
Rev. Bras. Cartogr, vol. 72, n. 50th Anniversary Special Issue, 2020                              DOI: http://dx.doi.org/10.14393/rbcv72nespecial50anos-56559 
 

 1170 

 

 

Revista Brasileira de Cartografia 

ISSN 1808-0936 | https://doi.org/10.14393/revbrascartogr 

Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto 

Linear Spectral Mixing Model: Theoretical Concepts, Algorithms and Applications of 

Studies in the Legal Amazon 

Modelo Linear de Mistura Espectral: Conceitos Teóricos, Algoritmos e Aplicações em 

Estudos na Amazônia Legal  

Yosio Edemir Shimabukuro 1, Andeise Cerqueira Dutra 2 e Egidio Arai 3  

 
1 Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Observação da Terra e Geoinformática (DIOTG), São José dos 

Campos, SP, Brasil, E-mail. yosio.shimabukuro@inpe.br 

  ORCID: https:// orcid.org/0000-0002-1469-8433  

2 Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Observação da Terra e Geoinformática (DIOTG), São José dos 

Campos, SP, Brasil, E-mail. andeise.dutra@inpe.br. 

  ORCID: https:// orcid.org/0000-0002-4454-7732  

3 Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Observação da Terra e Geoinformática (DIOTG), São José dos 

Campos, SP, Brasil, E-mail. egidio.arai@inpe.br 

  ORCID: https:// orcid.org/0000-0003-1994-5277  

Received: 08.2020 | Accepted: 11.2020  
 

Abstract: This paper presents a review of the Linear Spectral Mixing Model and its applications in the Legal 

Amazon. Studies on spectral mixture began in the 1970s, motivated by the problem of area estimation obtained by 

automatic interpretation. The pixel was classified or not based on the maximum probability of this pixel to belong to 

a given class, then overestimating or underestimating this class according to the decision made. Thus, interest in the 

study of the spectral mixture within the pixel arose. The response of each pixel can be considered as a linear 

combination of the spectral responses of each component that is within the pixel. Thus, knowing the spectral 

responses of the components, we can obtain the proportions of these components (fraction images). This paper 

presents the theoretical concepts that motivated the development of this model, and the algorithms (Constrained 

Least Squares, Weighted Least Squares, Principal Components) developed in the 1980s are described. With the 

availability of these algorithms in the digital image processing software in the 1990s, the number of studies using 

this technique increased in Brazil and worldwide. The fraction images were used to automate the PRODES Project 

(Monitoring deforestation of the Brazilian Amazon Forest by Satellite) which was the first systematic operational 

project of orbital Remote Sensing. Following the use of fraction images in studies conducted in the Brazilian 

Amazon are presented. In addition, a perspective of use of fraction images for global studies is presented. In 

conclusion, the Linear Spectral Mixture Model has contributed to the development of several research and 

applications of Remote Sensing due to its data reduction characteristics and by highlighting the targets of interest in 

the images. 

Keywords: Constrained Least Squares. Deforestation. Selective Logging. Burning. Land Use and Land Cover. 
 

Resumo: Este trabalho apresenta uma revisão sobre o Modelo Linear de Mistura Espectral e suas aplicações na 

Amazônia Legal. Os estudos sobre mistura espectral iniciaram na década de 1970, motivada pelo problema na 

estimativa de áreas obtida por interpretação automática. O pixel era classificado ou não baseado na máxima 

probabilidade desse pixel pertencer a determinada classe, superestimando ou subestimando esta classe de acordo 

com a decisão tomada. Surgiu então o interesse no estudo da mistura espectral dentro do pixel. A resposta de cada 

pixel pode ser considerada como uma combinação linear das respostas espectrais de cada componente que está na 

mistura desse pixel. Dessa forma, conhecendo-se as respostas espectrais dos componentes, podemos obter as 

proporções desses componentes (imagens fração). Neste trabalho são apresentados os conceitos teóricos que 

motivaram o desenvolvimento desse modelo, e são descritos os algoritmos (Mínimos Quadrados com Restrição, 

Mínimos Quadrados Ponderados, Principais Componentes) desenvolvidos na década de 1980. Com a 

disponibilidade desses algoritmos em softwares de processamento de imagens digitais na década de 1990, aumentou 

o número de trabalhos que fazem uso dessa técnica no Brasil e no mundo. As imagens fração foram utilizadas para 

automatizar o Projeto PRODES (Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite) 

que foi o primeiro projeto operacional sistemático de Sensoriamento Remoto orbital. A seguir é apresentada a 

utilização das imagens fração em estudos realizados na Amazônia brasileira. Além disso, é apresentada uma 

perspectiva de uso das imagens fração em estudos globais. Em conclusão, o Modelo Linear de Mistura Espectral 

tem contribuído para o desenvolvimento de várias pesquisas e aplicações de Sensoriamento Remoto devido as suas 

características de redução de dados e por realçar os alvos de interesse nas imagens. 
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Palavras-chave: Mínimos Quadrados com Restrição. Desmatamento. Corte Seletivo. Queimada. Uso e Cobertura da 

Terra. 

 

 

1 INTRODUCTION 
 

The phenomenon of "spectral mixture" has been considered by some researchers in the field of remote 

sensing (HORWITZ et al., 1971; DETCHMENDY; PACE, 1972; HEIMES, 1977; SHIMABUKURO, 1987). 

Usually, the problem arises when trying to correctly classify a pixel that contains a mixture of materials on 

the surface such as soil, vegetation, rocks, water, and others. The non-uniformity of most natural scenarios 

usually results in a large number of components in the mixture. The spectral mixture problem becomes more 

critical for digital processing techniques than for visual interpretation by trained interpreters. Interpreters 

basically use three fundamental standard elements – spectral, spatial, and contextual characteristics 

(PANIZZA; FONSECA, 2011) – to extract information from aerial and satellite images, while most digital 

analysis techniques are predominantly based on the spectral characteristics of the pixels. 

The spectral mixture process can occur regardless of the spatial resolution of the sensor, so the pixel 

mixture problem is not solved simply by increasing the spatial resolution (KESHAVA; MUSTARD, 2002). 

For example, in high spatial resolution images of a forest canopy, elements such as shadow and gaps become 

apparent, collaborating for the mixture inside the image pixel. 

Several mathematical formulations to solve the spectral mixture of materials within pixels have been 

reported in the literature. Horwitz et al. (1971) used a nonlinear programming algorithm to extract the 

components of the mixture. The least-square procedure with constraints was proposed by Detchmendy and 

Pace (1972), while Hallum (1972) expanded Detchmendy and Pace's (1972) set of solutions by incorporating 

the proportions constraints. 

However, the spectral mixture model was not actually employed in remote sensing until the mid-

1980s (SMITH et al., 1985; ADAMS et al., 1986; SHIMABUKURO, 1987). Since then, interest in the 

spectral mixture (linear and nonlinear) has increased considerably and several studies have been developed 

using this technique (BOARDMAN; 1993; ROBERTS et al.,1993; FARRAND et al., 1994; ATKINSON et 

al., 1997; BASTIN, 1997; FOODY et al., 1997; NOVO; SHIMABUKURO, 1994; SHIMABUKURO; 

SMITH, 1995; ROSIN, 2001; GARCÍA-HARO et al., 2005; ALCÂNTARA et al., 2009). The developed 

models have been applied to images obtained by the various Earth observation satellites. These models 

estimate the proportions of components within pixels generating fraction images corresponding to the 

components of those pixels. In general, the pixel mixture is commonly formed by the components of high 

albedo and low albedo, and can then represent, respectively, soil, vegetation, and shade fraction images. 

These fraction images have been used in various research areas such as forest resources, agricultural, urban, 

and flooded areas, etc. In addition, these fraction images were important for the creation of operational 

projects for estimating deforested areas (PRODES) (SHIMABUKURO et al., 1998), detection of deforested 

areas in near-real-time (DETER) (ANDERSON et al., 2005; SHIMABUKURO et al., 2006), and have been 

used in numerous research works in the Amazon region. 

In this context, the objective of this work is to present a review of the Linear Spectral Mixing Model. 

Thus, the theoretical concepts, mathematical algorithms, and examples of applications in the Amazon region 

are presented. 

