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Abstract: Machine learning and statistical methods can help model meteorological phenomena, especially in a context 

with many variables. However, it is not unusual that the measurement of those variables fails, generating data gaps 

and compromising data history analysis. The framework combines the predictions provided by three machine learning 

methods: decision trees, artificial neural networks and support vector machine, together with values calculated through 

five triangulation methods: arithmetic average, inverse distance weighted, optimized inverse distance weighted, 

optimized normal ratio and regional weight. Each machine learning algorithm generates eight regression models. One 

of the machine learning models makes predictions based only on the date. The remaining seven models make 

predictions based on one weather parameter (max. temperature, min. temperature, insolation, among others), in 

addition to the respective date. The triangulation methods use the climatic data from three neighboring cities to 

estimate the parameter of the target city. The generated dataset is, posteriorly, optimized by meta-learning algorithms. 

The results show that the additional information provided by the new machine learning models and the triangulation 

methods offered a significant increase in the accuracy of the imputed data. Moreover, the statistical analysis and 

coefficient of determination R² showed that the meta-learning model based on regression trees successfully combined 

the base-level outputs to generate outputs that best fill in the missing values of the time series studied in this paper. 

Keywords: Meta-learning. Base-level learners. Machine learning. Triangulation. Time series. 

 

Resumo: Aprendizado de máquina e métodos estatísticos podem ajudar a modelar fenômenos meteorológicos, 

principalmente num contexto com muitas variáveis. Porém, não raro, a medição destas variáveis pode sofrer falhas, 

gerando lacunas de dados e comprometendo a análise do histórico dos dados. Neste trabalho é proposto um arcabouço 

que combina as previsões fornecidas por três métodos de aprendizado de máquina: árvores de decisão, redes neurais 

artificiais e máquina de vetores suporte, juntamente com os valores calculados através de cinco métodos de 

triangulação: média aritmética, inverso da distância ponderada, inverso da distância ponderada otimizado e proporção 

normal otimizado. Cada algoritmo de aprendizado de máquina gera oito modelos de regressão. Um dos modelos de 

aprendizado de máquina gera previsões baseadas apenas na data e os sete modelos restantes geram previsões baseadas 

em um parâmetro climático (temperatura máxima, temperatura mínima, insolação, entre outros), além da respectiva 

data. Os métodos de triangulação usam dados climáticos de três cidades vizinhas para estimar o parâmetro da cidade-

alvo. O conjunto de dados gerado é, posteriormente, otimizado por algoritmos de meta-aprendizado. Os resultados 

mostram que o acréscimo de informações fornecidas pelos novos modelos de aprendizado de máquina e os métodos 

de triangulação proporcionaram um aumento significativo na acurácia dos dados imputados. Além disso, a análise 

estatística e o coeficiente de determinação R² mostraram que o modelo de meta-aprendizado baseado em árvores de 

regressão combinou com sucesso os resultados do nível de base para gerar os resultados que melhor preenchem os 

valores faltantes das séries temporais estudadas neste artigo. 

Palavras-chave: Meta-aprendizagem. Aprendizes base. Aprendizado de máquina. Triangulação. Série temporal. 

 

 

 
 

1 INTRODUCTION  
 

The weather is a relevant factor that impacts the management and planning of different areas, such as 
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agriculture, energy generation and heavy civil construction. This relationship with the weather has motivated 

several searches in the area aiming to understand it (YANG et al., 2007). To predict the future condition of the 

weather, both machine learning and predictive analytics consider historical information to learn from past 

events, trying to recognize patterns. The material comes from stored data. 

Concerning the elaboration of a study, it is crucial to verify data availability. Thus, using a complete 

and reliable data set, it is possible to generate studies with fewer errors (BAYMA; PEREIRA, 2018, 2017). 

On the other hand, inconsistencies and unsatisfactory data volumes cause a limited or even a false 

representation of the actual picture (GARCÍA et al., 2009). 

