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Abstract: Mapping the changes of land use and cover through the classification of satellite images is one of the 

essential sources to investigate and monitor the Earth´s surface. When performed in a multitemporal perspective, this 

approach requires specific procedures to match the images used. Considering that parkland/grassland savanna patches 

could increase over time due to different uses, this research aims to present a suitable method for processing Landsat-

like images to investigate land cover dynamics. The study area covers seven municipalities in the Brazilian state of 

Piauí, Cerrado biome, which has been substantially affected by deforestation due to extensive agricultural projects in 

the past decades. The semi-automatic satellite imaging georegistration and the object-oriented classification of Landsat 

5 and 8 satellites over the last 30 years in decadal periods are among the methodological procedures used. Findings 

demonstrate the semi-automatic image registration process as an effective method for the geometric correction of 

Landsat scenes, and the object-based classification procedures are appropriate for multitemporal studies allowing 

comparative metrics of landcover class changes by period. Regarding the remaining natural landcover within the study 

area, the results showed a substantial decrease of woodland savanna patches from 73% in 1986 to 43% in 2016, while 

agricultural fields increased from 4% to 25% in 30 years. 

Keywords: Automatic Image Registration. OBIA. Multitemporal analysis. Cerrado. Landcover change. 

 

Resumo: Mapear as mudanças de uso e cobertura da terra por meio da classificação de imagens de satélite é uma das 

fontes mais importantes para investigar e monitorar a superfície terrestre. Essas abordagens, quando realizadas em 

uma perspectiva multitemporal, requerem procedimentos específicos para coincidir com as imagens utilizadas. 

Considerando que fragmentos de Cerrado podem aumentar ao longo do tempo devido a diferentes usos, esta pesquisa 

visa um método adequado de processamento de imagens Landsat para investigar a dinâmica do uso da terra. A área 

de estudo cobre sete cidades do estado do Piauí, bioma Cerrado, uma área que tem sido afetada por grandes 

desmatamentos devido a projetos agrícolas. Dentre os procedimentos metodológicos utilizados estão as técnicas de 

georreferenciamento semiautomático da coleção de imagens orbitais e a classificação orientada a objetos, ambas 

aplicadas a dados dos satélites Landsat 5 e 8 nos últimos 30 anos em períodos decenais. Com os resultados obtidos, 

fica evidente que o processo de registro semiautomático de imagens é um método eficaz para a correção geométrica 

de cenas Landsat e que procedimentos de classificação baseados em objetos, baseados nesta metodologia, são 

adequados para estudos multitemporais, possibilitando o cálculo de métricas comparativas de mudanças nas classes 

de cobertura da terra por período. Os resultados mostraram que as manchas de savana florestal diminuíram de 73% 

em 1986 para 43% em 2016, enquanto os campos agrícolas aumentaram de 4% para 25% em 30 anos. 

Palavras-chave: Registro Automático de Imagens. OBIA. Análise Multitemporal. Cerrado. Mudança da cobertura da 

terra.  
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1 INTRODUCTION 
 

Over the last three decades, the Cerrado (Brazilian Savanna biome) has been an alternative to the 

deforestation in the Amazon, and the most intense exploration of this region is drove either by agricultural and 

pasture expansion or by forest plantations (AGUIAR; MONTEIRO, 2005; STRASSBURG et al., 2017). The 

state of Piauí is located within a transition between the biomes Caatinga at east and Cerrado at the west, where 

the new grain-oriented agriculture is pushing the economy and driving significant landscape changes. As for 

the governance policies, between the 1970s and 1980s, the region experienced the implantation of agricultural 

mega-projects sponsored by federal funds. In the 1990s, this process was intensified by implementing grain-

oriented agriculture projects, where soybean played a key role as the principal commodity for exportation in 

the region (AGUIAR; MONTEIRO, 2005; BRASIL, 2009). Given the anthropic pressure of the novel 

extensive agriculture fields over the natural environments of the Piauí Cerrado area, it is imperative to produce 

multi-temporal geospatial records to support research and the formulation of public policies related to land use 

and cover in the region. 

