that can be replicated in the time series 

of nanosatellite images for the study of hydrological dynamics in the Nhecolândia region on scales of great 

spatial and temporal detail. 

 

2 MATERIALS AND METHODS 

 
The present work was based on the integrated use of data from remote sensing and processing on a 

cloud computing platform. Images from PlanetScope nanosatellites referring to a dry period and a flood period 

in the Nhecolândia region were used, considering the hydrological year from October 2017 to September 2018. 

The image processing was carried out in Google Earth Engine where the classifiers based on machine learning 

Support Vector Machine and Random Forest were applied. 

 

2.1 Study Area and Observation Period 
 

Three pilot areas were delimited and named Areas 1, 2, and 3, representing different areas of 

Nhecolândia. Each area has approximately 50 km² and is distributed along the shallow waterway named 

Vazante do Mangabal. This vazante crosses the Nhecolândia region in a northeast-southwest direction, formed 

in the overflow process of the Taquari River (to the north) and responsible for the surface runoff towards the 

Negro River (to the south). Area 1 (furthest north) and Area 3 (furthest south) are at a distance of 85 km, in 

this extension there is a low topographic gradient, with an altitude difference of only 25 m (Figure 1). 
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Figure 1 – Location of the study area: (A) Pantanal Basin with the Taquari Megafan and Baixa Nhecolândia (Landsat 

Mosaic 8). (B) Location of Areas 1, 2, and 3 (Landsat Mosaic 8). (C) Climogram (CHIRPS and MODIS). (D) 

Topographic profile (MERIT-DEM). (1.2.3) Morphology of pilot areas (PlanetScope).  

 

Elaboration: The authors (2022). 

 

2.2 Planet Images 
 

Through the research incentive program of Planet Labs, a partnership was established for developing 

the work in which it was possible to have free access to the Planet Labs platform and the images from the 

PlanetScope sensor. The constellation of these nanosatellites is now composed of more than 200 sensor 

systems measuring 10 × 10 × 30 cm that have been launched into orbit since 2016. The reduction of 

components and production cost allows the maintenance of the numerous constellations that capture images 

with an average revisit time of 30 hours (PLANET LABS, 2016; ROY et al., 2021). The PlanetScope sensor 

absorbs reflectance in the visible light spectrum, the blue band (B) operates in a range from 455 to 515 nm, the 

green band (G) from 500 to 590 nm and the red band (R) from 590 to 670 nm. The sensor also captures 

information in the near infrared (NIR) wavelength of 780 to 860 nm, resulting in 16-bit images of radiometric 

information (PLANET LABS, 2016). Images acquired on the company's platform correspond to preprocessing 

level 3B. These are scenes of 7 × 25 km, with the passing time between 9:30 and 11:30 UTC, already 

orthorectified, with atmospheric correction and spatial resolution of three meters (PLANET LABS, 2016). 

 With access to the platform, the ID's of 130 PlanetScope images covering the pilot areas were manually 

selected, following the visual analysis criteria of absence of clouds and biweekly frequency, to form the time 

series of data referring to the study period from October 2017 to September 2018. 

 After selecting the ID's of all the images to be used, mosaic processing and clipping was performed 
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using an API for integrating Planet platforms with Google Cloud and GEE. In this step, the number of images 

was reduced to 76 images (Area 1: 24 images, Area 2: 25 images, Area 3: 27 images) of biweekly average 

frequency and cropped according to the dimension of their respective pilot area, the images were also inserted 

via API within the GEE, forming collections of multitemporal images of Areas 1, 2, and 3. 

 All processing on GEE's cloud computing platform is saved as scripts composed of input data, 

command lines and organization of output data. The input data can be inserted from an external library as done 

with the Planet Labs images but can also come from the online library made available on the platform, such as 

those used for the preparation of the climogram of the studied region (Figure 1C), obtained through the 

CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) model (FUNK; PETERSON; 

LANDSFELD, 2015), which uses historical series of pluviometric stations and MODIS (Moderate-Resolution 

Imaging Spectroradiometer) images with temperature data. 