Little and Rubin (2019) reviewed the theory about the different issues concerning the mechanisms that 

lead to missing data. They found out that there are three categories of incomplete data: 

• Missing Completely at Random (MCAR), in which the missing values show dependency 

neither on the values of the parameter itself nor the values of any other parameters that 

compose the data 

• Missing at Random (MAR), in which the missingness depends on the observed components 

• Not Missing at Random (NMAR), in which the dependency relies on the missing values 

themselves 

Despite having an extensive reservoir of climate data in Brazil, relevant institutions, such as the data 

division of CPTEC/INPE, do not have continuous information for all country regions (BARBOSA; 

CARVALHO, 2015). There are some periods without registration for different reasons, such as instrument 

failures, meteorological extremes, observation recording errors, and manual data entry procedures. This 

incomplete data may lead to the problems mentioned above. 

When it comes to modeling the behavior of weather parameters, it is noticeable that building a model 

using only a single imputation approach (e.g., linear regression) becomes difficult and sometimes ineffective 

due to the system's complexity. Therefore, finding different processes that best describe the problem or even 

conceiving multiple ways of dealing with it becomes a more appropriate measure, bringing with it greater 

precision (SOLOMATINE; OSTFELD, 2008). 

The meta-learning technique is applied when it is necessary to identify the best output from a set of 

previous predictions provided by multiple imputation techniques, called base-level learners. In addition, this 

approach offers a more significant variability on the first level predictions to eliminate biases that might occur 

when choosing a single method. Furthermore, the meta-learning model may identify the imputation technique 

that best fits a given set of parameters. 

This paper is an extended version of Alves and Pereira (2020), presented in XXI Brazilian Symposium 

on GeoInformatics (GEOINFO, 2020), in which we address the data sets with the missing values problem. We 

investigate the correlation among weather parameters and the relevance of considering a weather relationship 

among nearby cities. This approach uses a meta-learning framework based on machine learning and data 

triangulation to estimate missing values in weather time series. The current framework brings two additional 

machine learning techniques, support vector machine (SVM) and neural networks (NN), as both base-level 

learners and meta-learners, in addition to the regression trees. Furthermore, we used five triangulation 

techniques to provide more information about the days with missingness, evaluating the weather relationship 

among nearby cities. Finally, we applied the concept of meta-learning to improve regular learning algorithms 

and methods in the imputation values task. 

This text is organized as follows. Section 2 presents the literature review. Section 3 describes the data 

acquisition and preprocessing analysis. Section 4 presents the regression and triangulation methods and the 

meta-learning layers. Section 5 describes the proposed framework. Section 6 details the framework validation 

and shows the result analysis. Finally, section 7 presents the conclusions.  

  

2 RELATED WORKS 
 

Computational intelligence tools are increasingly present in the most recent studies that propose 



Rev. Bras. Cartogr, vol. 73, n. 4, 2021                            DOI: http://dx.doi.org/10.14393/rbcv73n4-59795 

 

 

   986 

 

approaches to fill the missing data values in time series. For example, Olcese et al. (2015) and Bayma and 

Pereira (2018) presented methods that use artificial neural networks (ANNs), linear regression, support vector 

machines and regression bagged trees to impute missing data on time-series data sets. In addition, these studies 

investigate which machine learning technique increases the imputation accuracy and which input arrangement 

can better picture the behavior of the output parameter. 

Despite being a relatively new research field mainly for meteorology purposes, the application of meta-

learning is becoming more recurrent. This ensemble demonstrates robustness when it is crucial to consider 

multiples parameters with a too complex dependency for a single machine learning or statistical methods to 

model, as when identifying price trends for the stock market assets (ASSIS, 2019). 

In the matter of defining which estimation method fits better the set of data, the use of statistical studies 

is a commonly adopted approach, as proposed by Jockers and Witten (2010) and Pirooznia et al. (2008). 

However, carrying out such a study demands elaborating the stages of the data treatment, model training and 

testing to the different data estimation methods. On the other hand, meta-learning is a powerful approach that 

allows matching several data estimation methods since it learns how to generate the most suitable output from 

the set of estimations available. 

Furthermore, it is reasonable to expect that distinct models will stand out when estimating missing 

values of different parameters. However, using a meta-learning model to recognize the best imputation value 

among the set of predictions ensures that, no matter which base-level learning model fits the data best, it has 

the same or even better performance. 

Our proposal is based on the concept of meta-learning, initially described by Maudsley (1980) as "the 

process by which learners become aware of and increasingly in control of habits of perception, inquiry, 

learning and growth that they have internalized" (Maudsley, 1980). Applying that concept for machine 

learning consists of algorithms that learn how best to combine predictions from estimation techniques in 

ensemble learning. 

