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Abstract: This article discusses the state-of-the-art of radar remote sensing and was prepared as part of the special 

edition of the 50th anniversary of this journal. This study briefly introduces the fundamentals of radar remote sensing, 

highlighting the most important aspects of image acquisition modes and biophysical parameters of the Earth´s surface 

involved in the process of acquiring radar images. We emphasized wavelength, polarization of electromagnetic waves, 

image acquisition geometry (imaging parameters), soil and vegetation water content, terrain roughness, and vegetation 

structure (biophysical parameters of the Earth's surface). Subsequently, the main orbital synthetic aperture radar 

sensors currently in operation and the main options of radar image processing are presented, highlighting the 

conversion of digital values to backscatter coefficients, spatial filters to reduce speckle noise, image decomposition 

techniques, and InSAR processing. Finally, we briefly discuss some potential applications, with special attention to 

the monitoring of oil spills in continental platforms, above-ground biomass estimation, deforestation monitoring in 

tropical forests, detection of irrigated rice cropping areas, and soil moisture estimation.  

Keywords: SAR. Remote sensing. Backscattering. Earth Resources Satellites. 

 

Resumo: Este artigo aborda o estado da arte do sensoriamento remoto por radar e foi elaborado para fazer parte da 

edição especial de comemoração dos 50 anos desta revista. Neste estudo, é apresentada uma breve introdução sobre 

os fundamentos do sensoriamento remoto por radar, com destaque para os parâmetros mais importantes de 

imageamento e da superfície terrestre envolvidos no processo de obtenção de imagens de radar. Ênfase é dada para o 

comprimento de onda, polarização das ondas eletromagnéticas e geometria de obtenção de imagens (parâmetros de 

imageamento) e para a umidade de solos e da vegetação, rugosidade do terreno e estrutura da vegetação (parâmetros 

da superfície terrestre). Em seguida, são apresentados os principais sensores orbitais de radar de abertura sintética que 

estão atualmente em operação e os principais processamentos digitais de imagens de radar, destacando-se a conversão 

dos valores digitais para coeficientes de retroespalhamento, os filtros espaciais para redução do ruído speckle, as 

técnicas de decomposição de imagens e o processamento InSAR. Finalmente, é apresentada uma breve discussão 

sobre algumas aplicações potenciais, com especial atenção para o monitoramento de derrame de óleo em plataformas 

continentais, estimativa de biomassa aérea, monitoramento de desmatamento em coberturas florestais tropicais, 

detecção de áreas de plantio de arroz irrigado e estimativa de umidade de solos. 

Palavras-chave: SAR. Sensoriamento remoto. Retroespalhamento. Satélites de recursos terrestres. 
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1 INTRODUCTION 
 

Radar remote sensing was first used in Brazil by the RADAMBRASIL project during the 1970’s for 

mapping natural resources of Brazil. This project was initially planned to cover the Brazilian Amazon, but it 

was extended to the entire country in 1975. It consisted of obtaining radar images in analogic format by the 

U.S. Caravelle airplane carrying a side-looking airborne radar system named GEMS (Goodyear Mapping 

System 1000), which operated at wavelength of 3.2 cm (X-band), HH polarization, swath of 37 km, north-

south flight direction, and lateral overlapping of 25% (LIMA, 2014). These images were made available in 

hardcopy at 1:250,000 scale and regular grid of 1o 00´ x 1o 30´. The rationale of using a radar system was based 

on its capacity to obtain images regardless of cloud cover and solar illumination conditions. Experts were hired 

by the Ministry of Mining and Energy to visually interpret the semi-controlled, A0 paper size mosaics to 

produce soil, geomorphology, geology, and vegetation maps, among other thematic maps. The reports are 

freely available for download in the library of the Brazilian Institute for Geography and Statistics (IBGE) 

(https://biblioteca.ibge.gov.br/index.php/). 

The first spaceborne synthetic aperture radar (SAR) system was launched in 1978 onboard the 

SEASAT satellite operated by the National Aeronautics and Space Administration (NASA). It was primary 

designed for global satellite monitoring of oceanographic phenomena and to assist in determining the 

requirements for satellite remote sensing of oceans (EVANS et al., 2005). Specific objectives included 

gathering data of sea surface winds and temperatures, wave heights, atmospheric water, and sea-ice properties, 

among other phenomena in the Earth´s surface. In 1981, 1984, and 1994, the Shuttle Imaging Radar (SIR) 

series was launched and called SIR-A, SIR-B, and SIR-C/X-SAR (CIMINO; ELACHI; SETTLE, 1986; 

EVANS, 2006). The scientific legacy of these space shuttle missions is extensive, for example, in the fields of 

biomass estimation, soil moisture, and monitoring of the Amazon rainforest (e.g., STONE; WOODWELL, 

1988; HESS et al., 1995; FERRAZOLI et al., 1997; SAATCHI; SOARES; ALVES, 1997; ALSDORF; 

SMITH; MELACK, 2001).Thanks to the success of space shuttle missions, in the early 1990´s, three SAR 

satellite systems were launched by the European Space Agency (ESA), Canadian Space Agency (CSA), and 

Japan Aerospace Exploration Agency (JAXA), the Earth Resources Satellite (ERS-1), the RADARSAT-1, and 

the Japanese Earth Resources Satellite-1 (JERS-1), respectively. These satellites operated at single frequency 

and single polarization because of the huge volume of data that are generated by SAR systems. Several 

researchers analyzed the potential of SAR data acquired by these satellites to estimate different biophysical 

parameters (e.g., DOBSON; PIERCE; ULABY, 1996; SANO et al., 1998a; SRIVASTAVA et al., 2003). 

However, there was an increasing demand from the scientific community for the capability of multiple 

polarization, to improve the potential of discriminating/mapping specific targets of interest (e.g., soil moisture) 

by minimizing the influence of other biophysical parameters (e.g., soil roughness, vegetation structure, and 

biomass). Capability of dual or full-polarization was only made available in the last generation of radar 

satellites launched after 2005. 

The most recognized advantage of radar sensors is their capability to obtain images regardless of cloud 

cover conditions (HENDERSON; LEWIS, 1998; SANO; MENESES; ALMEIDA, 2019). This is because 

wavelengths of spectral bands of SAR sensors are much larger than the average diameter of particles and 

molecules found in the atmosphere. As a result, SAR systems are more suitable than optical sensors to monitor 

the environmental dynamics of tropical countries of South America (e.g., Brazil, Guyana, and Peru), Central 

Africa (Congo, Democratic Republic of the Congo, and Gabon), and Southeast Asia (Indonesia, Malaysia, and 

Singapore). These regions are well-known for persistent cloud cover conditions throughout the year. Another 

advantage of SAR data is their independence of solar illumination conditions, which is a disturbing effect in 

optical remote sensing. We can foresee the following trends in the field of radar remote sensing: increasing 

availability of no-cost data (so far, there is only one radar satellite data freely available to download on the 

internet); increasing availability of cloud and storage computing platforms similar to Google™ and Amazon™ 

to access and process radar images; continuity of existing SAR programs and the release of new programs, 

ensuring the construction of long and consistent time series of radar data; and availability of ready-to-use SAR 

products, reducing labor, time, and complex processing commonly observed in radar data analyses. 