Thus, mapping from satellite images is one of the most vital data sources to register and investigate 

the Earth's surface (JENSEN, 2009). The historical series of the LANDSAT satellite is the longest and 

complete record of continental surface imagery obtained from space since the 1970s (ROY et al., 2014). The 

availability of LANDSAT images allows conducting studies on different types of land use and cover on 

different dates, making this program a pivotal instrument to support the investigations about global land 

changes (NOVO, 2010). Nevertheless, the most important rule for multi-temporal data analysis is the 

geometric fitness among the layers or images combined to perform the analytical approach (BEUCHLE et al., 

2015). Thus, different images must fit each other perfectly to detect changes computed from simple differences 

between the digital numbers associated with the pixels between two or more scenes (BYRNE et al., 1980).  

Broadly sense, image classification is the procedure used to detect the geographic features of interest 

present in a scene to create a thematic map-like representation. Contrary to the manual feature extraction, the 

image classification techniques compute a large amount of data and comprehensive geographic coverage 

within a time-consuming intangible for human operation (MANFRE et al., 2016). Due to a large amount of 

data and repetitive operations, remote sensing practitioners develop protocols to optimize the procedures 

(NOBREGA et al., 2010). Therefore, it is easier to adjust the parameters of a given protocol to be applied in a 

new image dataset than start over a new set of commands and rules from scratch. Among the diversity of image 

classification techniques, we choose the Geographic Object-Based Image Classification (GeOBIA) 

(BLASCHKE, 2010) as the primary procedure used in the present investigation. Recent application of OBIA 

in Cerrado, as shown in Cunha et al. (2020) and Bueno et al. (2019), demonstrate the power of the method for 

multitemporal image analysis.  

Despite the expansion of agriculture and reduction of natural woodland savanna, we hypothesize that 

not all savanna areas have been reduced within the study area. Thus, we estimate that patches of parkland-

grassland-type have increased along the last three decades due to the nature of the grain-oriented agriculture 

fields (large flat areas) that drives, on the other hand, the reduction of traditional family-based cattle farms. 

Consequently, this paper addresses the implementation of a replicable model for building a multitemporal land 

cover dataset in a Cerrado area in the state of Piauí-Brazil using robust approaches for automatic registration 

and classification of Landsat images. The framework built analytical capacity for assessing and quantifying 

three decades of landcover changes in the study area, investigating the dynamics of the agriculture use and 

savanna cover within the period. 

 

2 STUDY AREA AND MATERIAL 
 

2.1  The study area 
 

The area covered by this study involves seven cities in the south of Piauí (Figure 1), located within the 

region of occurrence of the Cerrado (Brazilian Savanna) biome. Together, these cities have a total of 75,932 

inhabitants distributed in an area of 36,134,567 km² (IBGE, 2010). 
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Figure 1 - The map illustrating the seven municipalities and Landsat scenes used in the investigation. 

 
Source: The authors (2021). 

 

According to the Monitoring data of the Cerrado biome for the period 2009-2010 (BRAZIL, 2011b), 

the seven cities involved in this present high deforestation rates in the state and two of them, Baixa Grande do 

Ribeiro and Uruçuí, were among the top ten cities that deforested the Cerrado in the whole country for 2002-

2011 (BRAZIL, 2009, 2011a, 2011b, 2015). Notwithstanding, these two cities stand at the top of the list of 

those who deforested the Cerrado in Brazil. 

Based on the Mapping of Deforestation records in the Brazilian Biomes by Satellite produced by the 

MMA in 2009-2010 (BRAZIL, 2011b), a list of priority municipalities was created for ranking conservation 

actions of the Cerrado biome (PP Cerrado 97/2012). The criteria used to prioritize actions in these cities were: 

the geographic extension of native vegetation cover, the relevance of the area for biodiversity conservation, 

and the concentration of extreme poverty in rural areas. Six out of the seven cities in our study area are included 

in this list. 