Figure 1 – Map containing the ten groups of stations used in this paper. 

 
Source: The Authors (2021). 

 

In comparison to these related studies, our main contributions are: the use of the correlation among 

weather parameter and the relationship among the weather of neighboring cities; the investigation of an 
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automatic approach, since a thorough time series analysis by humans is often not feasible in practical 

applications that process multiple time series in minimal time; and the application of the concept of meta-

learning combined with triangulation methods to improve regular learning algorithms in the imputation values 

task. 

 

3 DATA ACQUISITION AND PREPROCESSING 
 

3.1 Data acquisition 
 

The Brazilian Institute of Meteorology (INMET) concentrates daily data from more than 400 

meteorological stations distributed throughout the country on its digital collection. Thus, it provides hourly, 

daily and monthly data on its website. In this research, we used daily data from 40 different meteorological 

stations. The parameters used were: date; rainfall (R); maximum temperature (MaT); minimum temperature 

(MiT); insolation (I); evaporation rate (ER); average relative humidity (ARH); average compensated 

temperature (ACT); and average wind speed (AWS) time-series. 

Figure 1 shows a list of the stations used in this paper with the respective latitudes, longitudes, and 

altitudes. The target city is marked in bold. After the target city, three neighboring cities of the first are shown. 

 

3.2 Data reduction 
 

As presented in Bayma and Pereira (2018, 2017), the learning methods show a better performance 

using a window of 5 years of data from the time series. For instance, to fill a month gap, a maximum of the 

last five years of data can be used to train the learning methods. Therefore, we selected different intervals of 

five years to apply the framework, picturing different cycles.  

As discussed in (ACUNA and RODRIGUEZ 2004), rates of 1-5% of missingness are considered 

manageable. However, dealing with rates of 5-15% of missing values requires advanced methods and over 

15% may lead to significant interpretation losses. Thus, we admitted a limit of 15% of missing values providing 

more intervals without much distortion of the actual picture to the study. 

 

3.3 Data normalization 
 

Han et al. (2011) describe that, in algorithms such as neural networks or those that use distance 

measures such as the classification of the nearest neighbor or clustering, normalization gives the process a 

significant speed in the learning phase. Hence, normalizing the parameters becomes a crucial measure to avoid 

issues when processing data with different lower and upper limits. When all the information is represented 

within the same boundaries, for example, [-1,1] or [0,1], the machine learning algorithms present better 

performance (HAN et al., 2011).  

    Al Shalabi et al. (2006) made a comparative study between three widely used normalization 

methods, Min-Max normalization, Z-score normalization, and decimal scale normalization. The authors 

concluded that the Min-Max method provided, in the experiments carried out, greater accuracy in the machine 

learning process. Hence, in the present work, we adopted Min-Max normalization with an interval that ranges 

from 0.2 to 1, according to Eq. (1): 

 

𝐴𝑁 =
𝐴 − 𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛
∗ (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛  (1) 

 

where AN is the normalized value, A is the original value, Amin is the minimum value among the original 

training dataset values, Amax is the maximum value among the original training dataset values, Lmin and Lmax are 

the lower and the upper limit of the normalized data, respectively. 
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4 THEORETICAL FOUNDATIONS 

 

4.1 Regression methods 
 

In this section, the regression methods used will be presented. These algorithms may be employed in 

the process of data imputation and forecasting. In this article, we used the techniques only in the imputation 

process. 

  

4.1.1 REGRESSION TREE AND BAGGED TREES 

 

Regression trees are acyclic graphs in which the nodes represent tests to compare the features with a 

constant or a range of values. The test determines whether a given value is less than or greater than a predefined 

constant, which generates a binary division, or whether this value is below, within, or above a range, 

developing a division into three nodes. It is applied successively with different constants or intervals. Thus, 

each leaf node represents an average value among all the training set values. 

This work used the concept of "Bootstrap Aggregating," sometimes known by the acronym "Bagging," 

so that the grouping of regression trees occurs, which tends to minimize the effects of overfitting (WITTEN et 

al., 2005). The version used in this work consists of 100 bootstrap replications of the climate time series dataset. 

We chose to grow each tree using at least five observations per leaf. 