 

2 THEORETICAL CONCEPTS 
 

The brightness recorded in the satellite images is an integrated sum of the brightness of all targets within 

the instantaneous field of view (IFOV) of the remote sensors. Thus, the radiation detected is caused by a 

mixture of several different materials within the image pixels (SHIMABUKURO, 1987; SHIMABUKURO; 

SMITH, 1991). In this way, numerous different materials often contribute to the spectrum recorded in an 

image pixel acquired by satellite sensors. Thus, the identification of the individual constituent materials 

presented in the mixture and the proportions in which they appear is important to analyze the images, since 
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the mixture may result in overestimation or underestimation of the area in automatic classifications, 

according to the higher or lower probability of this pixel to belong to one of these materials 

(SHIMABUKURO, 1987). 

The mixture of different materials or objects contained "within" the pixel at the time of measuring 

the intensity of radiant flux by a sensor, happens when different objects are instantly viewed in a portion of 

the land surface with well-defined dimensions. It is known that the radiation flux originated by the incident 

radiation reflection is actually a mixture of different radiation fluxes that results in a single measure of 

intensity by the sensors in each spectral region of the electromagnetic spectrum. 

The concept of spectral mixture was discussed by Horwitz et al. (1971), Detchmendy and Pace 

(1972), Ranson (1975), and Heimes (1977), among others. The Spectral mixture can occur in two cases: 1) 

when materials (or objects) are smaller than the pixel size, i.e., the radiation flux detected by the sensor is 

composed of a mixture of radiation from all materials within the pixel; and 2) when the pixel overlaps the 

edge between two or more materials or objects larger than the pixel size (SHIMABUKURO, 1987). In both 

cases, the signals recorded by the sensor are not representative of anyone of the materials present inside the 

pixel. Thus, the spectral mixing is the procedure when the measured spectrum of a mixture pixel is 

decomposed into a collection of constituent spectra, or endmembers, and a set of corresponding proportions 

or abundances that indicate the contribution of each endmember present in the pixel (KESHAVA, 2003). 

The mixing process can be considered linear or nonlinear. The combination will be basically linear if 

the endmembers in a pixel appear in spatially segregated patterns. In this case, the dispersion and absorption 

of incident radiation in any region on the surface are dominated by a single component on the land surface. 

Thus, the spectrum of a mixed pixel can be considered a linear combination of the spectrum weighted by the 

fractional area coverage of each endmember within the pixel (HAPKE, 1993). However, if the components 

of interest are in a circumstantial association, electromagnetic radiation will typically interact with more than 

one component (such as sand grains of different compositions on a beach) and the mixing process between 

these different components will be nonlinear as a result of the interaction of multiple dispersion. An example 

of nonlinear mixing is the interleaving of different types of vegetation in the tree canopies (ROBERTS et al., 

1993). 

The linear approach has been demonstrated in numerous applications because it is considered a 

useful technique for interpreting variability in remote sensing data and a powerful way to convert spectral 

information into data products with physical meaning, such as the abundance of materials on the land surface 

(KESHAVA; MUSTARD, 2002). 

Given the importance of the linear spectral mixing model and the range of applications, several 

review works have been presented in the literature describing the existing algorithms to generate fraction 

images (ADAMS et al., 1995; ICHOKU; KARNIELI; 1996; KESHAVA; MUSTARD, 2002; PLAZA et al., 

2002; KESHAVA, 2003; PLAZA et al., 2004; ADAMS; GILLESPIE, 2006; QUINTANO et al., 2012). 

Generally, the linear spectral mixing model can be written as Eq. (1): 

 

𝑟𝑖 =  ∑ 𝑥𝑗𝑎𝑖,𝑗 + 𝑒𝑖

𝑚

𝑗=1

  (1) 

 

where: 

ri = spectral reflectance of the pixel for the ith spectral band; 

aij = spectral reflectance of the jth component in the pixel for the ith spectral band; 

xj = proportion value of the jth component in the pixel; 

ei = error for the ith spectral band; 

j = 1,2, ..., m (m = number of components considered in the pixel); 

i = 1,2, ..., n (n = number of spectral bands of the sensor). 

 

As mentioned earlier, this model assumes that the spectral response (in Eq. (1), expressed as 

reflectance) of pixels are linear combinations of spectral responses of components within the pixel. To solve 
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Eq. (1), it is necessary to have the spectral reflectance of the pixels (ri) in each band and the spectral 

reflectance of each component (aij) in each band to estimate the proportion values, or vice versa. 

For the solution of the system of linear equations that represents the spectral mixing model in 

question, there are several mathematical approaches based on the least squares method. Following it will be 

presented three algorithms available in the image processing software (SPRING, ENVI and PCI) 

(SHIMABUKURO; PONZONI, 2017). 

 

3 MATHEMATICAL ALGORITHMS  
 

The percentages of each object within a pixel can take multiple dimensions, depending on the spatial 

resolution of each sensor. These proportions are calculated by applying mathematical models. In this work, 

linear models will be presented, but it is important to be aware that linearity may not be the only way to 

describe the participation of each object in a pixel. The Linear spectral mixing model (LSMM) will be 

described since it is widely used by researchers with consistent results. 

Following this approach, the spectral response in each pixel, in any sensor spectral band, can be 

imagined as a linear combination of the spectral responses of each component present in the mixture. Thus, 

each pixel, which can assume any value within the gray level range of the image, contains information about 

the proportion (quantity) and the spectral response of each component within a spatial resolution element 

(pixel) on the ground. Therefore, for any multispectral image generated by any sensor system, considering 

the knowledge of the proportion of components, it will be possible to estimate the spectral response of each 

of these components. Similarly, if this response is known, the proportion of each component in the mixture 

can be estimated. This feature helps in the analysis of different sensors with different spatial resolutions. For 

example, it is possible to generate fraction images from a sensor with high spatial resolution and, based on 

these proportions, to estimate the spectral responses of the objects present in the pixels generated by a 

medium spatial resolution sensor, and then generate the fraction images for the moderate and low spatial 

resolution sensor images (SHIMABUKURO; SMITH, 1995; DUTRA et al., 2019). 

The linear spectral mixing model is a system of equations, with an equation for each band of the 

sensor. For example, for MSS (Multi Spectral Scanner) sensor, onboard Landsat 1-5 satellites, there are four 

equations, corresponding to bands 4, 5, 6 and 7, while for TM (Thematic Mapper) sensor onboard Landsat 4 

and 5 satellites there are six equations, corresponding to bands 1, 2, 3, 4, 5 and 7, taking into account only 

the solar optical spectrum. It is important to keep in mind that it is not necessary to use all available bands, 

but it must obey the condition that the number of reference spectra (or pure pixels) is always less than the 

number of spectral bands. Thus, mathematical algorithms are necessary for the solution of the system of 

equations formed by the spectral response of the pixel, which is the function of the proportion of each 

reference spectrum (or pure pixels) weighted by the respective spectral response of the component. 

Following it will be presented three mathematical algorithms: Constrained Least Squares (CLS), Weighted 

Least Squares (WLS), and Principal Components (PC) (SHIMABUKURO; PONZONI, 2017). 

 

3.1 Constrained Least Squares  
 

The CLS method estimates the proportion of each component within the pixel, minimizing the sum of 

squared errors. The proportion values obtained by this algorithm should result in non-negative numbers 

(physical meaning) and the sum equal to 1. To solve this problem, a nearly closed solution method was 

developed (for example, a method that finds the solution by making approximations that satisfy these 

constraints). As example, the proposed method will be presented for the case of three components (m=3) 

within the pixel. It is important to remember that this model can be developed for a larger number of 

endmembers, but that the solution will become increasingly complex. Thus, the mixture model, wrote in the 

Eq. (1) can be re-written as Eq. (2): 
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𝑒𝑖 =  𝑟𝑖 − ∑ 𝑥𝑗𝑎𝑖,𝑗

𝑚

𝑗=1

     (2) 

 

In this case we will use n = 4 spectral bands and m = 3 components within the pixel. The function to 

be minimized can be written as Eq. (3) or Eq. (4): 

 

𝐹 =  ∑ 𝑒𝑖
2  (3) 

or  
  

𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒4

2 = 

𝐸1 𝑥1
2 + 𝐸2 𝑥2

2 + 𝐸3 𝑥3
2 + 𝐸4 𝑥1𝑥2 + 𝐸5 𝑥1𝑥3 + 𝐸6 𝑥2𝑥3 +  𝐸7 𝑥1 + 𝐸8 𝑥2 + 𝐸9 𝑥3 + 𝐸10 

    (4) 

 

The values of coefficients E1 to E10 are shown in Chart 1. 