 

2.2  The image database and tools  
 

We targeted a timeframe of the past 30 years to assess the metrics of the landcover changes. Thus, we 

looked ahead three decades, from 1986 as a time zero and using 1996, 2006, and 2016, respectively, as 

suggested in Cunha et al. (2020). Despite the release of the MapBiomas dataset, a country-wide project of land 

cover products for Brazil (MAPBIOMAS, 2018), its use was pending validation of local parameters. The need 

for an accurate classification capable of capturing the landscape's local characteristics (a natural mosaic of flat 

plateaus and valleys covered by agriculture fields and natural savanna vegetation) encouraged us to avoid 

traditional per-pixel classification methods, therefore exploring a robust image classification technique with 

local ground truth validation. 

The whole study area is covered by seven Landsat scenes (219/066, 219/067, 220/065, 220/066, 

220/067, 221/65, 221/66, see Figure 1). Thus, the investigation gathered 28 full Landsat scenes, where 3/4 
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correspond to TM Landsat-5, and 1/4 correspond to OLI Landsat-8 images. These images enable to 

development of multitemporal analysis, capturing the major and minor changes in land cover patterns within 

the area. The processing relied on Landsat's original ground sample distance of 30 meters. The high spectral 

correspondence between TM and OLI sensors bands, with the perfect fit in the visible and mid-infrared and 

partial fit in the near and short infrared bands. These characteristics gave us the confidence to operate images 

of both sensors in the present investigation. All images used are chargeless and free available at the Brazilian 

National Institute of Space Research (INPE) and Unites States Geological Service (USGS). 

To promote the best use of different solutions, the methodological approach stood on: (i) Remote 

sensing tools for processing the data, visualizing and analyzing the results, (ii) Geographic Object-Based Image 

Analysis package for classifying the multi-temporal dataset, and (iv) Landscape ecology toolkit for analyzing 

and quantifying the landscape metrics of the land cover classes in different years. Thus, the investigation used 

the following solutions: (i) the ITT image analysis software ENVI version 4.7, (iii) the Trimble eCognition 

version 9.3, and (ii and iv) the free and open-source Geographic Information System QGIS version 2.18. 

 

3 METHODOLOGICAL APPROACH 
 

In this work, we proposed a robust protocol for mapping the land cover from multitemporal satellite 

images. In short, the approach consists of [1] Image registration, [2] mosaicking and image preparation, [3] 

OBIA, and [4] analysis of results. The executed procedures are detailed in the following flowchart (Figure 2). 

 
Figure 2 - General flowchart of the proposed methodology: Image registration [red]; mosaicking and image preparation 

[yellow]; OBIA [blue]; and analysis of results [green]. 

 
Source: The authors (2021). 

 

3.1  Image Preparation 
 

Data gathering was the first step in the process. The scenes were available per spectral band. Thus after 

downloading the data, we selected six bands (Blue, Green, Red, Near Infrared, Shortwave Infrared 1 and 2) to 

be integrated into a multispectral image. The layer stack followed a sequential order to produce one 

multispectral image per scene per date (28 multispectral images in total). Besides simple, this is a crucial 

procedure towards automating the process. Any disturbance in the stacking order can compromise the next 

steps of the methodological approach. 

Notwithstanding, the remote sensing images are susceptible to geometric distortions that compromise 

the positioning accuracy (BENTOUTOU et al., 2005; CRÓSTA, 1992). Traditionally, different techniques are 

used to minimize or fix the geometric inconsistencies of the image, such as image registration that is a 

fundamental procedure used to match two or more images taken at different times, from different sensors, or 

different viewpoints (BERTUCINI JUNIOR; CENTENO, 2016; BROWN, 1992). Next, the multispectral 

images were accurately registered to avoid geometric inconsistencies among the land cover maps that will be 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Y.%20Bentoutou.QT.&newsearch=true
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produced. Finally, the geometric quality of the OLI Landsat-8 images due to the orthorectification process 

performed by the United States Geological Service (USGS) allows these images to serve as a reference for 

further registration of other images. 

Thus, we established the set of Landsat 8 images (the reference year 2016) as the geometric basis for 

registering the images of the previous decades. The automatic image registration approach identified 

homologous points in target images considering a seed point in the reference image and the search window. 