This paper review presents the state-of-the-art of radar remote sensing. It was prepared to be part of 
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the special edition of the 50th anniversary of this scientific journal. In Section 2, we discuss the fundamentals 

of radar remote sensing. In Sections 3 and 4, we present the current operating SAR systems and the Brazilian 

R99B SAR sensor, respectively. In Section 5, we selected some examples of applications. Concluding remarks 

are presented in Section 6. 

 

2 FUNDAMENTALS OF RADAR REMOTE SENSING 
 

SAR is an active system that operates in the microwave spectral region (approximately from 0.8 cm to 

120 cm) (Figure 1). Active systems use their own source of electromagnetic radiation, usually an antenna that 

transmits pulses of energy and registers the backscattered component of emitted radiation. Backscattering is a 

term used for active sensors and is equivalent to the reflected solar energy detected by passive sensors. The 

spectral bands of SAR systems are specified by the following codes: K (0.8 cm – 2.5 cm); X (2.5 cm – 3.8 

cm); C (3.8 cm – 7.5 cm); S (7.5 cm – 15 cm); L (15 cm – 60 cm); and P (60 cm – 120 cm). There is no 

practical meaning for each code described by these capital letters. Developers used ordinary alphabetic 

descriptors for real wavelengths or frequencies during World War II (JENSEN, 2000). The corresponding 

intervals of frequency can be used to specify spectral bands as well. Usually, engineers prefer frequencies 

because when radiation crosses materials with different densities, the frequency is constant, while application 

researchers prefer wavelengths. In this study, the wavelength was chosen to designate the spectral band of 

different sensors. Currently, only the X-, C-, and L-bands are used in satellite platforms and there is no satellite 

system operating with two or three different bands. The longer the wavelength, the stronger the penetration 

capability of signals emitted on vegetation canopies or soil surfaces. In dry soils, the penetration capability of 

radar signals is half of its wavelength at the maximum. On vegetation canopies, it will depend on biomass level 

and vegetation structure. Therefore, the selection of the best wavelength will depend on the type of application 

or purpose of the study. 

 

Figure 1 – Band designation according to the wavelength and frequency of SAR systems used for gathering information 

from either airborne or satellite platforms. 

 
Source: Modified from Ouchi (2013). 

 

Another important imaging parameter of SAR systems is the polarization of emitted and backscattered 

energies. As active sensors, SAR systems can setup the antenna to transmit and receive electric components 

of signals in a single plane perpendicular to the direction of propagation. Commonly, radar systems are 

designed to operate in horizontal (H) and vertical (V) planes. As a transmitted signal depolarizes when reaching 

the terrain, a specific sensor can operate in four different polarization combinations, HH, HV, VH, and VV. 

The first letter refers to the transmitted signal while the second letter refers to the backscattered signal. HH and 

VV signals are known as co-polarized signals, while HV and VH signals are known as cross-polarized signals. 

Usually, co-polarized signals are stronger than cross-polarized signals. Radar systems can have one, two or all 

four combinations of transmit/receive polarization. Whenever a SAR sensor operates with full polarization 

capability, there is opportunity to generate RGB color composites of HH, HV or VH, and VV polarized images. 

When the system operates with two polarizations, we can generate a third image by applying any mathematical 

operation, such as addition, subtraction, division, multiplication or averaging. 

 When an antenna emits a pulse of energy towards the terrain, we need to consider the following 

directions and angles: azimuth and range directions; and incidence or depression angle. Azimuth direction 
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refers to the direction of the movement of a platform (aircraft or satellite) in a straight line. Pulses of energy in 

the microwave spectral region are transmitted to the terrain perpendicular to the azimuth direction, which is 

named range direction. Features in the terrain (e.g., geological structures, such as faults) located perpendicular 

to the range direction usually are much enhanced in relation to the same features located parallel to the range 

direction. Depression angle () is the angle formed between the horizontal plane and the pulse of energy emitted 

by the antenna towards the terrain, while incidence angle () is the angle formed between the line perpendicular 

to the terrain and the pulse of energy emitted by the antenna. When the terrain is plane, depression angle and 

incidence angle are complementary. 

 According to the particle model of the electromagnetic radiation (E = hc/, where E = energy; h = 

Planck constant; and  = wavelength), the energy in the microwave spectral region is insufficient to interact 

with the atoms and molecules of materials to extract information about their chemical composition, which is 

the basis of optical remote sensing. Thus, extracting information from radar images is based on geometric and 

dielectric properties of materials (PARADELLA et al., 2005). In other words, soil moisture, terrain roughness, 

vegetation water content, and vegetation structure play the major roles in radar image analysis. When a dry 

soil is moisturized, we can visually see when it becomes darker due to increasing absorption of electromagnetic 

radiation in the visible interval of the electromagnetic spectrum. The same soil becomes brighter in SAR 

images because there is an increase in the soil dielectric constant (). Dry soils have low dielectric constant (3 

<  < 8), while  of liquid water is around 48-80, depending on its temperature (SANO; MENESES; 

ALMEIDA, 2019). Therefore, when soil water content increases,  increases and, consequently, the 

backscattered energy is more intense. The same interaction occurs when there is an increase in the water 

content of leaves that are photosynthetically active. These soil and vegetation changes and effects are important 

for being the rationale for using radar data to estimate soil moisture content or phytophysiognomies. 

 Terrain roughness also plays an important role in the backscattering process, since the magnitude of 

soil roughness is approximately the same magnitude of microwave wavelengths (centimeters). Terrain 

roughness can be smooth or rough. Smooth surfaces cause near specular reflection of emitted energy, appearing 

dark in SAR images, while rough surfaces backscatter the emitted energy more intensively, appearing bright 

in SAR images. The concept of terrain roughness is wavelength- and incidence angle-dependent, that is, a 

surface can be rough for shorter wavelengths or larger incidence angles, but smooth for longer wavelengths or 

smaller incidence angles. Although estimating terrain roughness calls little attention in the literature, it is still 

important to consider its effects, for example, in studies involving estimation of soil moisture and above-

ground biomass (AGB). In one of the early studies conducted by Ulaby and Batlivala (1976) using a 

scatterometer in the field, the authors showed that the influence of soil roughness is less pronounced at the 

incidence angle of 10o. Quantitative and representative measurements of ground surface roughness in the field 

to validate estimations derived from SAR images are quite difficult. The time-demanding measurements are 

acquired by terrain roughness meters or chains. Several measurements are required for a representative 

measurement of surface roughness of a specific area under study, especially if the area is large or heterogeneous 

in terms of roughness (NURTYAWAN et al., 2020). 

 Vegetation structure also strongly affects the backscattering process. Vegetation structure is defined 

as the proportion of grasses, shrubs, and trees present in an area of interest. Branches and trunks of shrubs and 

trees act as individual scatterers of emitted radar signals. Therefore, areas with higher density of shrubs and 

trees will appear brighter in radar images compared with other grass-dominated areas. Thus, radar images can 

be used to estimate AGB or monitor deforestation (see Section 6 for more details). Some studies have 

demonstrated that radar data is more appropriate than optical data to discriminate representative 

phytophysionomies of Cerrado (SANO; FERREIRA; HUETE, 2005) and to map dry forests with strong 

climatic seasonality worldwide (KOYAMA et al., 2019). 