 

Chart 1 - Values of coefficients E1 to E10 for Eq. (4). 

E1 = a11
2 + a21

2 + a31
2 + a41

2 

E2 = a12
2 + a22

2 + a32
2 + a42

2  

E3 = a13
2 + a23

2 + a33
2 + a43

2  

E4 = 2x (a11 a12 + a21 a22 + a31 a32 + a41 a42) 

E5 = 2x (a11 a13 + a21 a23 + a31 a33 + a41 a43) 

E6 = 2x (a12 a13 + a22 a23 + a32 a33 + a42 a43) 

E7 = - 2x (a11 r1 + a21 r2 + a31 r3 + a41 r4) 

E8 = - 2x (a12 r1 + a22 r2 + a32 r3 + a42 r4) 

E9 = - 2x (a13 r1 + a23 r2 + a33 r3 + a43 r4) 

E10 = r1
2 + r2

2 + r3
2 + r4

2 
Source: Shimabukuro and Ponzoni (2017). 

 

Consider the first constraint: x1 + x2 + x3 = 1 or x3 = 1 - x1 - x2. Replacing this restriction in the Eq. 

(4), the function to be minimized becomes as Eq. (5): 

 

𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒4

2 = 

𝐴1 𝑥1
2 +  𝐴2 𝑥2

2 + 𝐴3 𝑥1𝑥2 + 𝐴4 𝑥1 + 𝐴5 𝑥2 +  𝐴6 

   (5) 

 

The values of coefficients A1 to A6 are shown in Chart 2. 

 

Chart 2 - Values of Coefficients A1 to A6 for Eq. (5). 

A1 = a11
2 + a21

2 + a31
2 + a41

2 + a13
2 + a23

2 + a33
2 + a43

2 – 2x (a11 a13 + a21 a23 + a31 a33 + a41 a43)  

 

A2 = a12
2 + a22

2 + a32
2 + a42

2 + a13
2 + a23

2 + a33
2 + a43

2 – 2x (a12 a13 + a22 a23 + a32 a33 + a42 a43) 

 

A3 = 2 (r1
2

13
2

 + a23
2

 + a33
2
 + a43

2
 + a11 a12 + a21 a22 + a31 a32 + a41 a42 – a11 a13 – a21 a23 – a31 a32 – a41 a43 – 

a12 a13 – a22 a23 – a32 a33 – a42 a43) 

 

A4 = 2 (- a13
2

 - a23
2

 - a33
2

 - a43
2

 + a11 a13 + a21 a23 + a31 a33 + a41 a43 – a11 r1 – a21 r2 – a31 r3 – a41 r4 + a13 r1 +  

a23 r2 +  a33 r3 +  a43 r4) 

 

A5 = 2 (- a13
2

 - a23
2
 - a33

2
 - a43

2
 + a12 a13 + a22 a23 + a32 a33 + a42 a43 – a12 r1 – a22 r2 – a32 r3 – a42 r4 + a13 r1 +  

a23 r2 +  a33 r3 +  a43 r4) 

 

A6 = a13
2 + a23

2 + a33
2 + a43

2 + r1
2 + r22 + r32 + r42 - 2 x (a13 r1 + a23 r2 + a33 r3 + a43 r4) 

Source: Shimabukuro and Ponzoni (2017). 
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In this manner, the function to be minimized is rewritten as Eq. (6): 

 

𝐹 =   𝐴1 𝑥1
2 + 𝐴2 𝑥2

2 + 𝐴3 𝑥1𝑥2 + 𝐴4 𝑥1 + 𝐴5 𝑥2 + 𝐴6       (6) 

 

where coefficients A1 to A6 are functions of spectral values, aij (endmembers response values) and ri (pixel 

response values). 

To solve this problem, it is necessary to find a minimum value within the area defined by the lines: 0 

≤ x1 ≤ a, 0 ≤ x2 ≤ b, and  
𝑥1

𝑎
 + 

𝑥2

𝑏
 = 1, in which a = b = 1 (Figure 1). Considering the function to be minimized, 

in order to find the minimum value, the partial derivatives are calculated and equaled to zero, as written in 

Eq. (7) and in Eq. (8): 

 

 

Solving for x1 and x2, written as Eq. (9) and Eq. (10), respectively: 

  

𝑥1  =   
(𝐴3 𝐴5 −  2𝐴2𝐴4) 

(4𝐴1 𝐴2 −  𝐴3
2) 

 

 

 (9) 

𝑥2  =   
(𝐴3 𝐴4 − 2𝐴1𝐴5) 

(4𝐴1 𝐴2 −  𝐴3
2)

 

 

 
Figure 1 - Region that meets the constraints for the number of components equal to three. 

(10) 

 

Source: Shimabukuro and Ponzoni (2017). 

 

So, there are five possible situations, which are described below: 

• Situation 1, where the minimum value is within the region of interest. This is the final solution 

and x3 = 1 – x1 – x2; 

• Situation 2, where the minimum value is outside the region and x1 and x2 are positive. In this 

case, the minimum restricted value is searched on the line defined by x1 + x2 = 1 (i.e., x3 = 0). 

Now, by making x2 = 1 - x1, the function to be minimized can be written as Eq. (11): 

 

𝐹 =   (𝐴1 +  𝐴2  − 𝐴3) 𝑥1
2 + (𝐴3 +  𝐴4  − 𝐴5 −  2𝐴2) 𝑥1 + (𝐴2 + 𝐴5 + 𝐴6) 

 

 (11) 

𝑑𝐹

𝑑𝑥1
 =   2𝐴1 𝑥1 + 𝐴2 𝑥2 + 𝐴4 = 0 

 

     (7) 

𝑑𝐹

𝑑𝑥2
 =   2𝐴2 𝑥2 +  𝐴3 𝑥1 + 𝐴5 = 0 

      (8) 
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The minimum value will be obtained, as written in Eq. (12) and in Eq. (13): 

 
𝑑𝐹

𝑑𝑥1
 =   2(𝐴1 +  𝐴2  − 𝐴3) 𝑥1 +  (𝐴3 +  𝐴4  − 𝐴5 − 2𝐴2) = 0  

(12) 

So: 

𝑥1  =   
−(𝐴3 + 𝐴4 −  𝐴5 −  2𝐴2) 

(2(𝐴1 +  𝐴2 − 𝐴3)) 
 

(13) 

 

If x1 > 1, make x1 = 1, or, if x1 < 0, make x1 = 0 and x2 = 1 – x1; 

• Situation 3, where the minimum value is outside the region and x1 is negative and x2 is positive. In 

this case, by making x1 = 0, the function to be minimized becomes as Eq (14): 

  

𝐹 =   𝐴2 𝑥2
2 + 𝐴5 𝑥2 + 𝐴6 

 

   (14) 

Solving to find the minimum, x2 = 
–𝐴5

2𝐴2
. If x2 > 1, then make x2 = 1, or, if x2 < 0, make x2 = 0 and x3 = 

1 – x2; 

• Situation 4, where the minimum value is outside the region and x1 and x2 are negative. In this 

case, x1 and x2 are equal to zero and x3 = 1; 

• Situation 5, where the minimum value is outside the region and x1 is positive and x2 is negative. In 

this case, by making x2 = 0, the function to be minimized becomes as Eq. (15): 

  

𝐹 =   𝐴1 𝑥1
2 + 𝐴4 𝑥1 + 𝐴6    (15) 

 

Solving to find the minimum, x1 = 
–𝐴4

2𝐴1
. If x1 > 1, then x1 = 1, or if x1 < 0, then x1 = 0 and x3 = 1 – x1. 

 

3.2 Weighted Least Squares 
 

Consider the curve that fits the data in the format as Eq. (16): 

 

𝑅 = 𝑓(𝐴, 𝑥1, 𝑥2, … , 𝑥𝑚) =  𝑥1 𝑓(𝐴) +  𝑥2 𝑓(𝐴) +  … + 𝑥𝑚 𝑓(𝐴)      (16) 

  

where the dependent variable R is linear in relation to x1, x2, ..., xm. 