The core process is based on a convolution window and image correlation process (FARIA, 2017). Besides 

some GIS and remote sensing software presents an automatic image registration approach built on the toolkit, 

the solution is not popular among the users, which encouraged us to use it in the present work. The automatic 

image registration was computed using ENVI software. The tool launches a collection of seed points in the 

reference image and uses search windows and a convolution process to identify the homologous points in the 

other images. The highest correlation gives the exact location of the point among the two images. Then, one 

by one, the seven multispectral images of 2006 were automatically registered to the correspondent image of 

2016. Next, the procedure was repeated to the images of 1996 and 1986. 

After registering the images based on the Landsat 8 satellite scenes, we create a single raster dataset 

per year from multiple scenes by mosaicking them, producing four datasets to 2016, 2006, 1996, and 1986, 

respectively. Due to the geographic amplitude of the study area and the radiometric inconsistencies among the 

images with specific dates of acquisition, the mosaic requested a strategic radiometric balancing to maximize 

the quality of the output (NOBREGA; QUINTANILHA, 2004). So, the mosaic was performed per orbit, and 

the images used correspond to the period between June and August (Frame 1), a few months after the rainy 

season in the study region. The mosaics were computed using Georeferenced Mosaic tool on ENVI software 

for the path/rows 219/66, 219/67, 220/65, 220/66, 220/67, 221/65, and 221/66 per year (1986, 1996, 2006 and 

2016). We fixed the scenes 220/66 due to the central position among and most prominent in the set, 

consequently, the other scenes were adjusted to match the reference one. Moreover, the adjustment was set to 

the entire image instead of an overlapping area. The seamline for mosaicking was 200 pixels, which avoided 

scars and promoted undetectable mosaicking lines. Furthermore, to speed up the process and optimize the 

quality of the mosaic, avoiding the pixels external to the limiting polygon, the mosaicking process was 

computed within the study area only. 

 

Frame 1 – Dates of the images used. 
 Path-Row 

 219-66 219-67 220-65 220-66 220-67 221-65 221-66 

Y
ea

r 

1986 July/21 July/21 June/10 June/26 June/26 June/17 June/17 

1996 June/30 June/30 June/21 June/21 June/21 June/28 June/28 

2006 July/12 July/12 July/19 July/19 July/19 June/24 June/24 

2016 August/09 August/09 August/08 July/22 July/22 July/08 August/09 

Source: The authors (2021). 

 

3.2  Protocolling and Validating OBIA's Approach 
 

The key step towards the successful classification using OBIA is the appropriate segmentation of the 

image. Thus, the literature provided a background for the shape, compactness, scale, and band weights 

(FEIZIZADEH et al., 2017; WEZYK et al., 2016). In order to achieve the OBIA classification rule set and a 

landcover map capable of validation, OBIA was developed solely to the images of the year 2016 (Landsat 8), 

adapted, and then applied backward to 2006, 1996, and 1986 georegistered images, respectively. The approach 

allowed a comprehensive evaluation of the classification process, followed by a rigorous ground survey to 

assess the accuracy of the land cover map produced.  

The investigation relied on the traditional typology of land cover classes, such as (Figure 3): 

▪ Developed areas: urban areas, built-up areas, and roads; 

▪ Agricultural fields: crops and artificial pastures; 

▪ Water bodies: rivers, ponds, and dams; 

▪ Woodland savanna:  dense shrubs and trees, riparian forests, and dry forest; 

▪ Parkland / Grassland savanna: grass and ground vegetation, wetland, rocky field, palm tree. 
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Figure 3 - Examples of the landcover classes present in the study area: (1) water body – Parnaíba River, (2) Agriculture 

field, (3) Woodland savanna, and (4) Parkland / Grassland savanna. 

 
Source: The authors (2021). 

 

The geographic objects resulting from the segmentation were selected and used as samples in the 

training process. We adopted fuzzy logic as the key strategy for the classification process to minimize the 

spectral confusion of the classes. After collecting and computing the statistics of the spectral patterns of the 

samples, the geometric-based metrics were added to the ruleset of the classes for straightening the classification 

process. 

In theory, a classification result with 100% accuracy means that all the images' pixels are assigned to 

the correct class, thus neither false positives (commission error) nor false-negatives (omission error) exist 

(CONGALTON; GREEN, 1999). However, the accuracy depends on several factors such as terrain 

complexity, spatial and spectral resolutions of the sensor system, the classification algorithm, the quality and 

representativity of the samples, and the complexity of the legend classes (MENESES; ALMEIDA, 2012). 

