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Abstract: The analysis of forest regeneration processes provides information used to estimate atmospheric carbon 

assimilation, soil fertility recovery, hydrological cycles and biodiversity maintenance, among other environmental 

services. These studies require information that is usually found in land use and land cover trajectories mapped in long 

time intervals and with annual observations. These trajectories are usually obtained by processing remote sensing 

image time series. In this review article we first identify and describe the main methods used to classify and analyze 

land use and land cover trajectories based on orbital remote sensing data. We then discuss these methods based on 

their applicability in forest regeneration studies in the Amazon. Throughout this process we observe that analyzing 

land use and land cover trajectories in the Amazon is not a trivial task. Traditional change detection methods result in 

invalid trajectories or require many classification steps. Given the large volume of data, it is common to simplify the 

information contained within the trajectories to the point that analyses are reduced to one or two observed times. In 

these cases, important information about regeneration processes is lost, such as persistence of secondary vegetation 

and time of use before abandonment. Among the main observed limitations, we highlight the lack of available data, 

such as cloud free images and reference data. 

Keywords: Forest regeneration. Amazon. Land use and land cover trajectories. Remote sensing time series. 

 

Resumo: A análise de processos de regeneração florestal provê informações que permitem estimar serviços 

ecossistêmicos como a fixação de carbono atmosférico, a recuperação da fertilidade dos solos, a manutenção do ciclo 

hidrológico e da biodiversidade, entre outros. Esses estudos demandam informações usualmente contidas em 

trajetórias de uso e cobertura da terra com resolução temporal anual, em intervalos de tempos longos. Comumente, 

esses dados são obtidos a partir do processamento de séries temporais de imagens de sensoriamento remoto. O objetivo 

deste artigo de revisão é identificar e descrever os principais métodos utilizados para classificar e analisar trajetórias 

de uso e cobertura da terra a partir de dados de sensoriamento remoto orbital. Esses métodos foram então discutidos 

em função de sua aplicabilidade na região Amazônica para análise de regeneração florestal. Observou-se que a análise 

de trajetórias de uso e cobertura da terra na Amazônia não é trivial. Métodos tradicionais de detecção de mudanças 

resultam em trajetórias inválidas ou compreendem vários passos de classificação. Pelo grande volume de dados 

analisados, muitas vezes a informação da trajetória é simplificada ao ponto de se tornar uma análise que envolve 

apenas um ou dois tempos observados, perdendo-se informações importantes para a análise de regeneração florestal, 

como a persistência da vegetação secundária ou o tempo de uso antes do abandono, por exemplo. Dentre as principais 

limitações observadas, destaca-se a baixa disponibilidade de dados, sejam imagens livres de nuvens ou dados de 

referência. 

Palavras-chave: Regeneração florestal. Amazônia. Trajetórias de uso e cobertura da terra. Séries temporais de 

sensoriamento remoto. 
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1 INTRODUCTION 
 

The Amazon basin is considered one of the most important ecological systems on the planet 

(FOLEY et al., 2007), covering more than 6 million km², of which approximately 5.5 million km² are covered 

by tropical forests. The Amazon rainforest is the biggest tropical forest in the world and is responsible for 

important ecosystem services, such as biodiversity maintenance, carbon storage, regulation of water flux, and 

regulation of the regional and global climates (FOLEY et al., 2007; COE et al., 2013). In Brazil the Amazon 

biome is commonly referred to simply as the Amazon. This biome occupies almost half of the Brazilian 

territory and extends over the North, Northeast, and Center-West regions. For legal and planning purposes, the 

Brazilian government also instituted the Brazilian Legal Amazon. It includes the States of Acre, Amapá, 

Amazonas, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins, and part of the state of Maranhão 

(BRASIL, 1966; BRASIL, 2007).  