 More detailed aspects of principles of radar remote sensing such as the viewing geometry, azimuth 

and range resolutions, topographic displacements, speckle, and Doppler effects can be found in different 

textbooks available for purchase (e.g., HENDERSON; LEWIS, 1998; JENSEN, 2000; SANO; MENESES; 

ALMEIDA, 2019) or for free in the internet (e.g., CCRS, 2020). 
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3 CURRENT SPACEBORNE SAR SYSTEMS 
 

After the launch of the SEASAT satellite, scientists became aware of the potential of SAR in different 

applications in the fields of geology, agriculture, forest, hydrology, disaster monitoring, and oceanography, 

among others. Recently, several spaceborne SARs have been launched and new missions are planned to be 

launched in the near future. The overall trend is that spatial resolution is improving (1-3 meters), although 

wide-swath with coarser resolution (~ 100 m) acquisition mode data have been made available for free to allow 

global studies (OUCHI, 2013). The conventional single polarization mode is becoming dual or even quad-

polarized. The main characteristics of current spaceborne SAR platforms are shown in Table 1.  

 

Table 1 – Image acquisition characteristics of main spaceborne SAR systems for Earth observation in operation. As the 

polarization and resolution (in range) depend on the image acquisition mode, we have provided below the best options 

available for each satellite. DLR = German Aerospace Center; ISA = Italian Space Agency; CSA = Canadian Space 

Agency; ESA = European Space Agency; S1A = Sentinel-1A; S1B = Sentinel-1B; JAXA = Japan Aerospace 

Exploration Agency. CONAE = Argentina´s Space Agency. The RADARSAT constellation is in validation and 

calibration phase. The temporal resolution of Sentinel-1A and Sentinel-1B satellites is 12 days or 6 days if both 

satellites are combined. JAXA uses a basic observation plan (BOS) as image acquisition strategy (JAXA, 2017). 
Satellite Agency 

(Country) 

Launch Band Polarization Resolution 

(m)  

 

Temporal 

Resolution 

(days) 

Citation 

TerraSAR-X DLR 

(Germany) 

2007 X Dual-pol 1 11 Pitz and Miller 

(2010) 

 

TanDEM-X DLR 

(Germany) 

2010 X Dual-pol 1 11 Krieger et al. 

(2007, 2013) 

 

COSMO SkyMed ISA 

(Italy) 

2007 X Dual-pol 1 16 Covello et al. 

(2010) 

 

RADARSAT-2 CSA 

(Canada) 

2007 C Quad-pol 3 24 Fox, 

Luscombe and 

Thompson 

(2004) 

 

RADARSAT 

Constellation  

Mission 

 

CSA 

(Canada) 

2019 C Quad-pol 1 4 CSA (2020) 

Sentinel-1A and 

Sentinel-1B 

ESA 2014 

(S1A) 

2016 

(S1B) 

 

C Dual-pol 5 12 (6) Torres et al. 

(2012) 

ALOS-2 JAXA 

(Japan) 

2014 L Quad-pol 3 BOS Rosenqvist et 

al. (2014) 

 

SAOCOM CONAE 

(Argentina) 

2018 L Quad-pol 10 16 ESA (2020) 

Source: The authors (2020). 

  

 The number of countries that launched satellites carrying SAR sensors is relatively small. Canada, 

Japan, and ESA, an intergovernmental organization with headquarters in Paris, France, have vast experience 

on radar remote sensing, since they launched the first SAR satellites in 1990´s, operating with C-band (Canada 

and ESA) and L-band (Japan). The maintenance of experiences obtained at specific bands by each country is 

a clear tendency. Germany and Italy have invested in X-band. More recently, Argentina joined the SAR 

community equipped with L-band through the SAOCOM satellite, launched in 2018. 

 The constellation of two C-band, 5-meter spatial resolution, 12-day repeat cycle satellites, Sentinel-

1A and Sentinel-1B, launched on April 2014 (Sentinel-1A) and April 2016 (Sentinel-2B) in the same orbital 

plane, is unique because it is the only updated and full SAR data that is freely available on the internet. Images 

can be downloaded from the ESA´s Copernicus Open Access Hub platform, after self-registration, or in cloud 

processing environments such as the Google Earth Engine™ platform. A number of papers have been already 
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published using Sentinel-1A and Sentinel-1B datasets in several applications, including monitoring of wildfire 

(BAN et al., 2020), crop plantations (LA ROSA et al., 2019; MANDAL et al., 2020; SCHLUND; ERASMI, 

2020), flooding events (ZHANG et al., 2020), and tropical rainforests (PULELLA et al., 2020). This indicates 

that an open access policy is one of the best ways to improve and enhance the use and application of radar 

data. The combination of both Sentinel-1A and Sentinel-1B datasets has the advantage of improving the 

temporal resolution to 6 days. 

 The TanDEM-X mission from the German Aerospace Center (DLR) is also unique because of the twin 

TerraSAR-X and TanDEM-X satellites orbiting in bistatic mode (SAR instruments of both spacecraft look 

simultaneously at a common footprint from close but with distinct orbital plane), which were launched with 

the primary objective of generating a global, consistent, and high-resolution digital elevation model (DEM) 

with unprecedented accuracy (KRIEGER et al., 2007; RIZZOLI et al., 2017). Recently, the TanDEM-X 

interferometric dataset was used to produce a global forest/non-forest map (MARTONE et al., 2018). The next 

generation of the spaceborne SAR missions will adopt the concept of SAR tomography to acquire 3-D images 

from the terrain, after the launch of TanDEM-L by DLR (MOREIRA et al., 2015; NANNINI et al., 2019). 

This mission concept comprises two fully polarimetric radar satellites with large antenna apertures (array-fed 

reflector principle) which will enable, for the first time, to image a continuous 350-km swath with a 7-m 

azimuth resolution (HUBER et al., 2018). Several applications can benefit from SAR tomography, including 

deforestation monitoring by taking advantage of differences in the three-dimensional forest structure. DLR is 

the only space agency holding the bistatic technology. 

 

4 THE BRAZILIAN R99B SAR 
 

In the early 2000s, the Brazilian Air Force operated two X- and L-band SAR sensors onboard R99B 

aircrafts, focused mainly on surveillance of the Brazilian Amazon. The images were made available at the 

spatial resolutions of 3, 6, and 18 m, with full polarization (HH+HV+HV+VV) for the L-band and single 

polarization (HH) for the X-band, with swathes of 20 km, 40 km, and 120 km. 

Several studies were conducted based on this system. Simulated images of the proposed L-band, 

German-Brazilian SAR satellite named Multi-Application Purpose SAR (MAPSAR) were obtained by the 

R99B aircraft (Mura et al., 2009). Alves et al. (2009) developed a methodological approach to identify illegal 

airplane strips in the municipality of Itaituba, Pará State. Other studies involved deforestation discrimination 

in the Brazilian Amazon (GUERRA; MURA; FREITAS, 2010), geomorphological mapping in the 

municipality of Iranduba, Amazonas State (PINTO; LUCHIARI, 2017), gold mining in the Tapajós Mineral 

Province (CARRINO et al., 2011), iron-mineralized laterites in the Carajás Mineral Province (SILVA et al., 

2013), and discrimination of coastal wetland environments (SOUZA-FILHO et al., 2011). Unfortunately, 

MAPSAR was never launched and R99B SAR is not operational anymore. 