Traditionally, remote sensing relies on a discrete multivariate technique called Kappa analysis to assess the 

classification results accurately. Kappa is a metric based on the difference between the remote sensing 

classification and the actual reference data, organized in a matrix framework (CONGALTON; GREEN, 1999). 

Besides the global metric, the matrix-based framework also allows assessing metrics for false-positive 

(commission error) and false-negative (omission error) per class. 

Thus, as for the accuracy assessment of the classification process, one of the challenges was to assure 

the high thematic quality across the entire study areas even the seven municipalities present isolated and remote 

areas that are difficult for the perfect distribution of the ground truth samples. Therefore, we selected 154 

ground surveyed samples spatially distributed without concentration, which allowed the samples to be 

collected in the best feasible areas close to the preliminary plan. 
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3.3  Multitemporal Image Classification 
 

After completing and attesting the classification of 2016 data, an analogous OBIA approach was 

performed to the other three datasets (2006, 1996, and 1886). Minor adjustments in the segmentation settings 

were necessary to fit segments to actual geographic objects present in the landscape. This was also evidenced 

in the classification rules to the previous years of 1986 and 1996, a period in the early stage of the grain-

oriented agriculture activities in the region. Samples were pulled up from the images of 1986, 1996, and 2006 

and analyzed using visual inspection like the approach used through the validation process in the field. 

 

4 RESULTS AND ANALYSIS 

 

4.1  Automatic Image Registration and mosaicking 
 

Given the availability of orthorectified Landsat 8 images, we used the 2016 scenes as reference for 

registering the Landsat 5 scenes acquired on previous dates. The automatic registration approach employed up 

to 200 seed points homogeneously distributed per scene. The threshold for acceptance of the correlation was 

90%, so only the homologous points highly correlated to the seed points within the 100x100 pixels window 

search area were considered anchor points to the image registration. 

In order to guarantee the reliability of the registration, all the remaining seed points and the respective 

homologous points were visually inspected to attest matching and correct positioning. Points with no 

conformity, i.e., points positioned in areas with no correspondence due to wrong location or abrupt change in 

landcover pattern, were excluded, and if necessary, new points were added manually. Because of the 

abundance of the automatic seed points, adding points was necessary only in areas where the low density was 

detected. After this verification, the procedure was performed with the minimum number of 100 homologous 

points in each analyzed scene (Figure 4).  

 

Figure 4 - Example of seed points of the 2016 image (left) and homologous points found in 1986 used in the automatic 

image registration process. 

 
Source: The authors (2021). 

 

All 21 scenes of the Landsat 5 referent to 2006, 1996, and 1986 go through the registration process 

using the correspondent orthorectified 2016 Landsat 8 scenes. After the registration was completed, the images 

were loaded together in a GIS framework (i.e., QGIS) for visual inspection. Findings show a perfect geometric 

fitting between the scenes regarding the natural features such as rivers, cliffs, roads, and other anthropogenic 

features. 

Next, given the database of geographically correlated images of each year studied, the mosaic of the 

scenes and the land use and cover classification per orbit were executed. The strategy of mosaicking adjacent 

images per orbit improved the product's quality and sped up the segmentation/classification processes, except 

in cases where excessive differences in atmospheric conditions were detected. Thus, the approach promoted 

high-quality mosaics for the further classification process. 
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4.2  The OBIA Protocol 
 

4.2.1      SEGMENTATION 

 

The segmentation process of Landsat 8 images (Figure 5) was performed using multi-resolution 

algorithm segmentation of the program eCognition 9.3. For this step we set a scale parameter equal to 100, and 

the bands 2, 3, 4, 5, 6, and 7 (Landsat 8). The shape and compactness of the segments were set as 0.3 and 0.8, 

respectivelly, parameters that allowed to capture both anthropogenic agriculture fields and natural features 

such as dense vegetation along the rivers and valleys. The scale parameter defines the size of the segments to 

be generated; that is, the larger the value, the larger the size of the segments (SILVA et al., 2016), and 

consequently, the less the level of detail. Shape and compactness are auxiliary parameters for tunning the 

strategy based on the digital number of the pixels within the segments to allow flexibility to create the segments' 

geometry (NOBREGA et al., 2008). All these introduced parameters were defined from several segmentation 

attempts over the dataset.  