 

Although there are many branches and approaches to curve adjustment, the least squares method can 

be applied to a wide variety of curve adjustment problems involving the linear shape with indeterminate 

values. Values are determined by minimizing the sum of squared errors (residuals). The solution obtained by 

this method is mathematically possible, but it can be physically unacceptable (some constraints are involved: 

the values should not be negative, and the sum must be equal to 1). Then, it becomes a problem of 

constrained least squares, and constraint equations must be added. To solve this problem, it is necessary to 

apply the weighted least squares concepts. 

Sometimes the information obtained in an experiment can be more accurate than that resulting from 

other sources of information related to the same experiment. In other cases, we should use some additional 

information (previous knowledge) to make the solution physically relevant. In such cases, it may be desirable 

to assign a greater "weight" to the information considered more accurate or more important to the problem. 

Giving certain weights (e.g. additional information) is desirable to bring the solution closer to the physical 

meaning and obtain an acceptable solution. 

In this case, x1 + x2 + ... + xm = 1 and 0 ≤ x1, x2, ..., xm ≤ 1 are the conditions that must be met to get 

an acceptable solution. So, r + 1 equations are added to the system of Eq. 10: one corresponding to the 

conditional sum of proportions equal to 1 (x1 + x2 + ... + xm = 1) and r equations corresponding to the 
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condition that the proportions are not negative (0 ≤ xj ≤ 1, j = 1, 2 , ..., m). To solve this problem, when 

constraints are not met, a W diagonal matrix containing weight values associated with the system of 

equations to be solved is applied. Initially, the first assigned values are equal to 1 along the diagonal W 

matrix, meaning that the equations are equally important for solving the problem. Very high value assigned 

to the diagonal corresponding to the first constraint (sum of xj = 1) indicates that this equation must be 

strictly satisfied. Therefore, if the xj values are satisfied, that is, if they are in the range between 0 and 1, the 

final solution was achieved. Otherwise, it is necessary to use an iterative process to place all xj within the 

range between 0 and 1. This is achieved by a gradual increase in weights, which are initially zero, 

corresponding to the most recent equations related to the restriction that the proportions should not be 

negative. The solution to this problem is found by minimizing the amount: w1 e1
2 + w2 e2

2 + ... + w (n + m + 

1) and (n + m + 1)2, where w1, w2, etc. are the weight factors and e1, e2, etc. are the error values for each 

equation. 

The implementation of this method is based on the Gaussian elimination and substitution algorithm, 

described in the numerical analysis textbooks such as Burden, Faires and Reynolds (1981). 

 

3.3 Principal Components  
 

Given an image consisting of a number of pixels measured in multiple spectral bands, it is possible 

to model each spectral response of each pixel as a linear combination of a finite number of components, as 

written in Eq. (17). 

 

𝑑𝑛1 = 𝑓1 𝑒1,1 + … + 𝑓𝑛 𝑒1,𝑚    band 1 

𝑑𝑛2 = 𝑓1 𝑒2,1 + … +  𝑓𝑛 𝑒2,𝑚    band 2 

... 

𝑑𝑛𝑝 = 𝑓1 𝑒𝑝,1 +  … +  𝑓𝑛 𝑒𝑝,𝑚    band p 

(17) 

 

                                              

where: 

dni= spectral response of the pixel in band i; 

eij = spectral response of the pure component j in band i; 

fj = unknown fraction of the pure component j; 

m = number of pure components; 

p = number of bands. 

 

In this way, the equation can be in a matrix form written as Eq. (18): 

 

𝑑𝑛 = 𝑒 𝑓  (18) 

 

A linear constraint is added because the sum of fractions of any pixel must be equal to 1; therefore, it 

is necessary to increase the dn vector with a line of values of 1. This becomes a set of equations p + 1 in m 

unknowns. Because the number of pure components is generally less than the number of spectral bands, 

equations can be solved by any technique. The described solution uses Principal Component Analysis (PCA) 

to reduce the dimensionality of the dataset. The pure component matrix is transformed into a PCA space 

using the appropriate number of autovectors, pixel data is transformed into PCA space, solutions are 

achieved, and the resulting fractions are stored (SMITH et al., 1985). 

The Weighted Least Squares and the Principal Component methods are recommended when the 

number of spectral components in the mixture is greater than three (SHIMABUKURO; PONZONI, 2017). 

 

4 ENDMEMBERS SELECTION 
 

To generate fraction images, it is necessary to choose pure components (endmembers) to apply any 
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available mathematical algorithm. Explicitly defined, the endmember is just a component that is part of the 

spectral mixture, i.e., it is part of the pixel. Thus, it is necessary to choose the endmembers that make sense 

for interpretation of the image and that also meet the criteria of the fraction according to the equations of the 

spectral mixture. Sometimes it is easy to choose these endmembers when the spectral behavior of targets is 

already known for the area being studied. This occurs in areas that have been studied for some time, such as 

when changes in the environment are being monitored. On the other hand, it is necessary to perform 

experiments to find the appropriate endmembers whenever the scenes are unknown or when it is necessary to 

extract specific information from the images. 

There are two ways to select endmembers: extracting spectral values directly from images or by 

collecting data obtained in laboratory and/or in the field using spectroradiometers. Endmembers derived from 

images are called image endmembers, while those selected from laboratory and/or in the field are called 

reference endmembers. The most convenient is to select the endmembers directly from the images being 

studied for the simple reason that the spectrum of the endmember extracted from the image can be used 

without image calibration. On the other hand, the spectra obtained in laboratory or in the field present values 

of reflectance factors. As known, orbital images are in principle available in DN (Digital Number) format. 

Thus, the reference endmembers (reflectance factors) would be at scale or in a unit different from that 

adopted by the images (DNs), which would interfere in the application of the mixing model. The correct 

procedure would be to convert the DNs of the images into surface reflectance factors, with atmospheric 

correction, in order to have compatibility in the unit of the two datasets, that is already currently occurring 

with the availability of vast majority of free orbital products (e.g.: Landsat series and MODIS). 

Although image endmember is convenient by not requiring calibration it does not always work on 

mixing models. To work well, it is necessary to have a good agreement between the pixel scale and the scale 

in which materials occur relatively pure on the ground. At best hypothesis, the image endmember can be 

used if the study image has at least a few pixels fully occupied by a single material on the land surface. 

It can be concluded in a more or less intuitive way that the definition of the number and selection of 

endmembers are essential for the success of the mixing model. However, it is known that, in a real world, the 

terrain can be spectrally complex. One reason why an image can be well modeled by few endmembers 

spectra is due to the fact that some potential endmembers are in small proportions on the land surface 

compared to the major endmembers considered in the mixture pixel. 

When considering the use of image endmembers, it is assumed that in high- and medium- spatial 

resolution images there is a high probability of finding pure pixels or pixels that include a single component 

available in the image. However, in the moderate and low spatial resolution images, the mixed nature of 

pixels limits this approach due to the difficulty or even the impossibility of obtaining pure pixels 

(SHIMABUKURO; SMITH, 1995; DE FREITAS et al., 2008). Particularly in a global or regional scale 

studies, the determination of these endmembers remains a challenge (MEYER; OKIN, 2015). From this 

perspective, some studies propose to estimate the spectral responses of endmembers in images of low spatial 

resolution, from the proportions obtained from the images of higher spatial resolution (Figure 2) using 

regression models (SHIMABUKURO; SMITH, 1995; DE FREITAS et al., 2008; DUTRA et al., 2019). 

Assuming that the spectral response of a pixel can be obtained as a linear combination of the responses of 

each element contained within it, each pixel contains information about the proportion and spectral response 

of each component (SHIMABUKURO; SMITH, 1991). 
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Figure 2 - Representation of a pixel with spatial resolution of 1km and the same coverage area in 100 m pixels obtained 

from the same PROBA-V satellite. 

 
Source: Dutra et al. (2019). 

 

5 FRACTION IMAGES 
 

Fraction images are the products generated from application of the mathematical algorithms described 

earlier. They are represented by images in which the pixel value corresponds to the proportions of the 

components considered in the spectral mixture. In general, all algorithms produce the same result, that is, 

they generate the same fraction images when constraint equations are not used, i.e., the proportions are in the 

range of 0 to 1. Typically, fraction images of vegetation, soil, and shade/water are generated, which are the 

components usually present in any scene on the land surface. Fraction images can be considered as a way of 

reducing the dimensionality of the data and also a way of highlighting the information. In addition, the 

spectral mixing model transforms spectral information into physical information (component proportion 

values in the pixel). 