Despite its importance, the Amazon has been under constant local and regional pressure for its natural 

resources. This pressure is reinforced by the type of economic development practiced in the region, as well as 

the current and inefficient control, conservation, and forest management policies. These elements are 

commonly reflected in land use and land cover changes, notably the deforestation of primary forest 

(FEARNSIDE, 1990; COE et al., 2013). Among the potential impacts of deforestation are: biodiversity loss, 

greenhouse gas emissions, surface albedo modification, soil productivity loss, and hydrological regime 

alterations (FEARNSIDE, 2005). Some of these impacts can be offset by forest regeneration processes, i.e., 

the growth of secondary vegetation in previously deforested areas (BROWN; LUGO, 1990; CORLETT, 1995). 

During forest regeneration, carbon is assimilated from the atmosphere and either transformed into biomass or 

fixed in the soil (RAMANKUTTY et al., 2007). Secondary vegetation areas provide important ecosystem 

services, such as soil erosion prevention, soil fertility recovery, hydrological cycle maintenance, and the 

formation/connection of ecological corridors (CHAZDON et al., 2009; MEYFROIDT; LAMBIN, 2011). 

Details on the spatial-temporal distribution and the intensity of forest regeneration processes over long 

periods are important information to estimate greenhouse gas emissions and support territorial planning 

(VIEIRA et al., 2014; PARÁ, 2015). However, these details are still poorly understood. The Amazon is 

extensive with varied histories of land occupation. Therefore, the dynamics of land use and land cover (LULC) 

change are heterogeneous in space and time, affecting forest regeneration in distinct ways 

(MORAN et al., 2000; PERZ; SKOLE, 2003; WANDELLI; FEARNSIDE, 2015). These differences in forest 

regeneration processes result in varied dynamics of biomass accumulation and carbon absorption rates 

(STEININGER, 2000; AGUIAR et al., 2012).  

Forest regeneration can occur throughout different exploitation cycles. Thus, studying this process 

requires information usually represented as LULC trajectories, defined as the succession of types (i.e., classes) 

of land use and/or land cover in a given spatial unit of analysis at three or more observed times 

(MERTENS; LAMBIN, 2000; MENA, 2008). Land cover refers to the biophysical state of the land surface, 

including the amount and type of vegetation cover, water, and other materials and structures of natural or 

anthropic origins. Land use refers to the set of activities carried out on the land and the purpose of manipulating 

the land cover for activities of human interest (TURNER; MEYER, 1994).  

Commonly, LULC trajectories are obtained by processing time series data of orbital remote sensing 

images1. In recent years, new techniques have emerged to analyze remote sensing time-series data, as a result 

of computational and methodological advances, the unprecedented availability of data from different sensors, 

and improvements in data processing/format standardization (WULDER et al., 2018). Some of these 

techniques have been reviewed by Banskota et al. (2014), Gómez et al. (2016), and Zhu (2017). The latter 

studies are comprehensive and more general and, therefore, do not detail important specificities when it comes 

to analyzing LULC trajectories in forest regeneration studies in the Amazon. Thus, the objective of the present 

manuscript is to identify and describe the main methods used to classify and analyze LULC trajectories based 

 
1 Information about land use is not directly derived from remote sensing data. However, land use can be attributed by 

the analyst according to the knowledge of the study area, in association with the land cover class, and/or using auxiliary 

data. 
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on orbital remote sensing data. Given the high degree of complexity in forest regeneration processes, the clear 

definition of objectives, LULC classes, and the spatial-temporal resolution and extension of the study is crucial. 

These factors influence both data selection and methods in forest regeneration analyses in the Amazon, as 

discussed in this manuscript. In this discussion we will examine both the potential and limitations of the most 

common methods, tools, and available remote sensing products. 

 

1.1 Adopted definitions and review scope 
 

There are different expressions used as synonyms for secondary vegetation in the literature. The most 

common expressions, as well as selected variations in the definition, are presented in Table 1. Other definitions 

are discussed in Chokkalingam and Jong (2001). 