 

5 SAR IMAGE PROCESSING 
 

 When SAR raw data are pre-processed, the resulting product is in a complex format referred as single-

look complex (SLC), containing data of amplitude and phase. The amplitude of each pixel is proportional to 

the magnitude of radar backscatter and depends on SAR geometry, wavelength, polarization, and geometric 

and dielectric properties of targets (OUCHI, 2013). Considering that there are several scatterers within a SAR 

resolution cell, each individual scatterer backscatters the emitted signals in different times, which is a 

characteristic related to the phase information in radar image analysis. Phase represents the point in the wave 

of the backscattered signal when it reaches the antenna, being measured in radians or degrees. The amplitude 

is the real part of the complex value, while the phase is the imaginary part. In practical terms, the phase of a 

single image can be exploited for polarimetric decomposition, generation of interferograms or DEMs. In this 

section, we present further details on the main processing steps involved with geocoding, target decomposition, 

and InSAR processing. 
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5.1 Geocoding 
 

 Although users have the option to order SAR images already projected from slant range to ground 

range and geocoded using some DEM, in this section we will present the most important steps to convert SLC 

data into backscattering coefficients (, units in decibels) and to geocode images. Geocoding is important to 

allow SAR data to be integrated with other types of geospatial data (e.g., other satellite images and vector-

based maps). The conversion of SLC data into  geocoded data involves the following steps: 

 

a) radiometric calibration; 

b) multilook filtering; 

c) speckle filtering; 

d) conversion of digital number into ; and  

e) geocoding.  

  

 All steps previously described can be conducted using open-access software such as the Sentinel 

Application Platform (SNAP) (ESA, 2019) or using commercial software, such as the L3 Harris Geospatial 

ENVI SARScape™ (SARMAP, 2020). Radiometric calibration converts digital numbers into radiometrically 

calibrated backscatter and usually is fully automated by using a software previously mentioned or any other 

appropriate software, since all information required is included in the metadata file of the SAR products. This 

step is important especially when the analyst is preparing data for mosaicking two or more images acquired 

from different incidence angles and different brightness levels. Ultimately, radiometric calibration can correct 

SAR images, so that pixel values truly represent the radar backscatter of the targets in the terrain (ESA, 2019). 

 Multilooking is a process involving slant-range to ground-range conversion, producing data with a 

nominal pixel size and less noise, since the averaging process involved in this procedure smooths images 

(ENVI, 2020). For example, a hypothetical sensor with a nominal spatial resolution of 6.25 m can be resized 

into 5-meter pixel size in this procedure. Thus, processed SAR data are often specified in terms of pixel size 

rather than in terms of its nominal spatial resolution. When SLC images are filtered using a multilook filter, 

the resulting intensity (squared amplitude) images are called power images. 

 Speckle is a type of noise inherent to SAR images caused by random constructive and destructive 

interference of individual scatterers from the terrain, causing a salt-and-pepper aspect in the images. Then, we 

apply speckle filters to reduce the blurred features of images. Several filters are available in the literature, such 

as Lee, Frost, and Gamma Map, for example. Choosing the best speckle filter is not a trivial task because there 

is no corresponding noise-free image available to compare. Thus, filter quality, which is often site-dependent, 

is usually evaluated visually in terms of presence of blurring effects in homogeneous areas and preservation 

of surface feature details in heterogeneous areas (ARGENTI; LAPINI; ALAPARONE, 2013). 

 Digital numbers (DN) are converted into  (dB) by the following equation (Eq. 1): 

 

𝜎° (𝑑𝐵) = −10 ∗ 𝑙𝑜𝑔 (𝐷𝑁2) + 𝐶𝐹 (1) 

 

 Where CF = calibration factor, which depends on each sensor. 

 

 Alternatively, some authors use  instead of ;  is the  corrected by the local incidence angle () 

(Eq. 2): 

 

° (𝑑𝐵) = /cos () (2) 

 

 Typically,  values range from -32 dB to +16 dB. Co-polarized values are commonly higher than 

cross-polarized values. The lowest values are usually found in targets causing specular reflection of emitted 

energy (e.g., clear water bodies without wind). On the other hand, the highest  values are found in targets 

causing double-bounce reflections (e.g., urban areas with buildings distributed perpendicular to the range 
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direction of the SAR sensor). 

 The geocoding procedure requires the use of a DEM for terrain correction and to insert a coordinate 

system in the final SAR product. Although the previously mentioned software has its own models, users can 

choose other elevation models. The most common DEMs freely available on the internet include the Shuttle 

Radar Topography Mission (SRTM-3 Version 4, 30-m resolution) and the ASTER Global DEM (GDEM). 

NASA has released a new NASA DEM product (30-meter resolution) without many limitations and restrictions 

in relation to the popular SRTM DEM product and with increased accuracy and covered area. JAXA also 

released the new version of the ALOS World 3D-30m (AW3D30) dataset, produced based on the PRISM 

panchromatic optical sensor onboard the ALOS-1 satellite that operated from 2006 to 2011 (TAKAKU; 

TADONO; TSUTSUI, 2014). DLR has produced a global DEM with unprecedented accuracy (12-m horizontal 

resolution and 2-m relative height accuracy) using TerraSAR-X and TanDEM-X satellites flying in close 

formation (ZINK et al., 2014). This product, however, is not freely available to download on the internet. 

 Figure 2 illustrates an example of HH-polarized radar image from an ecotone region located between 

Amazonia and Cerrado biomes (municipality of Sinop, Mato Grosso State, and surroundings) acquired by 

ALOS-2 satellite in February, 2016, under the JAXA´s Kyoto & Carbon Initiative (ROSENQVIST et al., 

2010). The image was acquired in the Stripmap mode, spatial resolution of 6.25 m, and CEOS format. Figure 

2A shows the image acquired in slant range geometry. There are geometric distortions reducing the usefulness 

of this image, often preventing information extraction. Figure 2B shows the same image processed by 

radiometric calibration, multilook filtering, Gamma Map speckle filtering, and geocoding using the 30-m 

SRTM DEM. The image was projected into Universal Transverse Mercator (UTM) projection (UTM fuse = 

21S; datum = WGS84). It is observed that SLC images are north-south oriented while geocoded images are 

ascending or descending oriented. More details of the pre-processing of this image can be found in Silva et al. 

(2020). 

 

Figure 2 – Illustration of an ALOS-2/PALSAR-2 satellite image acquired in February 12, 2016 in single look complex 

format (A) and processed by radiometric calibration and multilook and speckle filtering, and geocoded by using the 

Shuttle Radar Topography Mission (SRTM 30-m) digital elevation model (B). 

 
(A) 

 
(B) 

Source: The authors (2020). 

 

5.2 Polarimetry and target decomposition 
 

Polarimetric SAR data show a large amount of information from terrestrial targets when compared to 

conventional amplitude, single or dual polarized SAR data (VAN DER SANDEN, 1997; OUCHI, 2013). This 

is because SAR polarimetry has the ability to describe and store data on changes in the polarization state of 

the electric field vector (𝐸⃗ ) altered by the structure and  of objects on the Earth's surface (LEE; POTTIER, 
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2009). The equation of an ellipse is the most common way of representing 𝐸⃗  (HELLMANN; 2001; LEE; 

POTTIER, 2009; RICHARDS, 2009).The scattering matrix (S) (Eq. 3), or Jones matrix, is used to describe the 

linear transformation of changes occurring between the electrical vector transmitted by the SAR antenna and 

the electrical vector scattered by targets. This matrix allows describing target and the acting physical processes 

(HELLMANN, 2001). 