For the segmentation of Landsat 5 images, bands 1, 2, 3, 4, 5, and 7 were used. However, adjustments 

were necessary for the process to end up with segments geometrically compatible with the segments resulting 

from Landsat 8  data. So, we set 40 for the scale parameter, 0.1 for the shape, and 0.3 for the compactness. 

According to tests performed with the assignment of several parameters, these parameters best fit the images 

of the Landsat 5 satellite for the study area. Furthermore, the difference in segmentation parameters between 

the images of the two Landsat satellites is justified by the difference of sensors (TM and OLI). Therefore, in 

the images of Landsat 5 satellite, it was necessary to create segments with different parameters to distinguish 

the mapped targets. 

 

Figure 5 - (1) Landsat 8 image segmentation; (2) Landsat 5 image segmentation. 

 
Source: The authors (2021). 

 

4.2.2    SEGMENT SAMPLING 

 

After completing the segmentation, we created the classes and the respective ruleset for each class by 

sampling the segments and assessing their spectral and geometric parameters. The knowledge from previous 

fieldwork was essential to promote the correct association between the land use and cover classes seen in the 

2016 images and the field. For each class, samples were distributed throughout the region to be classified, 

obtaining at least 20 samples per class (Figure 6). Then, we collected 50 examples for the vegetation and 

agricultural activities because these classes are the most expressive in the area. 
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4.2.3 CLASSIFICATION OF LANDSAT IMAGES 

 

Supervised land use and cover mapping of Landsat images were performed using the classification 

algorithm. These covered classes were "water bodies", "Agriculture field", “Woodland savanna”, and 

“Parkland / Grassland savanna”. The urban areas were manually defined by using the image objects resulting 

from the segmentation process. Because the developed areas are small and in few numbers within the study 

area, the samples used to assign the class completed the urban areas. In practice, the urban areas were masked 

out to the classification process, therefore avoiding the typical confusion with other classes. 

 

Figure 6 - Segment samples per class. 

 
Source: The authors (2021). 

 

4.2.4 PERTINENCE FUNCTIONS USED IN DECISION RULES (FUZZY LOGIC) 

 

For the image classification, the "Nearest Neighbor" method was used, taking, as a rule, the use of the 

mean value of the segment pixels. Then, by computing the samples, the thresholds were generated for each 

class (Table 1). All the bands used were considered with equal weights in the classification in this process. 

 

Table 1 - Classification thresholds. 
Class Pertinence function Thresholds 

Water Bodies Area 1 / 2,515 

Brightness 30 / 9,465 

Border length 4 / 2,914 

GLCM homogeneity (all directions) 0.004 / 0.30 

Agriculture Fields Area 1 / 147,774 

Brightness 2,134 / 23,103 

Border length 4 / 80,410 

GLCM homogeneity (all directions) 0.2 / 0.78 

Parkland / Grassland Savanna Area 2 / 1,480,490 

Brightness 5,929 / 15,353 

Border length 6 / 241,698 

GLCM homogeneity (all directions) 0.0005 / 0.29 

Rel. Border to Agriculture 0 / 1 

Woodland Savanna Area 9 / 3,079,350 

Brightness 8,667 / 12,372 

Border length 16 / 3,066 

GLCM homogeneity (all directions) 0.0031 / 0.12 

Rel. Border to Agriculture 0 / 1 

Source: The authors (2021). 
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The assigned assignment algorithm was used to refine the classification obtained through decision 

rules (reclassification) with the already classified images. So, we reclassify the dataset by analyzing metrics 

such as homogeneity, texture, and edge contact with other classes. The rules used were: 

1. Agriculture class with GLCM Homogeneity (all dir.) < 0.2 at level 1: Parkland/Grassland 

Savanna; 