 

Table 1 - Definitions of secondary vegetation found in the literature. 
Expression Definition and authors 

Secondary vegetation Forests formed as a consequence of human impact on forest lands, particularly as a result of abandoned 

cleared forest lands, generally for agriculture, and excluding planted forests and forests resulting from 

natural disturbances (BROWN; LUGO, 1990) 

Clear-cut areas detected by the Program for Deforestation Monitoring in the Brazilian Legal Amazon 

(PRODES), where vegetation has regenerated after the land has been abandoned (ALMEIDA et al., 2010) 

“Originally forested areas that had been clear-cut, used for silviculture, agriculture or pasture and then left 

to regenerate, taking on a forest appearance again” (ALMEIDA et al., 2016) 

Secondary 

forest/Second- growth 

forest 

“Forests regenerating largely through natural processes after significant human and/or natural disturbance 

of the original forest vegetation at a single point in time or over an extended period, and displaying a major 

difference in forest structure and/or canopy species composition with respect to nearby primary forests on 

similar sites” (CHOKKALINGAM; JONG, 2001) 

Forests that develop after complete deforestation (CORLETT, 1995; PUTZ; REDFORD, 2010; 

VIEIRA et al., 2014; WANG et al., 2020) 

Vegetation that emerges on abandoned farmland or planted estates where the original forest was clear-cut 

before agricultural use (KAMMESHEIDT, 2002) 

Forests that occur “when a pixel classified as anthropic cover (e.g., pasture or agriculture) in a given year 

is replaced in the following year by a pixel of forest cover (excluding mangroves and plantations)” 

(SILVA JUNIOR et al., 2020) 

Capoeira Secondary vegetation that grows after the clearing of primary forests (IBGE, 2004) 

“Areas with secondary vegetation that are either temporarily or permanently removed from agricultural 

production. (…) Land areas in different stages of natural regeneration after having been radically altered 

by human activity” (COSTA, 2016) 

Areas of varying dimensions, in different stages of spontaneous regeneration of forest cover in ecosystems 

radically altered by human actions (COSTA, 2009) 

Secondary vegetation in the intermediate stage of succession (SALOMÃO et al., 2012) 

Capoeirão Capoeira in a more advanced stage of succession (IBGE, 2004) 

Secondary vegetation in an advanced stage of succession (SALOMÃO et al., 2012) 

Capoeirinha/ 

Juquira 

Secondary vegetation in the initial succession stage (SALOMÃO et al., 2012) 

Source: the authors (2020). 

 

The presented definitions agree on the idea that secondary vegetation, secondary forests, or capoeiras 

are types of vegetation that regenerate after the original forest cover has suffered some type of disturbance. 

The main observed differences among the definitions relate to: 

 

a) the type of disturbance: whether the disturbance is of a natural or anthropic origin, or both; 

b) the intensity of the disturbance: whether it occurred only in areas where the forest had been 

clear-cut or in areas with a given level of forest degradation; 

c) the land use after disturbance: some definitions incorporate specific types of land use before 

secondary vegetation; 

d) the vegetation structure and composition: whether the resulting vegetation presents similar 

characteristics to the original forest cover; 

e) the regeneration process: whether it is natural or a result of human intervention; 

f) the successional stage: in some cases, some expressions refer to different successional stages, 

whereas these same expressions may also be used in a general way, as is the case with the expression 
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capoeira; 

g) the characteristics of the data used: certain definitions are associated with the capacity to 

identify secondary vegetation with remote sensing data, such as those adopted by Almeida et al. (2010) 

and Silva Junior et al. (2020). 

 

To delimit the scope of this review article, the expression secondary vegetation was reserved to 

describe the vegetation that grows without human direct interference in areas with complete removal of the 

original forest cover, without distinction as to the cause of the removal of this cover or the types of intermediate 

use. The regeneration of degraded forests was not included in the present discussions. 

 

2 LAND USE AND LAND COVER TRAJECTORY ANALYSES 
 

The methods and procedures used to analyze LULC trajectories based on remote sensing data were 

summarized in three basic steps: 1) problem definition, 2) trajectory classification, and 3) information 

extraction and analysis. These steps are as illustrated in Figure 1 and discussed in the context of specific 

characteristics of forest regeneration studies as follows.  