 

[𝑆] = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]

 
→ 𝑘⃗ =

1

2
𝑇𝑟𝑎𝑐𝑒([𝑆]Ψ) = [𝑘0, 𝑘1, 𝑘2, 𝑘3]

𝑇 
(3) 

 

Where [𝑆] is the scattering matrix S; 𝑆𝑖𝑗 is the complex element of [S]; 𝑘𝑖 is the complex element of Jones 

vector (𝑘⃗ ); Trace [S] is the sum of elements in diagonal of [S]; and Ψ is the matrix base 2x2. 

 

Pauli basis is used to estimate Ψ (Eq. 4) (HELLMANN, 2001; LEE; POTTIER, 2009): 

 

Ψ𝑃 = {√2 [
1 0
0 1

] , √2 [
0 1
0 −1

] , √2 [
0 1
1 0

]} (4) 

 

Alternatively, Borgeaud basis can be used to estimate Ψ (Eq. 5): 

 

Ψ𝐵 = {2 [
1 0
0 0

] , 2√2 [
0 1
0 0

] , 2 [
0 0
1 0

]} (5) 

 

Lee and Pottier (2009) introduced the concept of distributed targets, that is, in SAR imaging, not all 

targets are stationary or fixed and may vary over time. Natural targets, for example, change due to the wind, 

temperature, and pressure dynamics. Therefore, the backscattered wave must be considered partially polarized, 

which means that the wave is no longer coherent, monochromatic, and fully polarized in the form described 

by the polarization ellipse. Thus, the scattering matrix S has limitations to represent those incoherent targets, 

which will require covariance and coherence matrices (also called power matrices) to understand areas with 

predominance of distributed targets. The polarimetric covariance matrix is formed by a crossing product 

between the Borgeaud vector and its transposed conjugate complex (Eq. 6) (HELLMANN, 2001): 

 

[𝐶]4𝑥4 = 〈𝑘⃗ 𝐵𝑘⃗ 𝐵
∗𝑇〉 =

[
 
 
 
 
〈|𝑆ℎℎ|2〉 〈𝑆ℎℎ𝑆ℎ𝑣

∗ 〉

〈𝑆ℎ𝑣𝑆ℎℎ
∗ 〉 〈|𝑆ℎ𝑣|

2〉

〈𝑆ℎℎ𝑆𝑣ℎ
∗ 〉 〈𝑆ℎℎ𝑆𝑣𝑣

∗ 〉

〈𝑆ℎ𝑣𝑆𝑣ℎ
∗ 〉 〈𝑆ℎ𝑣𝑆𝑣𝑣

∗ 〉

〈𝑆𝑣ℎ𝑆ℎℎ
∗ 〉 〈𝑆𝑣ℎ𝑆ℎ𝑣

∗ 〉

〈𝑆𝑣𝑣𝑆ℎℎ
∗ 〉 〈𝑆ℎℎ𝑆ℎ𝑣

∗ 〉

〈|𝑆𝑣ℎ|2〉 〈𝑆𝑣ℎ𝑆𝑣𝑣
∗ 〉

〈𝑆𝑣𝑣𝑆𝑣ℎ
∗ 〉 〈|𝑆𝑣𝑣|

2〉 ]
 
 
 
 

 

 
(6) 

 

Where [𝐶]4𝑥4 is the matrix 4x4 of covariance (diagonal elements represent the signal strength at the respective 

polarization); 〈… 〉 is the spatial average; 𝑘𝐵 is the Borgeaud vector; and 𝑘⃗ 𝐵
∗𝑇  is the conjugated complex of the 

Borgeaud vector. 

 

Another concept of dealing with the non-deterministic or incoherent nature of the backscattered wave 

consists of estimating a polarimetric coherence matrix (HELLMANN, 2001). This matrix is formed by the 

crossing product between the Pauli vector and its conjugate complex (Eq. 7): 

 

[𝑇]4𝑥4 = 〈𝑘⃗ 𝑃𝑘⃗ 𝑃
∗𝑇〉 (7) 

 

By assuming the reciprocity theorem, we can describe it as 𝑆ℎ𝑣 = 𝑆𝑣ℎ. In this case, the Pauli vector 

can be reduced to three dimensions without losing information (Eq. 8) (HELLMANN, 2001): 
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[𝑇]3𝑥3 = 〈𝑘⃗ 𝑃3
𝑘⃗ 𝑃3

∗𝑇〉 =
1

2
[

〈|𝐴|2〉 𝐴𝐵∗ 𝐴𝐶∗

〈𝐴∗𝐵〉 〈|𝐵|2〉 𝐵𝐶∗

〈𝐴∗𝐶〉 〈𝐵∗𝐶〉 〈|𝐶|2〉

] 

 
(8) 

 

where [𝑇]3𝑥3 is the 3x3 coherence matrix; 𝑘𝑃 is the Pauli vector; 𝑘⃗ 𝑃
∗𝑇 

is the transposed conjugated complex of 

the Pauli vector; 𝐴 = 𝑆ℎℎ + 𝑆𝑣𝑣; 𝐵 = 𝑆ℎℎ − 𝑆𝑣𝑣; and 𝐶 = 2𝑆ℎ𝑣. 

 

Decomposition techniques aim to represent the average scattering mechanism as a sum of independent 

elements, associating a physical scattering mechanism to each of those elements. Target decomposition 

theorems can be classified into two major groups, coherent and incoherent decomposition types. Coherent 

decompositions assume the occurrence of deterministic scatterers and the backscattered wave is polarized. This 

target decomposition type uses the scattering matrix S to represent the polarization state of the backscattered 

wave. On the other hand, incoherent decompositions consider a priori that scattering is not of the deterministic 

type and the backscattered wave is partially polarized. In this situation, covariance and coherence matrices are 

used to characterize the backscattered wave (LEE; POTTIER, 2009; RICHARDS, 2009). 

In remote sensing applications, the assumption of occurrence of pure deterministic targets is not always 

valid (RICHARDS, 2009). Thus, power reflection matrices are often used. Based on it, this author described 

only the incoherent target decomposition methods, with emphasis on the following target decomposition 

theorems: Yamaguchi (with four components); and entropy (H), anisotropy (A), and α angle (Cloude-Pottier 

decomposition).The digital image processing of these theorems can be performed, for example, in the SNAP 

software (ESA, 2018). The images must be in SLC format and in full-polarimetric mode (CAMARGO et al., 

2019). In the case of the Cloude-Pottier decomposition, it is possible to generate decompositions of dual-pol 

SLC images using the SNAP application. Image processing is applied directly to the SLC data without any 

pre-processing (calibration or filtering), making it optional to use polarimetric filters to remove speckle noise 

in the matrices. Careful use of polarimetric filters in the matrices is recommended to avoid unnecessary 

resampling and losing useful information in target decompositions. 

Yamaguchi et al. (2005) developed a model for decomposing targets based on covariance matrix 

modeling consisting of four scattering components, namely: double bounce, surface scattering, volumetric 

scattering, and helix. The first three components are based on their correspondents presented in the model by 

Freeman and Durden (1998). The fourth component was introduced by Yamaguchi et al. (2005) and estimates 

helix-like scattering, which is a target with artificial shape and/or structure, defined as a non-symmetrical 

reflector capable of generating circular polarizations to the left or to the right, being more suitable for 

describing artificial targets. 

Yamaguchi et al. (2005) also changed the modeling of volumetric scattering to better represent 

scattering in forested environments. The conventional theoretical model of volumetric scattering consists of a 

cloud of dipoles of random orientation with modeling based on a function of uniform probability density with 

different angles of orientation. However, in environments predominantly occupied by vertical structures (such 

as forest vegetation), scatterings from trunks and branches have preferential distribution angles. These authors 

adjusted the probability density function by Freeman-Durden considering some aspects of the dominant 

orientation of tree trunks and branches. Figures 3c and 3d show color composites generated by the components 

derived from the Yamaguchi theorem. 