The vegetation fraction image highlights the vegetation cover areas, the soil fraction image 

highlights the exposed soil areas, and the shade/water fraction image highlights the areas occupied by water 

bodies, such as rivers and lakes, as well as burned areas, wetlands, etc. Shade and water are considered 

together because these two targets exhibit similar responses in spectral bands normally used by Earth 

observation sensors, such as low spectral response in the spectral regions. Thus, it is important to note that 

the spectral mixing model is not a classifier, but an image transformation technique to facilitate information 

extraction (SHIMABUKURO; PONZONI, 2017). 

Figure 3 shows an example of the spectral responses of the components of vegetation, soil, and 

shade/water used to generate fraction images in a scene with path 231 and row 062 of an image from the OLI 

(Operational Land Imager) sensor onboard Landsat-8 satellite, corresponding to Manaus region (Amazon 

State). In this case, the images of all bands were used as example: 1 (0.43 𝜇𝑚 - 0.45 𝜇𝑚), 2 (0.45 𝜇𝑚 - 0.51 

𝜇𝑚), 3 (0.52 𝜇𝑚 - 0.60 𝜇𝑚), 4 (0.63 𝜇𝑚 - 0.68 𝜇𝑚), 5 (0.84 𝜇𝑚 - 0.88 𝜇𝑚), 6 (1.56 𝜇𝑚 - 1.66 𝜇𝑚) and 7 (2.10 

𝜇𝑚 - 2.30 𝜇𝑚), which were previously converted into surface reflectance values. It is worth remembering 

that this analysis can be performed using the apparent or surface reflectance values or even DNs as long as 

the spectrum of the components is obtained from these images. Figure 4A shows a color composite (R6 G5 

B4) of OLI/Landsat-8 sensor images, while figures 5B to 5G show the images corresponding to the spectral 

bands 2 to 7. 

Obviously, the user should consider the type of data they are working with, especially when selecting 

endmembers. The user who is more familiar with the analysis of reflectance curves of different natural 

resources will probably feel more comfortable selecting endmembers when working with images converted 

to surface reflectance values because the shape of the curves will inform about the nature of the pixels 

selected as pure. This does not mean that they are not able to make a good selection by working with 

composite images of DNs. In this case, the shape of the curves would not be very useful but would not 

interfere with the performance of the mixing model. 
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Figure 3 - Example of spectral responses of vegetation, soil, and shade/water components. 

 
Source: Shimabukuro and Ponzoni (2017). 

Figure 4 - (A) color composite (R6 G5 B4) of OLI/Landsat-8 for the image path 231 and row 062; (B) band 2; (C) band 

3; (D) band 4; (E) band 5; (F) band 6; (G) band 7. 

 
Source: Shimabukuro and Ponzoni (2017). 

 

As a result, using the above images from the OLI/Landsat-8 sensor, it is observed that in the soil 

fraction image (Figure 5B), the brightest pixels are those that have the lowest levels of vegetation cover or 

less shade. While the vegetation fraction image presented in Figure 5C shows that the brightest pixels are the 

ones that have the highest amount of vegetation, while water bodies appear dark because they have no 

percentage of vegetation cover. A similar analysis can be done with images of other components. 
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Figure 5 - (A) color composite of the fraction images (Rsoil Gvegetation Bshade/water) derived from OLI/ Landsat-8 

sensor image for the Manaus region (Amazon State). The corresponding fraction images are: (B) soil, (C) vegetation 

and (D) shade/water fraction. 

 
Source: Shimabukuro and Ponzoni (2017). 

 

It is observed that the fraction images are monochromatic (grayscale), and the pixel-by-pixel values 

in each image are directly associated with the proportions (abundance) of each respective component of the 

scene selected for the spectral mixing model. Thus, the higher the value of a pixel in a vegetation fraction 

image (Figure 6B), for example, the greater the proportion of vegetation in the corresponding pixel (bright 

green in Figure 6A). The same interpretation applies to images of other components: the higher the value in a 

soil fraction image (Figure 6C), the greater proportion of soil in the corresponding pixel (magenta in Figure 

6A), and the higher the value in a shade/water fraction image (Figure 6D), the greater the proportion of water 

or burned in the corresponding pixel (black or dark magenta in Figure 6A. 

 

 

Figure 6 - (A) color composite (R6 G5 B4) of OLI/Landsat-8 part of the image path 226 and row 068 in Mato Grosso 

State, and fraction images of (B) vegetation, (C) soil and (D) shade/water. 

 
Source: Shimabukuro and Ponzoni (2017). 

 

The grayscale of fraction images is lighter with the highest proportion of endmembers in the pixel. 

The same convention is adopted for the error image associated with the model. The choice of convention is 

arbitrary, so that sometimes the tones of the image can be reversed to help in the visualization of patterns. 

For example, in case of shade/water fraction image, it is usually more intuitive when tones are inverted, so 

dark tones indicate less illumination (ADAMS; GILLESPIE, 2006). Fraction images can also be presented in 
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color composite (RGB) by selecting three images corresponding to the endmembers. In this case, the 

elongation of the image contrast can be applied to the visualization of the patterns but distorts the values of 

the proportion for quantitative use. To analyze a fraction image individually, it is more effective to present 

the higher proportions of brighter grayscale endmembers, to highlight the target of interest. 

The literature presents a large number of studies on the use of linear spectral mixing model in diverse 

regions of the world, showing that this technique is consistent. In addition, the fraction images generated by 

this model are being used in different application areas, such as forests (SHIMABUKURO, 1987), 

agriculture (WHITE ET AL., 2002; YANG ET AL., 2007), land use and land cover (SHIMABUKURO et 

al., 2020), water (NOVO; SHIMABUKURO, 1994; ALCÂNTARA et al., 2009) and urban areas (WU; 

MURRAY, 2003). 

As can be seen, the proportion of each endmember can be shown for each pixel, creating a useful 

image for photointerpretation. Fraction images are derived based on information from all multispectral bands 

used. Thus, for each type of application, the number of bands to be used can be limited, for example, in the 

analysis of deforested areas in the Amazon only three bands are sufficient: red, near-infrared and mid-

infrared because they are spectral bands with low correlation and correspond to the bands conventionally 

used by several authors (SKOLE; TUCKER, 1993; SHIMABUKURO et al., 1998; INPE, 2008). 

Therefore, the conversion of spectral data into fraction images through the linear spectral mixing 

model can result in a significant reduction in dimensionality of the data to be analyzed. For example, it is 

possible to use multiple sensor bands - six TM bands, seven MODIS bands, 242 Hyperion bands to generate 

a small number of fraction images (usually three or four endmembers). 

Now, once the proportions of the fraction images and the spectral responses of the endmembers are 

known, it is possible to recover the spectral responses of the pixels in each of the spectral bands used 

(SHIMABUKURO; SMITH, 1995; DUTRA et al., 2019). This procedure allows evaluating the performance 

of models to generate fraction images by calculating the error images. 

Thus, based on the spectral mixing model, it is possible to calculate the error for each spectral band 

and generate the corresponding error images, since the response of the components and their proportions are 

known. This is one way to evaluate model performance, i.e., when the model is appropriate, error images 

show an aspect without any pattern. If there is a component that has not been considered in the mixture, it 

will be highlighted in the error images. Error images generally have low values according to the accuracy of 

the models used. Thus, these images are used to evaluate the quality of the defined models, i.e., whether the 

number of components was suitable for the analyzed scene. 

 

6 APPLICATIONS IN THE AMAZON REGION 
 

In this section, some examples of the use of fraction images derived from the linear spectral mixing 

model in environmental monitoring projects in the Brazilian Legal Amazon (BLA) (Figure 7) will be 

presented. Fraction images contributed to the development of small-scale researches, as well as in large-scale 

projects that use a large number of images. 
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Figure 7 - Location of the Brazilian Legal Amazon in South America and its respective states. (A) Color composite 

(Rmir Gnir Bred) from VIIRS-NPP images for the Legal Amazon, and (B) color composite (Rsoil Gvegetation 

Bshade/water) of the corresponding fraction images. 

 
Source: The authors (2020). 