 Based on an evaluation of the data (pluviometric and temperature) of the CHIRPS model for the period 

of analysis, and visual inspection of the PlanetScope image collections within the cloud computing platform, 

images were selected that represented scenes of periods of drought and of flooding in the Nhecolândia region 

for the test of supervised classifiers. That is, images corresponding to periods of low and high rainfall rates, as 

well as images representing the typical landscape of these periods, such as the absence or presence of water 

along the vazantes. The images from October 5, 2017 represent the peak of the dry period in the area after a 

sequence of months with low precipitation values, data from the National Institute of Meteorology-INMET 

(2022) show that for the second half of 2017, rainfall above 5 mm was observed only from October 21. The 

images from April 24, 2018 represent a typical flood period in the region. 

 

2.3 SVM and RF classifiers 
 

Supervised classifiers based on machine learning use computational methods to organize existing 

knowledge about an object, using artificial intelligence to label large amounts of data according to predefined 

parameters (MITCHELL, 1997). In the classification of orbital images, a label is assigned to each pixel 

according to its spatial and spectral characteristics (NOVO, 2008); this label is defined by 'inductive learning 

by examples'; this process can be summarized in four steps: sampling, training of samples, classification and 

validation (BATISTA, 2003). 

 Some supervised classifiers are among the image processing tools offered by GEE, two of the most 

used are the Support Vector Machine (SVM) and the Random Forest (RF). Support Vector Machines are 

machine learning methods for the purposes of classification, regression and other learning missions; the goal 

of an SVM is to find the ideal separating point, vector, or hyperplane from the input data entered as samples 

(BURGES, 1998; ANANIAS et al., 2022). On the platform, from image samples, the SVM known as Support 

Vector Classification seeks, within the constructed hyperplanes (Eq 1), to maximize the differentiation margin 

of the samples corresponding to the pre-established classes (y) (CHANG; LIN, 2011). This behavior is 

registered as training the classifier to be applied to all pixels of the reference image (x). In order for hyperplanes 

to be constructed and the margins between different classes to be maximized, SVMs use kernel functions to 

reproject the input data (CORTES; VAPNIK, 1995; THEODORIDIS; KOUTROUMBAS, 2008). As indicated 

by Hsu, Chang and Lin (2003) the kernel linear function presents better performance for treating large sets of 

data. Within the GEE, the parameters considered by the SVM were the spectral behavior of the samples for 

each of the 4 bands of the PlanetScope images; the bands also represent dimensions from which hyperplanes 

of ideal separation of the input data were built (Eq 2).  

 

Form of representation of a linear separation hyperplane: 

 

 𝒘𝑻𝒙 + 𝑏 = 0 (1) 

   

SVM classification function for n-hyperplanes: 

 

 𝑦 = 𝑠𝑔𝑛(𝒘𝑻𝜑(𝒙) − 𝑏) (2) 
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where w is an n-dimensional weight vector that defines the orientation of the hyperplane, φ is a transformation 

function that maps the data into a higher-dimensional feature space with a linear kernel (K(xi,xj)) and b is the 

independent term (bias). 

 The RF supervised classifier, in turn, also uses machine learning to return classified data. From the 

input data, the classifier generates decision trees with branches that represent the different characteristics of 

the samples; this process is known as training. These characteristics are seen as variables to be considered to 

associate the input data (x) to a class (y) (LOH, 2011; ANANIAS et al., 2022). On the GEE platform, the RF 

classifier analyzes each pixel of the Planet image and, based on the behavior of the sample along the 

combination of all trees generated (h(x) →y), defines the best class to be assigned to the pixel with a decision 

called maximum vote (Eq 3) (ANANIAS et al., 2022; BREIMAN, 2001; SHETTY, 2019).  

The output of the classifier can be defined as the highest value class of the function: 

 

 
𝑓(𝑥) = 1 −∑(𝑝𝑗)

2

𝑚

𝑗=1

 
 

(3) 

 

 

where m is the number of classes and pj is the relative frequency of class j to x. 