Cloude-Pottier decomposition can be used to analyze eigenvalues and eigenvectors of the coherence 

matrix by decomposing that matrix into elements that represent partial scattering, which will include all types 

of scattering mechanisms, focusing on the analysis of eigenvalues and eigenvectors has the advantage of being 

basis-independent and always diagonalizable (CLOUDE; POTTIER, 1997; LEE; POTTIER, 2009). In the 

proposal by Cloude and Pottier, the coherence matrix is decomposed into the sum of three other partial 

coherence matrices and each individual matrix is weighted by its respective eigenvalue (Eq. 9): 

 

[𝑇3] = ∑ 𝑇3𝑖

𝑖 = 3

𝑖 = 1

= ∑ 𝜆𝑖

𝑖= 3

𝑖 = 1

(𝑒 𝑖. 𝑒 𝑖
∗𝑇) = 𝜆1(𝑒 1. 𝑒 1

∗𝑇) + 𝜆2(𝑒 2. 𝑒 2
∗𝑇) + 𝜆3(𝑒 3. 𝑒 3

∗𝑇) 
 

(9) 
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Where [𝑇3] is the 3x3 coherence matrix; 𝜆𝑖 is the autovalue; and 𝑒𝑖is the autovector. 
 

Figure 3 – RGB colored composites featuring: a) polarized images in amplitude (HH/HV/VV); b) Cloude-Pottier 

decomposition theorem (H/A/α); c) Yamaguchi theorem without the Helix component (double/volume/surface); and d) 

Yamaguchi theorem with the helix component (double/helix/surface). The images correspond to an ALOS-2/PALSAR-

2 scene over part of the municipality of Planaltina, Goiás State, acquired on May 16, 2016, ascending orbit, full-

polarimetric mode, with pixel spacing of 6.25 m. Horizontal datum: WGS84; projection system: UTM 23S. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 
Source: The authors (2020). 

 

Each of the individual matrices represents a contribution of a specific type of deterministic scattering. 

The weight of each contribution is given by the eigenvalue, while the type of scattering mechanism is given 

by the eigenvector. The main indicators derived from the target decomposition theorem are entropy (H), 

anisotropy (A), and measurement of α angle (CLOUDE; POTTIER, 1997; LEE; POTTIER, 2009). Figure 3b 

shows a color composite generated with the components derived from the Cloude-Pottier decomposition 

theorem. Polarimetric entropy (H) indicates the degree of randomness in the distribution of scattering 

mechanisms (Eq. 10): 

 

𝐻 = −∑ 𝑃𝑖𝑙𝑜𝑔3𝑃𝑖
3
𝑖=1 ,    𝑃𝑖 =

𝜆𝑖

∑ 𝜆𝑘
3
𝑘 = 1

 

 

(10) 

Values of Pi are interpreted as the relative intensity of i scattering process. Values of H range between 

0 and 1; H = 0 indicates that the coherence matrix has only one eigenvalue (λi) other than 0, representing only 

a deterministic scattering process. On the other hand, H = 1 indicates that the eigenvalues of the coherence 

matrix are all the same, with a scattering process of random noise type that totally depolarizes the incident 

wave (CLOUDE; POTTIER, 1997; LEE; POTTIER, 2009). Polarimetric anisotropy is an indicator of the 

relative importance of secondary scattering mechanisms, which is more representative when medium entropy 

occurs, given by (Eq. 11): 

 



Rev. Bras. Cartogr, vol. 72, n. 50th Anniversary Special Issue, 2020              DOI: http://dx.doi.org/10.14393/rbcv72nespecial50anos-56568 

   

 1495 

𝐴 =
𝜆2−𝜆3

𝜆2+𝜆3

 
(11) 

 

 According to Cloude and Pottier (1997) and Lee and Pottier (2009), in cases of high entropy, 

anisotropy does not provide any additional information, given that eigenvalues are approximately equal. In 

cases of low entropy, self-values are close to zero. The average entropy indicates that more than one scattering 

mechanism is contributing to backscattering, but it does not estimate how many mechanisms. Anisotropy also 

provides additional information. High anisotropy indicates that only the second scattering mechanism is 

important, while low anisotropy indicates that there is also contribution of the third scattering mechanism. 

From the coherence matrix, each eigenvector can also be parameterized in terms of five angles, α, β, φ, δ, and 

γ, with emphasis on angle α, with variation between 0º and 90º, since it identifies the type of scattering 

mechanism of the physical target. For α close to 0º, odd bounce isotropic scattering predominates; at 45º, dipole 

scattering predominates; and at 90º, double bounce scattering predominates (CLOUDE; POTTIER, 1997; LEE; 

POTTIER, 2009). 

 

5.3 InSAR 
 

SAR interferometry consists of using two or more SLC SAR images from the same geographic area 

with different acquisition geometries to extract phase differences in each footprint image (HANSSEN, 2002; 

RICHARDS, 2009). The phase difference obtained between complex images is related to the distance between 

the two trajectories during each image acquisition, the baseline length (the distance between antennas), the 

height of the object on the ground, and the wavelength of the SAR system. Thus, the angle of the 

interferometric phase and, subsequently, the terrain heights are obtained. 

Prior to InSAR processing, accurate registration between SLC images needs to be obtained. It is also 

necessary to filter images in range direction to remove unusual spectral information in the images related to 

differences in the viewing line of each antenna. This procedure allows noise removal in interferometric phase 

images. The interferogram is one of the main products of InSAR processing. Due to the cyclic characteristics 

of the interferometric phase, interferograms present ranges of object height in each 2π cycle (HANSSEN, 2002; 

RICHARDS, 2009). 

After generating the interferogram, phase variations related to changes in incidence angles along the 

antenna range of the SAR system must be removed. In addition, the interferometric coherence image must be 

generated to assess the quality of the interferogram in relation to possible errors due to temporal, noise, and 

spatial decorrelation caused by the antenna baseline. Finally, to generate DEM, the gradient of the phases needs 

to be integrated over the range distance by adding or subtracting 2π for each discontinuity. To obtain altitudes, 

control points with known planimetric and altimetric coordinates are used to calibrate the interferogram 

(HANSSEN, 2002; RICHARDS, 2009). 

 

6 APPLICATION EXAMPLES 
 

Table 2 summarizes some of applications of SAR data, ranging from geology to cryosphere. We did 

not intend to present a complete list of applications; instead, we provided some comments on potential 

applications of radar remote sensing for those that are not familiar with this technology. 
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Table 2 – Potential uses of SAR data in different applications. 

Field Specification 

Geology Structural geology, mineral prospection, DEM generation, 

landslide monitoring 

Forestry Biomass estimation, deforestation monitoring 

Agriculture Crop yield, crop classification 

Hydrology Soil moisture, flooding 

Oceanography Ship and oil spill detection  

Cryosphere Iceberg movement tracking 

Source: The authors (2020). 

 

6.1 Ship and oil spill detection 
  

Ship and oil spill detections are among the top applications of SAR data, especially involving C-band. 

A substantial amount of papers has been published on these subjects (e.g., LI; HE; WANG, 2009; 

MIGLIACCIO et al., 2012; DECHESNE et al., 2019). Research on ship detection is mainly related to checking 

international maritime requirements, identifying illegal operating ships, and surveilling piracy (OUCHI, 2013). 