 

Figure 1 - Steps and associated factors for land use and land cover trajectory analyses based on remote sensing data. 

 
Source: the authors (2020). 

 

2.1 Problem definition 
 

The study objectives are defined in this step, as well as the location and extent of the studied area, the 

period of the analysis, the LULC classes, and the required level of accuracy (LU; LI; MORAN, 2014). Both 

the data and methods to be used in the analysis are selected according to the problem definition. Nonetheless, 

both the availability (or lack thereof) of remote sensing data and methods to process and extract different types 

of information often limit and/or shape the objectives of the study. Inadequate spatial and temporal resolution 

in the used data, difficulties discriminating between different LULC classes, and a lack of available time series 

data for long periods with dense observations are among the main limitations. 

 

2.1.1 STUDY AREA AND PROCESSES OF INTEREST 

 

Forest regeneration processes in the Amazon occur in different ecological, social, and political contexts 

(VIEIRA et al., 2014; CHAZDON et al., 2020). Studies seeking to examine these processes must consider 

existing different land management systems and regeneration cycles with varying time lengths. According to 

Costa (2016), the presence of secondary vegetation in the Brazilian Amazon can be associated with three types 
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of land use decisions: 1) the use of techniques that adopt the regeneration of fallow areas to restore soil fertility, 

such as the shifting agriculture carried out by riverside and traditional populations; 2) the abandonment of 

degraded and/or unproductive areas after exhausting the soil and climatic conditions needed for production; 

and 3) the intensification of land use that lead to production in smaller areas, causing secondary vegetation to 

regenerate on excess lands. In the latter case, the land surplus can be incorporated into the production process 

again, thereby leading to deforestation of secondary vegetation. Additionally, Mello and Alves (2011) mention 

a type of secondary vegetation that results from the abandonment of a recently deforested area that has never 

been involved in the production process. These characteristics may affect the definition of the analysis period 

and LULC classes. 

According to Wang et al. (2020), secondary vegetation areas are commonly deforested within 2 years 

after the start of the regeneration process. Therefore, forest regeneration can involve abrupt or subtle changes 

in both the short or long terms (NUNES et al., 2020). Riverside regions, for example, may present agricultural 

activities with fallow and regeneration periods that vary between less than four and more than 15 years 

(STEININGER, 2000; AFFONSO et al., 2016; JAKOVAC et al., 2017). LULC trajectories can also be used 

to estimate the age of secondary vegetation (NUNES et al., 2020; SILVA JUNIOR et al., 2020). In the state of 

Pará, Normative Instruction 08 of October 28, 2015 states different rules for vegetation suppression depending 

on the age of the secondary vegetation. These rules are stratified as follows: no older than five years, five to 

20 years, and older than 20 years (PARÁ, 2015). The categorization between secondary vegetation areas that 

are less than 20 years old and those that are more than 20 years old is also used to estimate carbon absorption 

rates (SILVA JUNIOR et al., 2020). Therefore, at least one observation of LULC trajectories should be mapped 

per year to improve the accuracy of age estimates and permit abrupt changes to be captured in dynamic areas. 

Analyses carried out at intervals of more than 20 years are also recommended to study forest regeneration in 

the Amazon, to allow full observation of regeneration cycles. Such analyses also enable age estimates of older 

vegetation. 

Defining LULC classes is a particularly important step in LULC studies given that different class 

definitions can result in quite different analyses. For example, the “forest” class sometimes encompasses areas 

of primary forest, degraded forest, and also secondary vegetation, which is not compatible with forest 

regeneration studies (PUTZ; REDFORD, 2010). When it comes to defining LULC classes in the Amazon, it 

is also interesting to obtain information on areas devoted to agriculture, pasture, urban areas, and mining to 

better understand the influence of different land use histories. There are three basic ways to define LULC 

classes. The first is to arbitrarily define the used classes. The second is to derive classes from a standard 

classification or legend system. A classification system is a logical framework that retains class names, the 

criterion for class separation, and the relationship among classes (MCCONNELL; MORAN, 2001). A legend 

is a subset of classes, which may or may not be obtained from a classification system 