All available bands (NIR-R-G-B) were used to classify the images referring to the dry and flood 

periods in each pilot area, in accordance with the guidelines by Olofsson et al. (2014). Next, 4 classes were 

defined to label the PlanetScope images in the Nhecolândia region: water (Class 1), vazante (Class 2), exposed 

soil (Class 3, representing portions of exposed soils and sandbanks that are quite common in the Nhecolândia 

region), and cordilheira (Class 4, represent slightly elevated sandy barriers covered by dense arboreal 

vegetation). 

 For each class, 20 sample regions were inserted in a polygon format, which were saved as 

FeatureCollection and, in their metadata, carried the respective class value. After delimiting the regions of 

training samples, 40 validation points of each class were also manually delimited for later independent analysis 

of map accuracy. The training samples consisted of 500 points randomly distributed within the sample regions. 

Of the total samples, 70% were destined to actually train the classifier, while the remaining 30% were reserved 

for the automatic validation process of classification accuracy. 

 With the sample regions inserted, a standard script was written to train and apply the RF and SVM. 

The script variables were just the type of classifier (SVM or RF) and spatial variables depending on the image 

referring to Area 1, 2, or 3. It is noteworthy that the RF classifier used the construction of 100 decision trees 

to define the maximum vote, and SVM used a linear kernel. The processing was the same for each of the six 

PlanetScope images: after sample training, the entire image was classified according to the product of the 

supervised SVM or RF classifier, generating 12 different classifications, 6 for the SVM classifier and 6 for the 

RF classifier (the product of classifying a wet and dry period image for each of the three pilot areas). 

 

2.4 Validation 
 

Classification accuracy was verified with the 30% points of samples not used to train the classifier, an 

order of 150 validation points for each class and each image. In the process of constructing the confusion 

matrix these points can be called reference data and are compared with the product of the classifiers, which 

can be called classified data. Crossing the label assigned to the reference data x classified data for each class 

allows checking the global accuracy, producer accuracy, and consumer accuracy of each methodology 

(PONTIUS JUNIOR; MILLONES, 2011). The confusion matrix of each classified image was automatically 

generated within the GEE. 

 The map accuracy, in turn, is the validation of the product of the classifiers based on the comparison 

with independent data; that is, with the 40 points of each class manually inserted in each image independent 

of the classification. To check the accuracy of the map, also within the GEE, a second confusion matrix was 

generated in which the reference data is equivalent to 40 points. 
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 In this way, it was possible to verify the performance of each classifier with the metrics corresponding 

to the performance of the classifier from the samples themselves (classification accuracy) and the performance 

of the classification in relation to its representation of the real (map accuracy). 

 

3 RESULTS AND DISCUSSIONS 
 

3.1 Performance of Classifiers 
 

The products of the classifiers of each PlanetScope image can be seen in Figures 2 and 3; they were 

divided according to the images corresponding to the dry and flood dates, respectively. The two methodologies 

had very similar results, with small nuances that differentiate the two classifications of the same image, such 

as the 3 lakes indicated in red in Figure 2. 
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Figure 2 – Product of the SVM (Support Vector Machine) and RF (Random Forest) Classifiers for Images of October 

05, 2017. Green arrows indicate examples of 2 fresh water lakes; yellow arrows indicate 2 saline-alkaline lakes; red 

arrows exemplify small differences observed in the 2 classifications. 

 
Elaboration: The authors (2022). 

 

The performance of the classifiers exceeded expectations for the fidelity of the classification based on 

only 4 classes, since the PlanetScope images have spectral resolution limitations and operate in a reduced 

amount of bands (POURSANIDIS et al., 2019; COOLEY et al., 2019). The classifiers had to evaluate very 

close wavelength thresholds to define the appropriate label for each pixel, mainly due to the diversity of 

characteristics of the lakes found in Nhecolândia. In addition to the division between saline-alkaline and 

freshwater lakes, optically active constituents are very relevant aspects for the remote sensing of multispectral 

images such as crystalline water, colored dissolved organic matter (CDOM) and total particulate matter 

(BARBOSA; NOVO; MARTINS, 2019). As an example, high concentrations of cyanobacteria, which, when 

present, give saline-alkaline lakes a greenish color and spectral behavior similar to that of vegetation, making 

their classification difficult. The SVM classifier recognized and classified more homogeneously the lakes, or 
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saline water bodies, which have more greenish water; These are the same regions where the RF presents greater 

classification confusion from the spectral information of the PlanetScope sensors, especially in the driest 

period.  