For example, most of oil pollution from ships is linked to routine operations, such as tank washing, rather than 

accidents (ALPERS; HOLT; ZENG, 2017). The major drawback of ship identification by SAR is the relatively 

low spatial resolution of spaceborne SAR for this type of application. 

Pollution of sea surface by petroleum is also a major environmental concern because of accidents such 

as the one in the Gulf of Mexico in 2010 (LAVROVA; KOSTIANOY, 2011; LEIFER et al., 2012).Thus, it is 

very important to continuously monitor activities of petroleum platforms. Surface tension of oil is greater than 

that of water so that oil slicks observed in ocean surfaces drastically reduce the centimeter-scale Bragg waves 

that are responsible for radar backscattering, causing specular reflection of incident microwave signals. 

Consequently, oil spills appear as dark patches in the ocean. Lower wavelengths such as X- and C-band are 

more suitable for this purpose as the damping effect of Bragg waves is higher for shorter wavelengths. VV-

polarization is preferred than HH-polarization because of its higher backscattering process in the sea surface 

(VALENZUELA, 1978). However, developing algorithms to identify oil spills unambiguously on radar images 

is not an easy task. According to Alpers, Holt and Zeng (2017), there are 13 potential sources of phenomena 

that can be related to dark patches in the ocean, with plankton and low winds probably being the two most 

important ones. If the wind speed is lower than 3-4 m s-1, the sea surface can also appear dark, hampering the 

identification of oil leak (IVANOV, 1998). If dark patches are linked to offshore oil platforms, as shown in 

Figure 4, the chances that patches are related to planktons or winds reduces. 

 

6.2 Forest monitoring 
 

SAR products can also be applied to extract forest information mainly over tropical countries, 

including estimation of above-ground carbon stocks and monitoring clear-cut deforestation, selective logging, 

and secondary regrowth. For carbon stock estimation, the general rule is that backscattered signals increase 

with increasing biomass levels. Longer wavelengths penetrate deeper into the forests, so that L-band usually 

provides more accurate biomass estimations, since branches and trunks are the major constituents of AGB. 

The dominant scattering processes at the X- and C-bands occur in the top of canopy layers. It is also known 

that cross-polarization correlates better than co-polarization with tree biomass. HV polarization is most 

sensitive and VV, the least sensitive (KASISCHKE; MELACK; DOBSON, 1997). 

Because of the relevance of the Brazilian Amazon in terms of biodiversity conservation and climate 

change mitigation, several studies evaluating the potential of SAR technology to detect and monitor 

deforestation have been published (e.g., ALMEIDA-FILHO et al., 2005; PEREIRA et al., 2016; 

HAGENSIEKER; WASKE, 2018). Clear-cut deforested areas appear as dark patches in SAR images due to 

the decrease of AGB, plant water content, and volume scattering from wood debris on the ground (Figure 5). 

However, depending upon the time lag between deforestation and SAR overpass, deforested areas can appear 
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bright in radar images with HH polarization. This occurs because wood debris (trunks and branches) lying on 

the ground dry out and increase radar backscattering processes to higher values than those found in the 

surrounding primary forests (ALMEIDA-FILHO et al., 2005). Research conducted by Watanabe et al. (2018) 

showed that 𝜎𝐻𝐻
°  increased by 1.1–2.5 dB in areas with early-stage deforestation, while 𝜎𝐻𝑉

°  decreased by 0.7–

1.0 dB. Therefore, any monitoring system with early warning for deforestation based on SAR dataset (e.g., the 

JICA-JAXA Forest Early Warning System in the Tropics - JJ-FAST) should not rely only on HV polarization. 

Another study by Reiche et al. (2015) indicated that the HV/HH ratio provided the most accurate results when 

deforested areas were compared with the Landsat normalized difference vegetation index (NDVI). 

 

Figure 4 – Sentinel-1B SAR image obtained on September 4, 2019, VV polarization, showing suspicious features of oil 

spill from a platform of oil exploration in the Campos basin, north coast of Rio de Janeiro State. 

 
Source: The authors (2020). 

 

Figure 5 – ALOS-2 PALSAR-2 image from the Sinop region, Mato Grosso State, acquired on February 12, 2016, HH 

polarization, and 6.25 m of pixel spacing. Light gray is mostly composed by upland primary rainforests, dark gray is 

clear-cut deforestation, and a bright tone within a red circle in the ALOS image is an urban area (the city of Cláudia). 

 
Source: The authors (2020). 

 

 Selective logging has been substantially increasing in tropical regions. Forest disturbances by logging 



Rev. Bras. Cartogr, vol. 72, n. 50th Anniversary Special Issue, 2020              DOI: http://dx.doi.org/10.14393/rbcv72nespecial50anos-56568 

   

 1498 

activities vary according to forest characteristics, logging intensity, and harvesting techniques (DYKSTRA, 

2001; TRITSCH et al., 2016) and may severely impact forest ecosystems and increase forest susceptibility to 

fire (MONTEIRO et al., 2004; MATRICARDI et al., 2013; THOMPSON et al., 2013). Therefore, it is an 

important anthropogenic phenomenon to be monitored in tropical forests, commonly characterized by high 

cloud cover. SAR products can be useful to detect those forests impacted by logging activities in tropical 

regions. Jackson and Adam (2020) reported a total of 20 scientific articles using TerraSAR-X, ALOS-

PALSAR, ENVISAT ASAR, TanDEM-X, Radarsat-2, COSMOSkyMed, and SAR airborne sensors to 

investigate selective logging worldwide. Most of these studies relied on SAR products and achieved high 

overall accuracies to map forests affected by selective logging. However, they have focused on particular study 

sites. A more comprehensive assessment of forest disturbances by selective logging is yet to be conducted and 

applied across the tropics. Subtle canopy changes and the capability to penetrate beyond the forest canopy 

seem to be the main constraint and technical challenge of using SAR products to detect forest impacts by 

logging activities.  

 

6.3 Paddy rice monitoring 
 

Rice is an important staple food in different countries of Asia (Bangladesh, China, Indonesia, Japan, 

Vietnam, and others). Rice paddies (semiaquatic cropping fields) cover more than 3 million hectares in China 

(WU et al., 2020). Paddy fields have also cultural value, as many were recognized as Globally Important 

Agricultural Heritage (LU; LI, 2006). In Brazil, rice paddy production is mainly found in the states of Rio 

Grande do Sul and Santa Catarina (STEINMETZ; BRAGA, 2001). The drawback is global warming, since 

paddy fields are a major source of methane, the second most influential greenhouse gas for climate change, 

after CO2. SAR data have been intensely used for rice paddy detection, mapping, and yield estimation (e.g., 

KUROSU; FUJITA; CHIBA, 1995; LE TOAN et al., 1997; SINGHA et al., 2019). C-band, HV-polarization 

data has correlated significantly with the growing cycle of rice plantations (WU et al., 2011; YANG et al., 

2012). At least three images are necessary during the rice growing season to properly estimate yields (WU et 

al., 2020). In this case, SAR data have good potential because of their independence of cloud conditions, as 

the rice cycle often overlaps the rainy season. Other authors (ISHITSUKA, 2018) stated that two images are 

required, one detecting water areas, and another with no detection of water. Fields exhibiting this temporal 

pattern can be associated with paddies planted with rice. During the peak of the growing cycle, rice fields 

appear bright in SAR images because of double bounce effects due to the presence of rice stems and 

waterlogging (Figure 6). Thus, such characteristics can be added in the approach developed by Ishitsuka (2018) 

to increase the accuracy of rice field identification. 