 

4.1.2 ARTIFICIAL NEURAL NETWORKS 

 

An artificial neural network, also called ANN, is an arrangement of several processing units. 

According to Silverman and Dracup (2000), numerical values go from the input nodes to the hidden layer. 

Each unit, also called a node or neuron, has connections to the next level node, and each of those connections 

receives an individual weighting factor. Thus, those values are multiplied by the weights and, at the next layer, 

each neuron adds up all weighted inputs. Furthermore, an activation function is applied to the neurons to 

determine whether they will or will not be activated depending on their significance to the result. 

The network consists of the input layer representing the matrix created by the day, month, year and 

weather parameter for the base-level learners or the previously estimated values for the meta-learner. In 

contrast, the output layer means the vector formed by the feature to be analyzed. We parameterized the number 

of hidden layers to three. A few hidden layers can generate a simplistic neural network model, unable to 

encompass the complexity of prediction. On the other hand, many hidden layers can yield good results for the 

trained data, yet it can generate an overfitted model. The neural network training function used in this study 

was BFGS Quasi-Newton. The function used to measure the network's performance was the sum of absolute 

error. 

 

4.1.3 SUPPORT VECTOR MACHINE 

 

The support vector machine is considered a binary classifier of the nonlinear type with linear machine 

learning in a resource space induced by the kernel. The strategy is to separate the different entries into two 

classes generating a boundary that distinguishes both; that is called a hyperplane (CRISTIANINI et al., 2000). 

The kernel function is one of the essential points for this classifier, as it reduces its computational complexity. 

A significant advantage of this algorithm relies on the fact that it is possible to generate responses through the 

average values obtained by a small subset of the training data. 

Although hyperplane is a concept of classifiers, SVM can also perform the function of numerical 

prediction through the regression that generalization provides. Thus, using the binary classification 

methodology, a model is generated, and it is expressed by a set of support vector machines that use the kernel 

function (WITTEN et al., 2005). We used the gaussian kernel function with a kernel s scale of 20.654, box 

constraint of 122.14, and epsilon equals 0.006107. 
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4.2 Triangulation techniques 
 

As Stake (1995) observed, the triangulation technique determines the position of a ship in the ocean 

throughout the positions of three stars in the sky. In the context of this paper (data analysis), we used 

triangulation to determine the value of unknown data from known data from adjacent cities. Five triangulation 

methods were selected to compose the framework: arithmetic average (AA), inverse distance weighted (IDW), 

optimized inverse distance weighted (OIDW), optimized normal ratio (ONR) and regional weight (RW). 

 

4.2.1 ARITHMETIC AVERAGE 

 

Arithmetic Average (AA) is a commonly used triangulation method used due to its simplicity. The 

missing value is obtained by arithmetically averaging the known values, as Eq. (2) shows. 

𝑀 =
1

𝑛
∑ 𝑌𝑖

𝑛

𝑖=1

 (2) 

 

where M is the missing value, Yi is the feature of the neighboring station i, and n is the number of used 

neighboring stations in triangulation. 

 

4.2.2 INVERSE DISTANCE WEIGHTED AND OPTIMIZED INVERSE DISTANCE WEIGHTED 

 

The inverse distance weighted (IDW) method is widely used due to its simplicity (HUBBARD, 1994). 

This method uses weights for each feature used in the calculation. The weights are based on the inverse distance 

between the two stations, as Eq. (3) shows. 

𝑀 =
∑

𝑌𝑖
𝑑𝑖

𝑛
𝑖=1

∑
1
𝑑𝑖

𝑛
𝑖=1

 (3) 

 

where di is the distance between the neighboring station and the target station, that distance was 

calculated using the Haversine method (Robusto 1957). 

Khosravi et al. (2015) proposed a modification to IDW, including the monthly average of the parameter 

and altitude to calculate the variable's weight, as Eq. (4) shows. 

 

𝑀 =
∑

𝑌𝑖
𝑑𝑖

∗
𝐴
𝐴𝑖

∗
𝑙𝑜𝑔𝐻
𝑙𝑜𝑔𝐻𝑖

𝑛
𝑖=1

∑
1
𝑑𝑖

𝑛
𝑖=1

 (4) 

 

where A and Ai are the monthly parameter averages of the target station and the neighboring station, 

respectively. H and Hi are the altitudes of the target station and the neighboring station, respectively. 