 

6.1 Land Use and Land Cover Mapping 
 

Fraction images of vegetation, soil, and shade/water were used to map land use and land cover on a 

national scale (SHIMABUKURO et al., 2020; ARAI et al., 2020) and on a regional scale (CASSOL et al., 

2020). Figure 8 represents the conceptual idea used for agriculture mapping in the Mato Grosso State using 

multitemporal data from PROBA-V satellite using the maximum proportion of fraction images obtained in 

one-year time series (ARAI et al., 2020). In this example, considering the time series of approximately 288 

images (72 scenes x four spectral bands) from the PROBA-V sensor, the application of LSMM allowed to 

identify areas destined for agriculture due to their characterization by homogeneous areas and a cyclic 

pattern between exposed soil (harvest and soil preparation) and vegetation cover. In this type of land use, 

unlike other land use and land cover types, the pixel presents a high proportion of soil fraction in a given 

period of the year and a high proportion of the vegetation fraction when the crop reaches the vegetative peak, 

supporting the use of maximum proportion of fractions approach. In addition, it was possible to reduce the 

volume of data to only three images containing the information of fraction images time series and then 

performing the steps of image classification. 

 

Figure 8 - (A) Conceptual composition of a pixel with different elements within a pixel; (B) the subsequent theoretical 

spectral response of its elements to obtain the endmembers; and (C) theoretical representation of the temporal behavior 

of vegetation fraction images and the variation of the proportions over the study period. 

 
Source: Arai et al. (2020). 
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Figure 9 presents an example of the maximum fraction of vegetation, soil, and shade/water images in 

Mato Grosso State derived from PROBA-V images acquired in 2015. The maximum vegetation fraction 

image (Figure 9A) shows agricultural areas highlighted, mainly soybean. On the other hand, maximum soil 

fraction image (Figure 9B) highlights the contrast between areas without or less vegetation (e.g. agriculture, 

deforestation and savanna areas whose vegetation is more spatially heterogeneous, in bright) and with dense 

vegetation (forest cover, in dark). In the maximum shade/water fraction image, the areas of water bodies and 

burned areas are highlighted. 

 

Figure 9 - (A) Maximum fraction images of vegetation, (B) soil, (C) and shade/water derived from PROBA-V images 

of Mato Grosso State acquired in 2015. 

 
Source: Shimabukuro et al. (2020). 

 

Figure 10 shows the mapping result of Mato Grosso State in 2015 using the maximum fraction 

images approach to separate the classes of land use and land cover, including pasture and savannah areas that 

present a high level of difficulty to distinguish them in automatic classifications. The authors performed the 

discrimination of classes based on variations of soil, vegetation, and shade fraction images, according to 

seasonality, instead of analyzing their spectral behaviors, which invariably change with a spatial resolution of 

the sensors. This means that each class has a typical annual behavior according to its increase or decrease of 

vegetation, soil, and shade proportions over a one-year time series (CASSOL et al., 2020). 

 

Figure 10 - Map of land use and land cover of Mato Grosso State obtained based on the 2015 PROBA-V annual time 

series. 

 
Source: Cassol et al. (2020). 
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As mentioned, vegetation, soil, and shade/water components are commonly used in applications with 

linear spectral mixing models as they are usually present in any land surface scene. These integrated 

components can provide important information for mapping and monitoring different land use and land cover 

types because they are related to the dynamics of targets on the surface and how they behave over time. 

Figure 11 represents, conceptually and illustratively, the dynamics of these three components in different 

land covers. In general, pixels that contain dense or spatially homogeneous vegetation, such as agriculture 

and forest, have a medium to high proportion of vegetation and low soil proportion. On the other hand, less 

dense or more sparse vegetation, such as degraded forests, herbaceous vegetation, or natural grasslands, 

presents an intermediate proportion of vegetation and soil due to the mixture of both components in the pixel. 

Water bodies, such as rivers and perennial lakes, present a high proportion of shade and almost zero 

proportions of vegetation and soil. Areas with exposed soil have a high proportion of soil and almost zero 

proportion of vegetation, which allows identifying, for example, deforested or degraded areas caused by 

selective logging (landing area and logging roads). Factors such as tree shadow and cloud shadow will also 

influence the proportion of shade fraction, as well as burned areas, due to their low reflectance in the 

spectrum region. 

When analyzing the behavior of these three components over time, variations in the proportions of 

targets on the land surface resulting from seasonality dynamics and other factors such as clouds are observed. 

In agricultural areas, for example, variations in soil and vegetation proportions are observed during the 

growing season, harvesting, and pre-sowing phases. As well as variations are observed in seasonal 

vegetation, a characteristic observed in the savannas, for example. In addition, intermittent rivers and lakes 

present variation in shade and soil proportion. Then, fraction images can be applied for various purposes and 

knowledge of dynamics in space and time between components to support future research in this field of 

knowledge. 

 

Figure 11 - Conceptual example of the proportion of main components of land surface (vegetation, soil, and shade) in 

different land cover. 

 
Source: The authors (2020). 

 

6.2 Deforestation Mapping 
 

Deforestation in the Brazilian Legal Amazon has been a concern of several governmental and non-

governmental organizations, especially in the last three decades (MORAN, 1981; SKOLE; TUCKER, 1993). 

Although there is no long history of human occupation in the BLA, almost 90% of deforestation for pastures 

and agriculture occurred between 1970 and 1988, as indicated by estimates based on satellite images 

(SKOLE et al., 1994). 
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Historically, the Brazilian territory was occupied along the coast, with most of its population 

concentrated in this region. In an attempt to change this occupation pattern, increasing the occupation in the 

interior of country, the federal capital was transferred from the coast, in Rio de Janeiro State, to the central 

region, in Brasilia, in the mid-1950s (MAHAR, 1988). This occupation policy required investments in 

infrastructure to connect Brasilia to other regions of the country. The construction of Belém-Brasília 

highway (BR-010), in 1958, was the dominant factor that triggered the main deforestation activities in the 

AML (MORAN et al., 1994; NEPSTAD et al., 1997). Subsequent events, such as the construction of BR-

364, crossing the states of Mato Grosso, Rondônia and Acre, and the PA-150, in the state of Pará, 

encouraged other deforestation activities, converting forests into pasture and agriculture areas (MORAN, 

1993). 

To introduce the governance in the BLA, the "Superintendence of Development of the Amazon" 

(SUDAM) and the "Amazônia Bank" (BASA) were founded in 1966. Small producers were financed to 

encourage investment in agricultural projects (MORAN et al., 1994). Large producers were also financed 

through tax incentives in trade to convert forests into pasture areas (MORAN, 1993). The incentives granted 

to large producers were the main causes of deforestation; small producers had a smaller impact on 

deforestation due to the comparatively smaller practice of subsistence agriculture (FEARNSIDE, 1993). 

Other activities of high economic value, such as mining and selective logging, have also contributed 

to the deforestation in the BLA (COCHRANE et al., 1999). Deforestation areas in the Brazilian Legal 

Amazon are concentrated in the so-called “arc of deforestation”, located in the southern and eastern parts of 

the BLA, from Acre to Maranhão States (COCHRANE et al., 1999; ACHARD et al., 2002). 

Since 1973, Brazil has access to remote sensing images of Landsat satellites, which allow 

quantifying the extent of natural resources and the change of the Amazon region. Based on the availability of 

these images, the Brazilian government began monitoring the Amazon rainforest to quantify deforestation 

areas at intervals of several years. 

The Brazilian government has been conducting annual systematic monitoring of the Amazon 

rainforest since 1988, through the PRODES (Monitoring of the Brazilian Amazon rainforest by satellite) 

project, carried out by INPE, using images provided by the Landsat program. As the largest remote sensing 

project in the world to monitor deforestation activity in tropical forests, PRODES aims to evaluate all 

deforested areas within the 5 million square kilometers of the Brazilian Legal Amazon. 

This project estimated approximately 810,000 km² of deforestation in the Brazilian Amazon by the 

year 2019 (INPE, 2020; ASSIS et al., 2019), corresponding to approximately 18% of the original forest 

extension. These data show annual deforestation rates that vary significantly in response to the country's 

political, economic and financial conditions, as well as the demands of the foreign market. 

PRODES information is mainly based on images of sensors with a medium spatial resolution (30 m), 

such as those generated by the Landsat program, and with relatively low temporal resolution (acquisition 

frequency of 16 days), allowing annual monitoring of deforestation. A faster update of the forest change is 

not possible with these images due to the low frequency of cloudless image acquisition, which is a serious 

problem for the Amazon region, limiting the number of viable observations of the land surface. This prevents 

the government and environmental control agencies from making rapid and appropriate interventions to stop 

illegal deforestation activities. 