 

6.4 Soil moisture estimation 
 

 Soil moisture estimation is one of the top-priority subjects in hydrology, since it is the key parameter 

controlling the interaction between atmosphere and land surface. However, its estimation using SAR 

technology has been somehow disappointing. Several studies were conducted in 1990’s using empirical, semi-

empirical, and physical-based theoretical models to retrieve soil moisture involving from semi-arid to moist 

temperate conditions, mostly using single sets of SAR data (e.g., ALTESE; BOLOGNANI; MANCINI, 1996; 

ULABY; DUBOIS; VAN ZYL, 1996; SANO et al., 1998b). The most recognized theoretical models are the 

integral equation model (IEM) and the small perturbation model (SPM), but they are rarely applied because of 

their low performance without prior knowledge of other parameters, such as soil roughness, for example 

(OUCHI, 2013). Empirical and semi-empirical models are often site-specific, relying on radar parameters and 

requiring a large amount of in situ datasets. In fact, taking into consideration the effects of soil roughness and 

vegetation cover is not an easy task. Due to the lack of operational, full-polarization capability of SARs to 

minimize the effects of soil roughness and vegetation, the results have not been satisfactory. In addition, 

accurate ground-truth data for validation are difficult to obtain because of the high spatial and temporal 

variability of this parameter. Nevertheless, recent initiatives have been focusing on this subject, such as the 

one led by Nicolas Baghdadi and collaborators from the University of Montpellier, France (BAGHDADI; 
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HOLAH; ZRIBI, 2006; BAGHDADI et al., 2016; EL HAJJ; BAGHDADI; ZRIBI, 2019). Basically, they are 

focusing on multi-frequency and multi-incidence angle data to obtain improved soil moisture estimations. 

 

Figure 6 – Scene from the RADARSAT-1 satellite acquired on February 4, 1999 with 10-meter spatial resolution over 

the Lagoa dos Patos region, Rio Grande do Sul State, showing rice paddies (bright tones) due to double-bounce effects 

resulting of the simultaneous presence of rice stems and water layer. Darker shades of gray, adjacent to the rice fields, 

mostly correspond to the typical herbaceous vegetation of the Pampa biome. 

 
Source: Mucenic (2001).  

 

6.5 InSAR 
 

The initial applications of InSAR were mainly focused on monitoring land displacements caused by 

earthquakes. One of the first practical demonstrations was conducted by Massonet et al. (1993), who used a 

pair of European Remote Sensing (ERS-1) SAR data (before and after the Landers, California earthquake 

occurred in June 28, 1992) to capture surface deformation along a 85-km fault system. The launch of Sentinel-

1A and Sentinel-1B satellites facilitated the production of interferograms, allowing earthquake monitoring 

without observations provided by seismology. Funning and Garcia (2019) estimated, from literature search, 

the existence of more than 130 individual earthquakes monitored using InSAR data. Nevertheless, land 

deformation detection with InSAR is not always ensured, especially if decorrelation occurs. Decorrelation 

corresponds to reduction of interferometric correlation, a measure of coherence of the interferometric phase 

which can occur, for example, within certain surface conditions (e.g., dense vegetation or steep topography) 

(FUNNING; GARCIA, 2019). 

More recently, the range of applications using this technique was extended mainly to detect landslides 

and land subsidence, with unprecedented resolution. These types of land deformation are related to the use of 

groundwater for human consumption, extraction of materials (e.g., mining activities and extraction of sands 

for civil construction), and human occupation of steep terrains, among others. Nowadays, the combination of 

data from several existing SAR satellites allows near daily monitoring of ground deformation caused by 

earthquakes or by humans. As pointed out by Biggs and Wright (2020), InSAR is transforming our 

understanding of faults, volcanoes, and ground stability, increasingly contributing to improve the feasibility of 

the hazard management activities. 

  



Rev. Bras. Cartogr, vol. 72, n. 50th Anniversary Special Issue, 2020              DOI: http://dx.doi.org/10.14393/rbcv72nespecial50anos-56568 

   

 1500 

7 CONCLUDING REMARKS 
 

The relatively high number of SAR satellites launched during the last years and the ones planned to be 

launched are good indicators that the scientific community is convinced about the potential of radar remote 

sensing in several science fields. We believe that the great potential of radar imagery is not only because of its 

nearly all-weather imaging capability, but also because SAR imagery has been able to provide relevant 

information to users worldwide. At least two applications are strongly dependent on radar technology, oil spill 

monitoring using C-band and deforestation in tropical countries during wet season using L-band. The 

availability of TanDEM technology will allow deriving DEMs with improved accuracy and better resolution 

compared to the DEMs originally produced by the SRTM mission in 2000. The bistatic orbital SAR 

tomography is a very promising radar product to monitor deforestation in the tropics and other applications. 

However, more freely available/accessible SAR data acquired by sensors other than the Sentinel-1 are desired 

to encourage broader and heavier use of SAR data for different applications and research. As radar image 

processing is not an easy task, ready-to-use SAR products such as the radar vegetation index (RVI), a well-

established microwave measurement for vegetation cover estimation, would be also helpful. 

The use of constellation of SAR satellites seems to be an irreversible trend in the near future, as it can 

reduce revisit intervals, which have been a big issue in optical remote sensing. Nevertheless, radar users are 

still eager to have polarimetric capability installed in operational acquisition modes. The quad-pol capability 

is important because it allows more complex image processing, such as the decomposition of images into three 

or four components of different scattering mechanisms that cannot be achieved by amplitude data only. 

Interferometric SAR (InSAR) and differential SAR interferometry (DInSAR), which rely on phase information 

available in complex SAR images, will allow the monitoring of surface movements and deformation caused 

by earthquakes and volcanic activities with the accuracy of few millimeters. However, amplitude is the most 

basic type of SAR data; it seems that its use will continue for a while in various applications, including forest 

biomass estimation, deforestation monitoring, crop yield prediction, oil spill and ship detection, iceberg 

movement, and maritime traffic, among others. 

One potential near-future application of SAR technology is the ship movement monitoring using the 

upcoming ALOS-4 satellite, scheduled to be launched in 2021. This satellite will be equipped with the 

Automatic Identification System (AIS) for ships. Thus, by combining these data with ALOS-4 SAR images, it 

will be possible to identify vessels whose tracking systems are turned off during the satellite overpass. Another 

potential application is the very high-resolution SAR sensors onboard the Unmanned Aerial Vehicles (UAVs) 

operating at Spotlight mode (5–10 cm) and at short microwave wavelengths (e.g., Ku-band) for target 

reconnaissance or even change detection studies. 

Some of the challenging questions that future research in radar remote sensing must answer are: 

a) How dark patches in SAR images related to oil films and biogenic slicks present in ocean surfaces can be 

separated without on-site inspections or ancillary data? 

b) When the next generation SAR systems combining high spatial resolution (typically, 1 meter resolution) 

and timely datasets (typically, one week repeat pass) will be available, for example, for improved soil moisture, 

flooding, and crop yield monitoring? 

c) One of the best ways to make SAR data popular and readily available for global observation of dynamic 

processes on the Earth´s surface is a web platform similar to the Google Earth™. When this dream will come 

true? 
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