2. Parkland/Grassland Savanna with Rel. border to Agriculture >= 0.47 at level 1: Agriculture; 

3. Water Bodies with GLCM Homogeneity (all dir.) >= 0.94 at level 1: unclassified. 

 

4.3   The Thematic Quality Control 
 

The first classification of images occurred for the year 2016. Field visits occurred in August and 

September 2017. The approach of taking off points was carried through the whole study area, contemplating 

the seven studied cities. In possession of the classified map for this year, control points were collected in the 

field (Figure 7) using a navigation GPS receiver and field photographs for data validation. A total of 154 points 

were collected involving targets from all classes identified. A confusion matrix was assembled between the 

classes to calculate the Kappa index to validate the mapping results with the points obtained in the field.  

 

Figure 7 - Control points used in the classification validation. 

 
Source: The authors (2021). 
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4.3.1    KAPPA INDEX AND ERRORS OF COMMISSION AND OMISSION OF CLASSES 

 

Findings of the kappa index for the classification year 2016 was 0.82, considered excellent (K> 0.8) 

by Congalton; Green (1999). Although the index result was successful, the “Parkland / Grassland savanna” 

and “Woodland savanna” classes had produced accuracy and user accuracy slightly below 80%, respectively. 

This slight increase in errors of commission and omission is justified by the confusion between these two 

classes of subdivision of vegetation, as explained in Frame 2. 

 

Frame 2 - Matrix of confusion. 
 Classification 

Woodland 

savanna 

Parkland/ 

Grassland 

savanna 

Agricultural 

fields 

Developed 

areas 

Water 

bodies 

Errors of 

omission 

User’s 

accuracy 

G
r
o
u

n
d

 t
r
u

th
 

Woodland 

savanna 

28 9 0 0 0 24% 76% 

Parkland/ 

Grassland 

savanna 

4 42 3 0 0 14% 86% 

Agricultural 

fields 

0 6 31 0 0 16% 84% 

Developed 

areas 

0 0 0 25 0 0% 100% 

Water bodies 0 0 0 0 6 0% 100% 

Errors of 

commission 

13% 26% 9% 0% 0%  

Producer’s 

accuracy 

88% 74% 91% 100% 100% 

Source: The authors (2021). 

 

4.4   Multitemporal Classification and Data Tabulation 
 

The supervised classification of the images of the two Landsat satellites, even of different sensors, was 

facilitated for comparison using an object-oriented classification method. Therefore, the procedures were based 

not only on the spectral response of the pixel but also on geometric and textural contexts to classify the land 

use and cover classes. 

This method provided a greater malleability in interpreting the presented raw data, not being limited 

only to the spectral response of the targets. At the junction of the data of each orbit, we observed no 

disagreements among the classifications of the three orbits covered by the study area (Figure 8). 

Land use and cover data were qualified for each year analyzed (Table 2). The results show an evident 

increase of agricultural activities and the reduction of forested and arborized vegetation. Figure 9 illustrates 

the changes in land cover classes type per decade between 1986 and 2016. 

As shown in Figure 9, the area occupied by woodland savanna substantially decreased from 74% in 

1986 to 44% in 2016 within the study area. Even worst, the deforestation phenomenon was intensified over 

the decades. Thus, the 30% of loss in woodland savanna corresponds to the 20% of areas converted in 

agriculture fields and the almost 10% of area converted in grassland and parkland savanna. The increase of 

agriculture fields shows that the phenomenon is inversely proportional to the loss of woodland savanna. 

Moreover, it is important to note that urban areas also increased substantially in the period, however still 

limited to a small fraction of the study area.  
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Figure 8 - Classification of land use and land cover in the periods studied. 

 
Source: The authors (2021). 
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Table 2 - Quantitative of areas per class. 