 

4.2.3 REGIONAL WEIGHT 

 

Regional weight (RW) is one of the classes of methods that uses a weight parameter. As described in 

(PAULHUS and KOHLER, 1952), the weight to each value used in the calculation is based on the monthly 

average, as Eq. (5) shows. 

𝑀 =
1

𝑛
∑

𝐴

𝐴𝑖
𝑌𝑖

𝑛

𝑖=1

 (5) 
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4.2.4 OPTIMIZED NORMAL RATIO 

 

Optimized normal ratio (ONR) is one of the classes of methods that uses a weight parameter. Young 

(1992) proposed the weight represents the correlation between the target station and the neighboring station, 

as Eq. (6) shows. 

 

𝑀 =
∑ 𝑌𝑖 ∗ (𝑟𝑖

2
𝑝𝑖−2
1−𝑟2)𝑛

𝑖=1

∑ 𝑟𝑖
2

𝑝𝑖−2
1−𝑟2𝑛

𝑖=1

 (6) 

 

where ri represents the correlation between the target station and the neighboring station, and pi is the 

number of days the correlation coefficient is based. 

 

4.3 Meta-learning 
 

The multi-classification technique may be described as a knowledge combination of an ensemble of 

classifiers that seek more accurate decisions (KUNCHEVA, 2014). Some multi-classifiers are voting, ranking, 

the mixture of experts and meta-classifiers. The last one is based on accumulating knowledge from the multiple 

classification methods under a learning system (BRAZDIL et al., 2008). In the context of this paper, we used 

regressors instead of classifiers. Hence, they are given the term meta-learners. 

Kuncheva (2014) emphasizes that the meta-learning process implies an increase in complexity. 

However, the author still mentions that combining an ensemble of base-level learners with less complex 

approaches becomes more straightforward than finding parameters' combination that best describes the 

problem's complexity. 

Stacking generalization is adopted as a solution to combine multiple model's outputs. Stacking is an 

approach that uses several generalizers to estimate values individually with their biases through a particular 

learning set and then filter out those biases (WOLPERT, 1992). This strategy is applied in such a way to return 

an output that may not be better than the output of the best imputation method. Still, it diminishes or gets rid 

of the possibility of choosing an inadequate one. Data of the target city generates values. 

 

Figure 2 – A scheme of the generated framework. 

 
Source: The Authors (2021). 

 

Meta-learning algorithms are essentially composed of two levels: level 0 (also called base-level) and 

level 1. The first level takes several learning algorithms {L1, L2,..., LN} and trains them using the dataset D 

composed of the features under consideration (i.e., base-learning data) to produce a set of models {m1, m2,..., 

mN}. 

The second level takes a meta-dataset D' composed of the predictions of each base-level model, for 

that instance, to train a new learning algorithm Lmeta that builds a meta-model mmeta that fits the predictions of 
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the base-level learners to target classes. 

Finally, the framework consists of N base-level models and one meta-model, which estimates new 

instances throughout two calculation stages.  

Figure 2 presents a scheme of the proposed framework. 

 

5 THE META-LEARNING FRAMEWORK TO FILL MISSING VALUES 
 

The proposed framework consists of 8 base-level learning models (level 0) that match each input, five 

triangulation methods and three meta-learning models (level 1). The framework removes the parameter that 

represents the one that is being imputed along with the iteration, remaining 8 out of 9 types of inputs: (1) date, 

(2) date + rainfall, (3) date + maximum temperature, (4) date + minimum temperature, (5) date + insolation, 

(6) date + evaporation rate, (7) date + average relative humidity, (8) date + average compensated temperature 

and (9) date + average wind speed. Thus, both inputs and the output represent records of the same day. 

Moreover, we adopted stacking generalization to combine the outputs from the eight machine learning models 

and the five triangulation methods to generate the most suitable values to fill in the data gaps. 

 

Figure 3 – A scheme representative of the data flow and the framework. 

 
Source: The Authors (2021). 

 

We deal with the imputations of missing values from different time series. To encompass the 

complexity of each climatic parameter and to picture the dependence among each input and the output, it would 
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demand a study or multiple tests to define the best parameterizations for each machine learning model. 