(MCCONNELL; MORAN, 2001; HEROLD et al., 2006). Among the commonly used classification systems 

are: Sistema Básico de Classificação da Cobertura e do Uso da Terra (IBGE, 2013), Anderson et al. (1976), 

and CORINE (COOrdination of INformation on the Environment) Land Cover (CLC) (EEA, 2019). The third 

way is to define LULC classes based on empirical analyses of the data (PEREIRA et al., 2018) and/or image 

classification results (PANTALEÃO; DUTRA; SANDRI, 2012). The main advantages and disadvantages of 

each method are discussed in Reis et al. (2018). It should be noted that in all three methods any classes defined 

using subjective criteria can compromise both the reproducibility of a study and eventual comparisons between 

results. A solution to decrease subjectivity in the class definition is to describe these classes based on 

quantifiable elements of land cover, as proposed by the Land Cover Meta Language (LCML), initially called 

Land Cover Classification System (LCCS) (DI GREGORIO; JANSEN, 2005). LCML is a flexible system 

focused on standardizing the terminology used to describe the classes, rather than describing the classes 

themselves. It has been used to describe the legends of different locations, including the Amazon 

(COUTINHO et al., 2013; REIS et al.; 2018). As LULC trajectories necessarily imply the classification of 

LULC over time, it is also essential that the correspondence among the legends used on each date is known.  

 

2.1.2 INPUT DATA SELECTION 
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The selection of input data generally occurs considering the resolution characteristics of the available 

sensors. The selected data should be suitable to identify the LULC classes in the study scale. The characteristics 

of the main remote sensors with open archives are compiled in Table 2. 

 

Table 2 - Characteristics of the main remote sensors with open archives. 

Satellite /Sensor 

Resolution 
Footprint 

(km) 
Operation period Spatial 

(m) 

Temporal 

(days) 

Spectral 

(µm) 

Radiometric 

(bits) 