 
Figure 3 – Product of the SVM (Support Vector Machine) and RF (Random Forest) Classifiers for Images from April 

24, 2018. Polygon dotted in red indicates an 8 km² deforested area. Green arrows indicate examples of 2 freshwater 

lakes; yellow arrows indicate 2 saline-alkaline lakes; red arrows exemplify differences observed in the 2 classifications. 

 
Elaboration: The authors (2022). 

 

The main difference between the product of the classifiers is related to the mapping of flooded and 

runoff areas during the flood period. In the case of the SVM classifier, the classification based on the 

hyperplanes responds less sensitively to the behavior of pixels referring to the water surface in runoff areas, 

tending to classify them as ‘vazante’, while the RF classifier, after defining the maximum vote of all of its 

decision trees, is prone to classify these runoff areas as ‘water’. 

 The high performance and quality of the results of the SVM and RF classifications are confirmed by 
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the resulting values of the confusion matrices. The global accuracy of the 6 classifications based on the SVM 

methodology ranged from 98.11% to 99.83%, while the values corresponding to the RF classifications ranged 

from 97.77% to 99.82%. The confusion matrix generated from the independent validation points also resulted 

in high values (≥75%) for the classifier products. The global accuracy, or here called map accuracy, of these 

points ranged from 93.12% to 99.37% for the SVM classifier and from 93.75% to 100% with the RF 

methodology. As an example, one can check the construction of the confusion matrices of global and map 

accuracy referring to the product of the SVM and RF classifiers for Area 1 on October 5, 2017, the dry period, 

in Figures 4, 5, 6, and 7. 

 
Figure 4 – Confusion matrix of SVM classifier for Area 1 on October 5, 2017 using sample regions. 

 
Elaboration: The authors (2022). 

 
Figure 5 – Confusion matrix of RF classifier for Area 1 on October 5, 2017 using sample regions. 

 
Elaboration: The authors (2022). 

 

Figure 6 – Confusion matrix of SVM classifier for Area 1 on October 5, 2017 using independent samples. 

 
Elaboration: The authors (2022). 

 
Figure 7 – Confusion matrix of RF classifier for Area 1 on October 5, 2017 using independent samples. 

 
Elaboration: The authors (2022). 
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 The two classifiers show greater confusion in differentiating areas of runoff and wet soil, understood 

here as 'vazante', from areas of non-wet soil, understood as 'exposed soil'. This difficulty can be understood as 

a consequence of the spectral resolution of the PlanetScope sensor, since the range of the longest recorded 

wavelength refers to the NIR band, which, in this sensor, represents waves in the range of 780 to 860 nm. Soil 

moisture monitoring, in turn, is recommended for wavelengths greater than 900 nm, as it is in the near infrared 

(800 to 1500 nm) and short wave (1500 to 3000 nm) ranges in which the interaction of the soil with 

electromagnetic energy has higher reflectance indices (NOVO, 2008). 

 

3.2 Quantification of Water Surface 
 

By analyzing the RGB images and the products of the classifiers, it is possible to spatially quantify the 

alterations of each class between the two periods. In the drought image of Area 1, for example, the count of 

the number of pixels classified as 'water' totaled 222,556 pixels according to RF and 228,557 according to 

SVM, while at the height of flooding this value was 1,100,686 and 1,289,669 pixels, respectively. As each 

pixel of the PlanetScope images represents 9 m² of the Earth's surface area, according to the product of the RF 

classifier, Area 1 had an increase of 7.89 km² in the water surface due to the flooding of the lakes and flooding 

of vazantes. The product of the SVM classifier, in turn, indicates that the increase was 9.55 km² (Table 1). The 

increase in the water surface of Areas 2 and 3 for each of the classifiers can also be seen in Table 1. 

 The difference in the presence of surface water between the driest and most flooded periods represents 

a significant change in the landscape of each pilot area. Considering that each of the areas has approximately 

50 km², there is an average change of 20% in the soil cover only due to the dynamics of flooding in the region. 