Moreover, it would take a specific parametrization for each model created. Thus, instead, we chose to set each 

machine learning method with the parametrizations cited in subsections 4.1.1, 4.1.2 and 4.1.3 to perform a 

simplified approach. 

We built the framework in three stages, as Figure 3 shows. First, we make the data acquisition and 

preprocessing to acquire data from a text file and process it. This step is necessary to structure the data into 

tables and remove the information that corresponds to the days with missing values. Then, we reduce the data 

to 5 years in which the four data sets have the amount of data of the same period that matches the requirement 

of 10% of completeness. Moreover, we split the data collected by each of the selected meteorological stations 

into three datasets. One of the datasets is used to train the base-level learners, one is used to generate the meta-

dataset to train the meta-learning models and the last one is used to test the framework. Furthermore, we 

ensured that no data used in training was also part of the validation amount. Finally, we normalize the machine 

learning datasets.  

We chose to use a 40/40/20 portion for the base-level learners training dataset, meta-learners training 

dataset, and validation dataset, respectively. To the best of our knowledge, a fragmentation like 80/20 for 

training and validating machine learning models, respectively, is commonly adopted when one makes 

statistical studies Dannenberg et al. (1997). Moreover, as suggested by (ASSIS, 2019), we used half of the 

training to train the base-level learners and a half to train the meta-learners. 

Algorithm 1 shows the second and third stages represented in Figure 3. The second stage consists of 

the base-level learners training using the base-level learners training set (line 8). The base-level learners are 

responsible for generating models capable of calculating the missing value from a given day based on the date 

and one of the weather parameters of the same day. In addition to the base-level learners, we used triangulation 

methods to calculate the missing values based on the corresponding parameter values from 3 neighboring 

cities. For example, to calculate the missing precipitation value of the target city, the precipitation values from 

the three neighboring cities are used. The outputs generated by the base-level learners and the triangulation 

methods are called the level 0 imputation values. This ensemble allows that, for a given day, there are 29 

different imputing values available for the same missing parameter. 

Subsequently, in the third stage, level 1, the meta-learners are trained using the meta-learner training 

set (line 17). Then, that set of inputs is applied to the models generated in the learning stage (line 9) and 

triangulation methods (line 15) to estimate the level 0 imputation values. Therefore, the meta-learning data 

have as many attributes as base-level learning models, triangulation methods, and dates. The final purpose is 

to learn from the group of imputation methods to generate models capable of combining those level 0 outputs 

to calculate an optimized one that is more accurate. 

 

Algorithm 1 – Meta-Learning. 

Input: machineLearningData, triangulationData, triangulationMethods, learners, metaLearners, indl, indm, 

indp 

Output: Predictions 

1: start 

2: for i ← 1 to metaLearners.size() 

3:  for j ← 1 to learners.size() 

4:   for k ← 1 to machineLearningData.getQuantParam() 

5:    L ← machineLearningData.get(indl, k); 

6:    M ← machineLearningData.get(indm, k); 

7:    P ← machineLearningData.get(indp, k); 

8:    model ← train(learners[j], L); 

9:    M'[i, k] ← fit(model, M); 

10:    P'[i, k] ← fit(model, P); 

11:   end 
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12:  end 

13: T1 ← triangulationData.get(indm); 

14: T2 ← triangulationData.get(indp); 

15: M'.append(date, triangulationMethods(T1)); 

16: P'.append(date, triangulationMethods(T2)); 

17: metaModel ← train(metaLearners[i], M'); 

18: predictions[i] ← fit(metaModel,P'); 

19: end 

20: return predictions 

21: end 

Source: The Authors (2021). 

 

6 EXPERIMENTS AND RESULTS 
 

As seen previously, this work presents the application of a meta-learning framework to estimate 

missing weather values in climatic time series. Furthermore, this section will present the validation test used 

in the experiments and the results. We carried out a study under ten groups of data sets, each one composed of 

four meteorological stations, to validate the methodology. One of the cities is called the target city and the 

other three cities are the neighboring ones, which data are used to infer the missing data. 

The coefficient of determination R² (Eq. 7) was used to determine how well the models can reproduce 

the actual records (HOMMA; SALTELLI, 1996). This coefficient compares the difference between the 

calculated value and the real value, weighting the result with the difference between the average and the actual 

value, as Eq. 7 shows. Thus, the closer to 1 the coefficient of determination R² is, the better the model calculates 

the dependent variable. 