NOAA(6-19)/AVHRR(2-3) 1100 < 1 4-6 bands (0,58 to 12,50) 10 2400 1979 to 2019 

Landsat(1-5)/MSS 68×83 16-18 4 bands (0,50 to 1,10) a 6-8 185 1972 to 1999  

Landsat(4-5)/TM 30 c 16 7 bands (0,45 to 12,50) 8 185 1982 to 2013 b 

Landsat-7/ETM+ 30 c,d 16 8 bands (0,45 to 12,50) 8 183 from 1999 e 

Landsat-8/OLI 30 e 16 9 bands (0,43 to 2,30) 12 185 from 2013 

Landsat-8/TIRS 100 16 2 bands (10,30 to 12,50) 12 185 from 2013 

(Terra/Aqua)/MODIS 250-1000 1-2 36 bands (0,40 to 14,38) 12 2330 from 1999 

Terra/ASTER 15-90 16 15 bands (0,52 to 11,65) 8-12 60 from 1999 f 

CBERS(1-2b)/CCD 20 26 5 bands (0,51 to 0,89) 8 113 1999 to 2010 

CBERS(1-2b)/WFI 260 < 5 2 bands (0,63 to 0,89) 8 890 1999 to 2010 

CBERS(1-2)/IRMSS 80-160 26 4 bands (0,5 to 12,50) 8 120 1999 to 2008 

CBERS-2b/HRC 2,7 130 1 band (0,50 to 0,80) 8 27 2007 to 2010 

CBERS-4/PAN 5-10 26-52 4 bands (0,51 to 0,89) 8 60 from 2014 

CBERS-4/IRS 40-80 26 4 bands (0,50 to 12,50) 8 120 from 2014 

CBERS-(4-04A)/WFI 55-64 < 5 4 bands (0,45 to 0,89) 10 684-866 from 2014 

CBERS(4-04A)/MUX 16,5-20 26-31 4 bands (0,45 to 0,89) 8 95-120 from 2014 

CBERS-04A/WPM 2-8 31 5 bands (0,45 to 0,90) 10 92 from 2020 

Resourcesat(1-2)/LISS III 23,5 24 4 bands (0,52 to 1,70) 7 141 from 2004 

Resourcesat(1-2)/AWiFS 56 5 4 bands (0,52 to 1,70) 10 370-810 from 2004 

Sentinel-2/MSI 10-60 5 13 bands (0,43 to 2,32) 12 290 from 2015 

ALOS/PALSAR 10-100 g n.d. band L (23 cm) h 32 30-350 g 2006 to 2011 

Sentinel-1 5-40 g 6-12 band C (5,5 cm) i 10 20-410 g from 2014 

a The sensor carried a thermal band in Landsat 3. b Significant drops in number of observations after 2011. c 120 m for 

the thermal band. d 15 m for the panchromatic band. e Detection failures from May 2003. f Saturation of infrared band 

from April 2008. g Depending on the acquisition mode. h 1 to 4 polarizations, depending on the acquisition mode. i 1 to 2 

polarizations, depending on the acquisition mode. 

 

Source: EMBRAPA (2018), ASF (2020), ESA (2020), INPE (2020a), INPE (2020b), NASA (2020a), NASA (2020b) e 

USGS (2020). 

 

It should be noted that the coverage and period of operation of a satellite/sensor does not guarantee the 

availability of data. This can occur because the sensors may not operate regularly in some areas (e.g., the 

Multispectral Scanner (MSS), which sensed images for the Amazon on a few and sparse dates). Additionally, 

remote optical sensors are strongly influenced by atmospheric conditions. Given that cloud cover is frequent 

in the Amazon at certain times of the year, it is possible that an orbital optical image acquired for the desired 

period and area may not be suitable for analysis. Despite this eventual difficulty of finding cloud-free images 

for certain dates, the characteristics of data from the Landsat family are appropriate to analyze annual LULC 

trajectories over long periods. According to Gómez et al. (2016), Landsat images are the basis for land cover 

classifications, whereas other types of data are used complementarily. Nonetheless, Sentinel-2 data has great 

potential for future analyses, given the availability of free images, the resolution characteristics of its sensor, 

cross-calibration with Landsat data, and the prospects of project continuity (WULDER et al., 2018). 

Synthetic Aperture Radar (SAR) data are obtained almost independently of weather conditions and are 

able to capture information about the land surface in cloud covered areas (PARADELLA et al, 2005). 
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However, SAR data are more difficult to interpret and process than optical data and are freely available for 

short periods. Despite the arrival of the first global forest analysis products based on SAR data 

(SHIMADA et al., 2014), analyses based solely on SAR images are still mostly limited to a few dates. With 

the continuation of the Sentinel-1 project, it is possible that new products based on SAR data, or even multi-

sensor approaches, emerge in the future. 

 

2.2 Trajectory classification 
 

The trajectory classification step corresponds to assigning LULC classes to each spatial unit analysis 

at each time of interest. This step involves three main procedures, which are described in this section. 

 

2.2.1 PREPROCESSING 

 

Once the remote sensing data is selected, it is necessary to ensure that these data are comparable at the 

unit of analysis level, which is usually the image pixel. In general, this process involves absolute or relative 

radiometric and geometric correction of the data (COPPIN et al., 2004; RICHARDS; JIA, 2006; WULDER et 

al. 2018). It is also common to mask and/or remove low-quality pixels, or pixels without any information, from 

the analysis. One way to solve low-quality pixel problems is to compose a new image from selected pixels 

from radiometrically calibrated images in the period of interest. The selection of the Best Available Pixel 

(BAP) can be done by combining different factors, such as low probability of clouds/cloud shadow, distance 

to clouds, proximity to the date of interest, and quality indexes derived from the images, for example. Different 

BAP selection techniques have been proposed in recent years (HOLBEN, 1986; GRIFFITHS et al., 2013; 

WHITE et al., 2014). 