Class Class area (ha) Percentage 

1986 

Woodland savanna 2,663,086.14 73.68% 

Agricultural fields 146,060.46 4.04% 

Water bodies 2,789.37 0.08% 

Developed areas 543.4 0.02% 

Parkland savanna / Grassland savanna 802,124.91 22.19% 

1996 

Woodland savanna 2,341,521.99 64.78% 

Agricultural fields 222,989.22 6.17% 

Water bodies 2,144.25 0.06% 

Developed areas 959.58 0.03% 

Parkland savanna / Grassland savanna 1,046,994.93 28.97% 

2006 

Woodland savanna 2,097,910.98 58.04% 

Agricultural fields 459,981.09 12.73% 

Water bodies 1,885.23 0.05% 

Developed areas 1,580.67 0.04% 

Parkland savanna / Grassland savanna 1,053,240.84 29.14% 

2016 

Woodland savanna 1,579,926.51 43.71% 

Agricultural fields 908,447.13 25.13% 

Water bodies 2,870.1 0.08% 

Developed areas 3,029.49 0.08% 

Parkland savanna / Grassland savanna 1,120,330.62 30.99% 

Source: The authors (2021). 

 
Figure 9 - Time-series changes on land cover classes per decade between 1986 and 2016. 

 
Source: The authors (2021). 

 

5 DISCUSSION AND FUTURE WORK 
 

In this work, we present a method that best suits multi-temporal studies of land use and cover, 

preprocessing procedures, semi-automatic register, and image classification of the Landsat 5 and 8 satellites 

were performed, as well as the subsequent validation of the data in the field. This study has become complex 

because it involves an extensive area encompassing seven Landsat scenes and a 30-year timeframe divided 

over ten-year periods.  

Thus, we present the results of a multi-temporal analysis of Landsat images (PESSOA et al., 2013) 
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and the results obtained in the Brazilian states of Mato Grosso and Rio de Janeiro. In a study on the register of 

a series of Landsat images (BERTUCINI JUNIOR; CENTENO, 2016), the process can be automated (FARIA, 

2017), and that success depends on the contrast quality of the regions used in the development of this research. 

Since this is comparative research between four distinct periods, the work with non-orthorectified 

orbital images makes the geospatial correspondence between several years of data is impossible. The lack of 

geometric correspondence does not allow comparing land use and cover evolution in a given area. Another 

problem in multitemporal studies using different orbital sensors is finding suitable satellite image classification 

methods that minimize these differences. The use of oriented classification registration and classification using 

OBIA has proved to be essential tools for solving problems evidenced in multitemporal satellite data. 

Therefore, this investigation is necessary because it paved a roadmap that can be executed in the other 

multitemporal analyses of land use and land cover and other themes linked to historical data of a region. 

 Although, the multitemporal OBIA approach provided a mechanism to support the detection and 

classification of the land use and cover classes used in this investigation, including the small patches of 

grassland savanna. It is critical to highlight that the proposed method meets the need of a robust approach 

capable of mapping minor changes in the landscape, so we can quantify not only the expansion of the 

agriculture over the savanna but also small patches of savanna that arise in the study area along the last three 

decades. 

 

6 CONCLUSION 
 

As for the methodology, the proposed approach attested to the efficiency of the semi-automatic image-

to-image registration as an effective method for the geometric correction of Landsat scenes. Furthermore, we 

observed that the techniques used in this multitemporal study provide a correct geographic positioning between 

the images of all the analyzed years. 

The land use and cover classification obtained for the study area was satisfactory during all years 

covered, even with different sensor images. Therefore, we concluded that the object-based classification 

procedures are appropriate for multitemporal studies based on the methodologies performed in this work. 

Based on the confusion matrix and the calculated accuracy, it can be stated that this procedure was able to 

classify the region correctly in the analyzed period. 

Combined, the precise semi-automatic image georegistering and the object-based image classification 

provided a powerful tool to map land cover changes in critical areas of the Cerrado. In addition, the refined 

image segmentation allowed to detect patches of parkland savanna and grassland savanna, which deforestation 

does not match the woodland savanna.  

Our findings show a strong reduction of woodland savanna that covered 73% of the study area in 1986 

and only 43% in 2016, while agriculture areas were increasing from 4% to 25%. However, the quality of the 

geometric matching of the multitemporal images and the OBIA classification method allowed us to map minor 

changes in the landscape. Thus, the hypothesis of small patches of grassland savanna emerging in areas of 

degraded cattle farms and hills could be proved. The results showed a high increase from 22% in 1986 to nearly 

31% in 2016. 
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