 

𝑅2 = 1 −
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁

𝑖=1

∑ (𝑦̅ − 𝑦𝑖)2𝑁
𝑖=1

  (7) 

 

where yi is the i-th actual value, 𝑦̂i is the i-th calculated value and 𝑦̅ is the average of the N actual 

values. 

We created artificial gaps in the dataset to simulate the real scenario where the lack of data occurs 

randomly as a second validation. A total of 20% of the data set was randomly chosen to validate the trained 

models. 

Furthermore, we created artificial gaps in the inputs by removing some input information to simulate 

different scenarios with different combinations of parameter missingness. As we built this methodology to take 

advantage of the information available, we analyzed the following scenarios: one weather parameter available, 

two weather parameters available, three weather parameters available, and so on, until seven weather 

parameters available. Then, we combined all those scenarios with the triangulation values. The 0 constant 

replaced the gaps, as suggested by Han et al. (2011), one it is a value out of the bounds of all variables used in 

this study. 

The algorithm was applied in data sets from cities with different climatic characteristics to work as a 

further validation method. For each data set, the methodology adopted was performed 30 times to generate 

sufficient material to make a statistical analysis. Furthermore, the analysis done was proposed in Carrano et al. 

(2011), which demands to build an empirical probability distribution function for the mean values of R2 

through bootstraps of the data produced by each method (PEREIRA et al., 2019). Then, it compares those 

functions using the method of analysis of variance – ANOVA - (FISHER, 1919) and Tukey's multiple 

comparison test. Finally, the models are arranged from the best to the worst. In other words, a model with 

mean values better than the other ones always lies in the first position. Moreover, we analyze whether the p-

values between two models is lower than 0.05 to conclude that the methods are statistically different at such a 
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confidence level of 95%. 

Table 1 summarizes the models analyzed according to the different inputs created to simulate a real 

scenario with missing values. The models from 6 to 29 represent the base-level learners based on machine 

learning algorithms. It is noticeable that despite being eight models from each machine learning algorithm, the 

table shows nine inputs. Since the algorithm estimates the values from a given feature, this information must 

not be part of the set of input. For example, when imputing evaporation rate values, the models from 7 to 13 

run with the inputs: date + insolation or date + rainfall or date + average compensated temperature or date + 

maximum temperature or date + minimum temperature or date + average relative humidity or date + average 

wind speed. The same configuration is observed to models 15-21 (SVM) and 23-29 (ANNs). 

 

Table 1 – Codes used for each model in the presentation of the results. 

Model Code Method Input 

1 Arithmetic Average Data from Three Neighboring Cities 

2 Inverse Distance Weighted Data from Three Neighboring Cities 

3 Optimized Inverse Distance Weighted Data from Three Neighboring Cities 

4 Optimized Normal Ratio Data from Three Neighboring Cities 

5 Regional Weight Data from Three Neighboring Cities 

6 
Bagged Trees 

Date 

7-13 Date + 1 weather parameter 

14 Support Vector 

Machine 

Date 

15-21 Date + 1 weather parameter 

22 Artificial Neural 

Networks 

Date 

23-29 Date + weather parameter 

30 

Bagged Trees 

Six Missing Parameters 

31 Five Missing Parameters 

32 Four Missing Parameters 

33 Three Missing Parameters 

34 Two Missing Parameters 

35 One Missing Parameter 

36 No Missing Parameters 

37 

Artificial Neural 

Networks 

Six Missing Parameters 

38 Five Missing Parameters 

39 Four Missing Parameters 

40 Three Missing Parameters 

41 Two Missing Parameters 

42 One Missing Parameter 

43 No Missing Parameters 

44 

Support Vector 

Machine 

Six Missing Parameters 

45 Five Missing Parameters 

46 Four Missing Parameters 

47 Three Missing Parameters 

48 Two Missing Parameters 

49 One Missing Parameter 

50 No Missing Parameters 

 

6.1 Summarized results 
 

As discussed previously, we applied the framework to 10 datasets, which produced a large amount of 

data. Hence, for the sake of brevity, space restriction and to preserve the readability of the text, only the most 

relevant results are presented in this paper. 