In this manner, to monitor deforestation in a near-real-time, almost daily images of MODIS sensor 

onboard Terra and Aqua platforms were used. Thus, through the DETER project (Detection of deforestation 

in near-real-time), a new methodology based on MODIS images was developed for the rapid detection of 

deforestation in the Amazon (ANDERSON et al., 2005; SHIMABUKURO et al., 2006). Although MODIS is 

a moderate spatial resolution sensor and does not generate viable images to estimate the extent of 

deforestation, its data is valuable as indicators of change or as a warning product for the land surface policy 

management and control service. Currently, the project uses sensors data of higher spatial resolution, 

onboard the Sentinel, Landsat, and CBERS satellites. 

 

6.2.1 DIGITAL PRODES PROJECT 
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Since the end of 1970s, INPE has been conducting deforestation assessments at BLA using remote 

sensing images. These evaluations were made in conjunction with the former Brazilian Institute of Forest 

Development (IBDF), which was later incorporated into the Brazilian Institute of Environment and 

Renewable Natural Resources (IBAMA). The first evaluation was performed using images acquired by the 

MSS sensor, with four spectral bands and spatial resolution of 80 m, onboard Landsat satellites 1, 2 and 3, 

during the periods from 1973 to 1975 and from 1975 to 1978, using visual image interpretation (TARDIN et 

al., 1980) 

From 1988, annual deforestation assessments were provided to the entire BLA using the TM sensor, 

six spectral bands with a spatial resolution of 30 m, onboard the Landsat 5 satellite, with better mapping 

quality due to its better spectral and spatial resolutions when compared to MSS data. The methodology 

applied to mapping deforested areas was based on the visual interpretation of color composites (R5 G4 B3) 

of TM images in printed format, on a scale of 1: 250,000. The visually interpreted polygons of the deforested 

areas were summed up to calculate the total deforested areas for each BLA state and presented in the tables 

form. This method, known as analogical PRODES, was carried out until 2003. 

At the end of 1990s, a semi-automated methodology began to be developed using fraction images, 

called PRODES Digital (SHIMABUKURO et al., 1998). The PRODES Digital project is an automation of 

the activities developed in the PRODES project. In order that PRODES be able to detect deforestation in the 

BLA, an intact forest mask is updated annually by identifying a new deforestation event to exclude areas of 

non-forest vegetation and identifying other dynamic changes, such as secondary regeneration areas. The 

satellite images are selected for the period of July, August, and September, which is in the dry season period 

in the arc of deforestation and represents an atmospheric window when cloudless images are usually 

available. The red, near-infrared and mid-infrared spectral bands are used to generate fraction images 

(SHIMABUKURO et al., 1998). 

Digital PRODES consists of the following methodological steps (Figure 12): (1) generation of 

vegetation, soil, and shade/water fraction images; (2) image segmentation based on the growing region 

algorithm; (3) classification of images based on unsupervised classifier; (4) mapping classes based on the 

following legend: forest, non-forest (vegetation that is not characterized by a forest structure), deforestation 

(accumulated deforestation until the previous year), hydrography, annual deforestation, and clouds; and (5) 

editing the classified map based on visual interpretation to minimize errors of omission and commission of 

automatic classification, in order to produce the final map of deforestation in digital format. 

 

Figure 12 - Conceptual example of the digital PRODES flowchart. 

 
Source: The authors (2020). 

 

The shade/water fraction image was used to characterize the total area deforested before 1997 in the 

BLA, according to the methodology proposed by Shimabukuro et al. (1998). In this case, the shade/water 
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fraction image was used for homogeinizing forested areas (medium amount of shade) distinguishing from the 

other classes of land use (low amount of shade) such as exposed soil, pasture, and regeneration areas. 

Subsequently, the deforested areas were accumulated until the year 2000. For mapping the annual 

deforestation, soil fraction image is used because it highlights the areas without vegetation cover, which 

correspond to the annual increase in deforestation based on the high contrast between forested and deforested 

areas. The shade fraction images and vegetation can also be used for mapping annual deforestation since the 

forest and non-forest areas (newly cut forest) are very distinct in these images. But the soil fraction image 

better highlights the newly deforested areas. PRODES Digital allowed INPE to make available to the general 

community the information of deforested areas in the BLA (Figure 13), being recognized nationally and 

internationally (KINTISCH, 2007). 

 

Figure 13 - Map of deforestation in the Brazilian Legal Amazon. 

 
Source: Shimabukuro and Ponzoni (2017). 

 

6.2.2 DETER PROJECT 

 

Since 2004, the DETER project has been implemented with the objective of providing near-real-time 

detection of deforestation activities to support the Federal Government's action plan for the prevention and 

control the deforestation in the Brazilian Amazon. The procedure uses the methodology adopted by the 

PRODES Digital project but aims to detect deforestation activities in near-real-time, exploring high temporal 

resolution of MODIS sensors (ANDERSON et al., 2005; SHIMABUKURO et al., 2006). 

The first step in the DETER project method is to mask intact forests based on PRODES results in the 

previous year. The intact forest map is used as a reference to identify new real-time deforestation events 

throughout the year being analyzed. Monitoring activity with the images begins in January but becomes more 

effective after March when a larger number of images are available due to less cloud coverage in the 

Amazon region. 

For the DETER project, MODIS daily images (MOD09 surface reflectance) were selected based on 

two criteria: (a) amount of cloud cover and (b) range within the zenith angle of the sensor, less than 35° 

(~1,400 km). The amount of clouds is initially evaluated according to the quick look images, followed by a 

more detailed analysis with the actual spatial resolution of MODIS images to be used. The BLA is covered 

by 12 MODIS tiles (V09 to V11 and H10 to H13). 

From the set of seven bands of MOD09 product, bands 1 (red), 2 (NIR), and 6 (MIR) are used to 

generate fraction images of vegetation, soil, and shade/water, applying the linear spectral mixing model. Soil 

fraction images are then segmented, classified, mapped, and eventually edited by the interpreter, following 

the same procedures used in the PRODES Digital project. Deforested areas classified in the soil fraction 

images (Figure 14A and 14B) are overlayed to the forest mask, highlighting the areas of new deforestation 
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(red color in Figure 14C). This procedure is performed for each daily image acquired for the Brazilian Legal 

Amazon. The results of deforestation activities detected by DETER can be accumulated at different intervals, 

such as weekly, biweekly, and monthly (Figure 14D). 

 

Figure 14 - (A) Soil fraction image (mosaic from April 22 to May 7, 2004); (B) result of the classification of soil 

fraction image; (C) MODIS image classification (mosaic from April 22 to May 7, 2004) over the total extension: 

August 2003 + deforestation until May 7, 2004; and (D) result of monitoring by DETER project, showing the monthly 

deforestation activities detected during 2004. 

 
Source: Adapted from Shimabukuro and Ponzoni (2017). 

 

6.3 Detection of selective logging areas 
 

The selective extraction of tree species with high commercial value is a practice used in areas of 

Amazon forest, requiring several studies for its detection and measurement, in addition to the evaluation of 

impacts on intact forests (ASNER et al., 2005; GROGAN et al., 2008; MATRICARDI et al., 2010; 

SHIMABUKURO et al., 2019). 

Selective extraction is characterized by the opening of landing areas and trails or logging roads. 

Thus, with the use of medium spatial resolution images (coming from Landsat and Sentinel-2 satellites, for 

example), it is possible to detect these areas using soil fraction images generated by the linear spectral 

mixing model (SHIMABUKURO et al., 2019). The generation of fraction images for this purpose allows 

highlighting these areas of interest that are not always easily visualized in a color composite (Figure 15A) by 

visual inspection. As the forest becomes degraded with the removal of trees, the proportions of soil fractions 

increase due to the decrease in canopy cover and vegetation proportions decrease when comparing the 

proportions of these fractions in intact forests. Thus, the use of fraction images facilitates and increases the 

detection of landing and logging road areas due to the spectral behavior of these areas. This allows better 

discrimination of these areas and facilitates the subsequent classification process. Figure 15B shows the soil 

fraction image highlighting the areas characterized by selective logging, presenting landing area and logging 

roads, identified in the field as shown in Figure 15C-D. 