 

Table 1 – Calculation of water surface increase between the driest (October 05, 2017) and most flooded (April 24, 

2018) images of the pilot areas. 

 

Area Classifier Period 
Number of 

'water' pixels 
Area in km² Increase in km² 

1 

RF 
Dry 223,556 2.01 

7.89 
Wet 1,100,686 9.91 

SVM 
Dry 228,557 2.06 

9.55 
Wet 1,289,669 11.61 

2 

RF 
Dry 493,462 4.44 

17.54 
Wet 2,442,906 21.99 

SVM 
Dry 504,365 4.54 

11.22 
Wet 1,751,254 15.76 

3 

RF 
Dry 219,337 1.97 

6.45 
Wet 936,377 8.43 

SVM 
Dry 180,895 1.63 

7.77 
Wet 1,044,770 9.40 

Elaboration: The authors (2022). 

 

3.3 Classifier Choice and Processing Scalability 
 

Despite the similar values of the confusion and accuracy matrices for the two classifiers, the visual 

analysis of the products and the quantitative analysis of integrated 'water' pixels allows identifying relevant 
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differences to guide the choice of a classifier in the process of studying hydrological dynamics from highly 

seasonal areas such as Nhecolândia. As noted, the main differences between the classifications are related to 

the confusion in the mapping of water and vazante classes during the flood period. The RF is less conservative 

in classifying the water surface in the runoff areas, with emphasis on the flood in Area 2, while the SVM tends 

to be conservative with the mapping of water in the runoff areas, diverging some pixels with the RF and 

classifying them as vazante. At the same time, the SVM classifies the water surface of saline-alkaline lakes 

(which have different colors) with less omission. 

 Considering the divergences between the two products, it can be stated that the choice of the classifier 

to guide a study on hydrological dynamics should start from the objectives to be met. In the Nhecolândia 

region, for studies of isolated water bodies such as saline-alkaline lakes, the SVM tends to map the target more 

homogeneously, while for surface runoff studies, the RF may be the most indicated. It is also worth noting that 

postclassification processing steps to improve mapping, such as the use of spatial filters, should be considered. 

 The analysis and choice of the classifier is recommended as a step before processing scalability. Once 

this decision has been made, the GEE platform allows, by means of functions and parallelization, the rapid 

reproduction of processing for an entire collection of images. The supervised classification of images for 

qualitative values opens up different possibilities to explore data with reclassification, conversion to 

quantitative data, performing map algebra processes and integrated analysis with different data sources. To 

study the hydrological dynamics of Nhecolândia, for example, it is essential to map and understand flooding 

over time, the flood frequency data, in turn, can be obtained from the result of the supervised classification 

carried out on a large scale for a time series. Still considering this study, the processing flow can be the same 

for both the RF and the SVM, depending on the mapping objectives as exemplified in Figure 8. 
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Figure 8 – Large-scale classified image processing flowchart to obtain flood frequency data from PlanetScope 

images. 

 
Elaboration: The authors (2022). 

 

4 FINAL CONSIDERATIONS  
 

The integrated use of cloud computing tools and data from nanosatellites allows for new work 

possibilities in geoprocessing and studies of the Earth's surface. The SVM and RF methodologies, available 

on the Google Earth Engine platform, had a satisfactory performance in processing and classifying images 

from the PlanetScope sensor for mapping the Nhecolândia region. Changes in the landscape between the driest 

and flooded periods are very intense, with around 20% of the total area being converted into water surface. 

The significant and highly seasonal changes in the landscape observed in Nhecolândia, due to its water 

dynamics, highlight the need to obtain highly detailed information about this unique region. Despite the 

spectral and radiometric calibration limitations of this sensor, which is, for now, used mainly for commercial 

purposes, the Planet images processed in the GEE represent an important source of data for studying highly 

seasonal lacustrine environments. With this ease of processing a large amount of orbital data, it will be possible 

to obtain significant information about the landscape and surface runoff in the area, even allowing the 

elaboration of a flood frequency map in the Nhecolândia region, which would be the first high-resolution 
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systematization of seasonal flooding in the area. 
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