In Table 2 are summarized the results of the whole set of datasets used in this study. The first column 

contains the weather parameters under which we developed our study to impute missing values from their time 

series. The second and third columns contain the base-level models and meta-learning models that stood out 

the most on the ten datasets on the level-0 estimations and level-1 estimations. Finally, the last column 

represents the best model from the whole set of models. Thus, the meta-learning technique achieved its 

objective to recognize which base-level learning estimates the missing values with more accuracy, allowing 
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the estimation process's optimization. Furthermore, we observe that different base-learning models present 

better performance for each weather parameter than the other level 0 models. Nevertheless, the robustness of 

our approach enabled meta-learning models with the same configuration to recognize the models with the best 

outputs when estimating different features, emphasizing its adaptability. 

 

Table 2 – Summarization of the best models when estimating weather parameters. 
Imputed Parameter Best Model - Level 0 Best Model - Level 1 Best Model 

Evaporation Rate 5 36 36 

Insolation 1 36 36 

Rainfall 5 36 36 

Average Compensated Temperature 10 50 50 

Maximum Temperature 2 36 36 

Minimum Temperature 1,2,10 50 50 

Average Relative Humidity 1,10 36 36 

Average Wind Speed 5 36 36 

 

Figure 4 shows the five models with the best performances when estimating rainfall missing values 

from Belo Horizonte city. In the representation, when two or more models are overlined together, the p-value 

between them is greater than 0.05. In other words, it means that there is no statistical evidence to set these 

models apart from each other. The brackets indicate the p-values related to each comparison. Thus, the p-

values between model 1 and models 36 and 35 show that the triangulation and the meta-learning models are 

tied.  

 

Figure 4 – Order of the models according to p-value generated, using the statistical test – Belo Horizonte's rainfall 

estimators. 

 
Source: The Authors (2021). 

 

Figure 5 – Boxplots representing the median of the coefficients of determination R² of the 30 executions of the ten 

groups for each imputed weather parameter. 

 
Source: The Authors (2021). 

 

Figure 5 shows the boxplots representing the median of the coefficients of determination R² of the 30 

executions of the ten groups for each weather parameter imputed. BL-T and BL-M represent the base-learning 
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models based on triangulation methods and machine learning methods, respectively. ML-BT, ML-ANN and 

ML-SVM represent the meta-learning models based on bagged trees, artificial neural networks and support 

vector machine, respectively. It is noticeable that the meta-learning model based on bagged trees is always one 

of the models that present the highest medians of R² values for the whole set of imputed parameters, which is 

expected from this algorithm that captures nonlinear dependencies among the inputs and the output.  

Another aspect that Figure 5 shows is that the boxplots representing the meta-learning models' 

performance present a small interquartile range revealing its precision in estimating the optimized outputs 

regardless of the different data sets used in this work. Furthermore, all models achieve lower values of R² when 

imputing missing values on rainfall and average wind speed time series compared to the other parameters. 

 

7 CONCLUSION 
 

In this paper, we proposed an alternative solution to the problem of imputing missing values in a 

MCAR weather time series. Instead of seeking an optimal input combination and the best model to fit each 

weather parameter, we showed that using a meta-learning model to optimize more straightforward approaches 

yields satisfactory results even under a weak correlation between parameters. As an outcome, our proposal 

brings the following advantages:  

• It automates the process of choosing the best model out of a set of estimators. We argue that 

such an automatization can lead to advantages in the field of imputing parameters from 

different nature when for each weather parameter, a different model stands out from the others 

and when it allows less complex approaches at the base-learning level; and 

• It includes triangulation methods to improve the imputation process. Those methods bring to 

our analysis the spatial relationship between the variables in addition to the temporal 

relationship.  

Furthermore, we showed that high values of R² were achieved even when there were fewer weather 

parameters to improve the imputation, which does not occur when only the correlation between the weather 

parameter is explored. 

Moreover, we comparatively tested base-learning models and meta-learning models in this work over 

well-known regression problems. As a result, we found out that a meta-learning model compared to the best 

base-learning model has either similar or better performance.  

Meta-learning is a relatively new field of research. Thus, this article also contributes to the study of 

this field applied to the meteorological context and the improvement of results. 
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