Besides the pixel digital values, it is possible to conduct the analysis by using different measurements 

calculated from the images. Examples of these measurements include indexes derived from the mathematical 

combination of the image channels, sub-pixel fractions (e.g., fractions of vegetation, soil, and shadow obtained 

from the Linear Model of Spectral Mixture proposed by Shimabukuro and Smith (1995)), texture, transformed 

images (e.g., principal components, Tasseled Cap), and fused images. There are also specific metrics that 

consider the multi-temporal characteristics of the data (FRANKLIN et al., 2015), and statistical metrics used 

to summarize sets of images from a given time period, such as the median, quartiles, and the standard deviation 

(RUFIN et al., 2015; SOUZA et al., 2020). According to LU et al. (2004) variable selection should be based 

on: 1) the capacity to differentiate between classes of interest, 2) the decreasing data dimensionality to improve 

classification processes and/or to avoid including noises in the analysis, 3) the limitations in the classification 

methods, such as whether it is possible to use more than one variable/type of data simultaneously, and  4) 

whether there is an additional need to standardize data, e.g., if the radiometric calibration of data is not enough 

to minimize differences on multi-sensor data and/or the effects of factors such as illumination and topography. 

Data from the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land 

Imager (OLI), and Multispectral Instrument (MSI) sensors onboard Landsat 4-5, Landsat 7, Landsat 8, and 

Sentinel-2 satellites, respectively, are available with geometric and radiometric corrections in many platforms, 

such as the United States Geological Survey (USGS) archives (https://earthexplorer.usgs.gov/, 

https://glovis.usgs.gov/app). These corrected data are also available in Google Earth Engine (GEE) 

(GORELICK et al., 2017) with cloud masks. Other algorithms used to preprocess these images are discussed 

in Zhu (2017), Frantz (2019), and Sanchez et al. (2020). 

 

2.2.2 CLASSIFICATION METHODS 

 

The most commonly used method to classify LULC trajectories is post-classification comparison. In 

this method, images for each date are independently classified and then stacked to create a trajectory. Given 

that classification is carried out independently for each image, there is no need for a radiometric correction 

step and it is possible to use multi-sensor data (LU et al., 2004). Although it is necessary to have knowledge 

about the land cover on each date, no prior knowledge about the LULC trajectories is needed. One of the main 
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criticisms of this method is that the quality of the LULC trajectories directly depends on the classification 

results for each date (FULLER; SMITH; DEVEREUX, 2003; TEWKESBURY et al., 2015). Classification 

errors can result in invalid trajectories, i.e., LULC trajectories that present inconsistent transitions 

(AZEREDO et al., 2016; REIS et al., 2020). 

It is also possible to directly analyze radiometrically calibrated image time series to detect changes in 

land cover and then classify the resulting time segments of non-changes into LULC classes. The Continuous 

Change Detection and Classification (CCDC) algorithm, proposed by Zhu and Woodcock (2014), follows this 

logic. As such, the CCDC is more suitable for analyses with dense time series data, i.e. those with several 

observations for each interval of interest. This is not the case with historical analyses in the Amazon, where 

few (and sometimes none) cloud-free images are found per year. Different algorithms focused on time 

segmentation of remote sensing time series data are currently available on GEE 

(https://developers.google.com/earth-engine/api_docs). Among them, the Landsat-based detection of Trends 

in Disturbance and Recovery (LandTrendR) (KENNEDY; YANG; COHEN, 2010) and the Vegetation 

Regeneration and Disturbance Estimates through Time (VeRDET) (HUGHES; KAYLOR; HAYES, 2017) are 

particularly interesting to analyze forest regeneration in the Amazon. Both algorithms use image composite-

based variables as input data and classify the time segments as "disturbance", "stable" or "regeneration" based 

on the variation of the analyzed values. However, they do not directly provide LULC trajectories. 

The classification of the temporal segments of non-change can be achieved by using supervised 

classifiers that are capable of handling high-dimensional data, such as Random Forest and the Support Vector 

Machine (SVM), those based on neural networks, or even algorithms based on distances between time-series.  