Establishing an operational and efficient method to detect and monitor forest degradation by 

selective logging has been studied in the literature and many efforts have been reported using fraction images 

to map selective extraction (ASNER et al., 2005; ANWAR; STEIN, 2012). The development of indices such 

as NDFI (Normalized Difference Fraction Image) using vegetation fraction (GV – Green Vegetation), non-

photosynthetic vegetation (NPV) and soil (SOUZA JR et al., 2005) images is useful for analyzing forest 

degradation. 
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Figure 15 - (A) Color composite RGB and (B) corresponding soil fraction image derived from a OLI/Landsat-8 image 

in an area in Mato Grosso State, highlighting selective logging areas, characterized by the presence of landing areas and 

logging roads, (C -D) areas verified in the fieldwork. 

 
Source: Shimabukuro et al. (2019). 

 

6.4 Burned areas mapping 
 

Forest disturbances, such as selective logging and fire, are two of the main causes of forest degradation 

and carbon emissions in the Amazon region. Such disturbances induce changes in forest structure, species 

composition, biomass stocks and favor conversion to deforestation. With this, in addition to the ability of 

fraction images for the detection of deforested areas and selective logging, the fraction images are also able 

to identify another important anthropogenic action in the forest cover, such as fires. 

For the initial interpretative phase of burned areas, using MODIS images, for example, information 

from the INPE Fire Monitoring Program (INPE, 2020b), which presents daily monitoring of critical points, 

can be used to provide a georeferenced database with the location of several hot-spots. 

Figure 16A shows the location of burned areas in Mato Grosso State using a Landsat image, 

highlighting the areas mapped as deforestation (in yellow) that are masked to detect burned areas only in 

forest areas. Figure 16B represents the respective individual image of the shade/water fraction 

(SHIMABUKURO et al., 2019). Burned areas are identified by higher gray levels when compared to other 

targets in the shade/water fraction image, facilitating their discrimination. However, it is important to note 

that these areas can be confused with water bodies, and it is necessary to use a water mask to reduce 

inclusion errors by an automatic or semi-automatic method. 
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Figure 16 - Part of OLI/Landsat-8 image in Mato Grosso State: (A) displaying burned areas in forest, (B) and their 

shade/water fraction image highlighting areas of low reflectance. 

 
Source: Shimabukuro et al. (2019). 

 

Analyzing the annual results between 2005 and 2017 using Landsat satellites images, for example in 

Figure 17, the analysis of multitemporal fraction images of shade/water indicated the occurrence of 

approximately 957 km² of new forest burned areas in Mato Grosso State, i.e., areas of fire-degraded forest 

(SHIMABUKURO et al., 2019). In addition to these areas, it is also necessary to consider the occurrence of 

fire in previously deforested areas, where the burning activity serves as a traditional practice of land clearing 

for the implantation of agricultural crops or new pastures or even as a practice for improving pastures. 

 

Figure 17 - Burned areas in Mato Grosso State identified in the images of Landsat TM and OLI sensors acquired 

between 2005 and 2017. 

 
Source: Shimabukuro et al. (2019). 

 

7 OPERATIONAL PERSPECTIVES  
 

Some of the LSMM applications using fraction images derived punctually in time and at local and 
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regional scales were presented in this review work. Recently, some studies have demonstrated the 

applicability of LSMM in discriminating different targets of the land surface in a national (SHIMABUKURO 

et al., 2020) and global (ADAMI et al., 2018) scales (Figure 18); and, even more recently, there are studies 

that evidence the applicability of LSMM in analyses that use fraction images derived from intra-annual 

images (ARAI et al., 2020; CASSOL et al., 2020) or inter-annual (DUTRA, 2019). 

 

Figure 18 - Rmir Gnir Bred color composite from VIIRS-NPP images for South America (A) and its Rsoil Gvegetation 

Bshade/water fraction images composite (B). 

 
Source: The authors (2020). 

In recent years there has been an exponential increase in the number of images available from remote 

sensors and, consequently, the increase in the number of studies based on time series analyses from selected 

samples over a given period of time (GALFORD et al., 2008; COUTO Jr. et al., 2012). Such analyses are 

usually associated with a large volume of data, and therefore it is necessary to use techniques that extract 

information efficiently or even reduce the dimensionality of the data without significant loss of information 

(BORGES; SANO, 2014). We also consider the use of techniques that do not present reduced sensitivity in 

regions of high biomass (e.g. tropical forests), and in addition to the contribution of soil effects, whose 

factors limit the application of certain vegetation indices (ADAMI et al., 2018). 

Thus, fraction images resulting from the linear spectral mixing model applied in time series allow the 

quantification of proportions of each target in space and time and its variations. From a set of multitemporal 

images between 2000 and 2017, Dutra (2019) built profiles of space-time series of fraction images in order to 

observe the potentialities of these images for monitoring land use and land cover. As an example, it can be 

identified areas that presented evidence of degradation in native vegetation (Figure 19), as well as the silting 

of water bodies in periods characterized by extreme climatic events of drought from the increase of 

proportion of soil fraction. 
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Figure 19 - Example of time series profiles produced with fraction images of vegetation, soil, and shade between 2000 

and 2017 period, without data filtering and in scale from 0 to 1 applied in a sample of degradation of native vegetation. 

 
Source: Dutra (2019). 

 

Thus, the use of temporal profiles of fraction images demonstrates the potentialities to analyze, for 

example, the relationship between the response of vegetation and the influence of climatic factors of 

precipitation and temperature in different phytophysiognomies. This enables the use of statistical analyses, 

time-series algorithms for extraction of metrics and seasonality attributes, such as TIMESAT (EKLUNDH; 

JÖNSSON, 2012), in addition to methods capable of detecting pattern breaks in trend behavior, such as 

BFAST (Breaks For Additive Seasonal and Trend) (VERBESSELT et al., 2010). 

In this context, the applications raised in this work corroborate the perspectives of establishing an 

operational methodology for mapping and monitoring land use and land cover at different geographical 

scales using the application of the linear spectral mixing model. 

 

8 CONCLUSION 
 

The spectral mixture can be linear and nonlinear. The linear model was discussed due to the ease of 

implementation with very satisfactory results. The linear spectral mixing model is a remote sensor data 

transformation technique, i.e., it converts spectral information into physical proportion of components within 

the pixel. This information about the proportion of components is represented in fraction images. Thus, the 

linear spectral mixing model is a data reduction technique and, in addition, highlights the information of 

these components in the pixel, facilitating later processes of classification and analysis. It is not a thematic 

classifier but provides useful information in the form of fraction images for a variety of applications in 

several areas of study. 

In general, these components considered in the pixel are vegetation, soil, and shade/water, as the 

main elements present on the land surface. The vegetation fraction image presents information similar to 

vegetation indices such as NDVI and EVI, highlighting areas of vegetation cover; the soil fraction image 

highlights areas without vegetation cover; and the shade/water fraction image highlights water bodies and 

burned areas. Thus, the vegetation, soil, and shade/water fraction images were important to automate the 

PRODES project, carried out through the PRODES Digital project, providing both the estimation of 

deforested areas and the spatial distribution map of these areas, as well as the DETER project for the near 

real-time identification of forest disturbances. In addition to other applications related to land use and land 

cover mapping and forest disturbances such as selective logging and fire. The generation of time series of 

fraction images can contribute to the establishment of an operational methodology for mapping and 

monitoring land use and land cover at different geographical scales, and in different time analyses. 

The review proposed in this work allowed to disseminate information and knowledge acquired from 

past applications, aiming to enable the filling of knowledge gaps and the improvement or development of 

reliable methodologies for several research themes in the field of remote sensing, during these 50 years of 

operation of the Brazilian Journal of Cartography (RBC). 

In this context, the following questions arise for future research: What are the possibilities in the 



Rev. Bras. Cartogr, vol. 72, n. 50th Anniversary Special Issue, 2020                              DOI: http://dx.doi.org/10.14393/rbcv72nespecial50anos-56559 
 

 1194 

 

development of comprehensive and reliable operational methods for mapping and monitoring the Brazilian 

Legal Amazon based on remote sensing data? How variations in the proportions of fraction images can be 

observed to elucidate the characterization of different targets on the land surface (e.g., forest regeneration, 

phytophysiognomies, agriculture, water bodies, etc.)? What components can be analyzed as potential 

endmembers in future research in the Amazon region? Considering the sub-pixel-level analysis feature with 

fraction images, is it possible to obtain more accurate estimates in the calculation of areas? These are some 

of the suggestions in a range of possibilities and applications in scientific development for this field of 

knowledge. 
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