The Dynamic Time Warping (DTW) is among the most well-known algorithms of the latter type. According 

to Maus et al. (2016), the DTW distorts the time to adjust the two series to be compared. However, the time 

elapsed between observations is an important attribute in remote sensing analyses. To solve this problem, Maus 

et al. (2016) proposed a time-weighted extension of the DTW called Time-Weighted Dynamic Time Warping 

(TWDTW). The TWDTW shows great potential to discriminate between classes of pasture, agriculture, and 

forests, for example, due to the characteristic variation of the spectral response of the targets of these classes 

throughout the year. However, TWDTW does not accurately distinguish between primary forest and secondary 

vegetation areas given that these classes usually present very similar behavior throughout the time series. 

TWDTW is currently available in the SITS package (Satellite Image Time Series Analysis), developed in the 

R language (E-SENSING, 2019). In addition to TWDTW, SITS unites its native tools to classify time series 

of remote sensing images with a large number of observations into LULC trajectories. This package includes 

tools to import remote sensing time series directly from web services, and view, group, and filter these series, 

and provides machine learning based methods to classify remote sensing time series. For sparse time series, 

i.e., those with one image per date of interest, the classifiers contained in SITS tend to behave like traditional 

supervised classifiers. Currently SITS is not equipped to deal with invalid transitions. 

It is common to treat invalid transitions in multitemporal sets of land cover classifications as 

classification errors that should be masked from analysis or corrected in post-classification steps. Ways to 

correct these transitions include manual editing and the use of temporal filters 

(GRIFFITHS; JAKIMOW; HOSTERT, 2018; SOUZA et al., 2020). A relatively simple way to prevent the 

occurrence of invalid transitions in the classification process is to use masks, as demonstrated by the 

methodology applied in the Program for Deforestation Monitoring in the Brazilian Legal Amazon (PRODES). 

Areas previously deforested or that were not originally covered by forests are removed from the annual analysis 

in PRODES, so only deforestation of primary forests is quantified (CÂMARA; VALERIANO; SOARES, 

2006) and invalid transitions, like a deforested area turning into a primary forest, are not mapped.  

Another common LULC trajectory classification method is to classify the data from a given date and 

use it as the base classification to be updated on the next date by using binary bi-temporal change detection 

techniques (COMBER; LAW; LISHMAN, 2004; XIAN; HOMER, 2010; HUANG et al., 2017). This method 

may involve several steps, which can demand a lot of time and effort from the analyst when it comes to studies 

with a large number of observations. Additionally, classification errors are cumulative. 

It is also possible to directly classify time series images into LULC trajectories by using supervised 
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classifiers and labeled samples of the trajectories of interest (ZHU, 2017; ANJOS et al., 2015). The selection 

of samples is usually carried out in a section of the time series of images and used to define the rules to identify 

the expected trajectories throughout the time series. According to Zhu (2017), this method has a high 

computational cost and requires prior knowledge about the types of trajectories to be detected.  

In addition to these methods, algorithms based on Markov processes have recently been proposed to 

classify LULC trajectories. These algorithms incorporate both the observed pixel values and information about 

the probability of joint occurrence between LULC classes ordered over time. Examples of proposals include 

the Virtual Land Cover Engine (VLCE) (HERMOSILLA et al., 2018) and the Compound Maximum a 

Posteriori (CMAP) (REIS et al., 2020). VLCE is a set of algorithms used to incorporate the temporal dimension 

in an extension of the well-known spatial context model Iterated Conditional Modes (ICM). This extension 

allows the incorporation of knowledge on the probabilities of transitions to correct LULC classifications 

obtained by Random Forest. It is an iterative algorithm that requires several classification steps, including the 

calculation of probabilities of successions of different classes before and after change events mapped externally 

to VLCE. 

CMAP is a generative classifier that incorporates pixel values observed at all points in the time series 

and the joint distribution of the classes over time. In CMAP, LULC trajectories are considered to be a Markov 

chain, so the probabilities between transitions can be globally modeled by a transition probability matrix. This 

matrix can either be estimated from auxiliary data or defined by the analyst. The CMAP classifies the time 

series of remote sensing images directly into valid-only LULC trajectories with a single step and in one location 

at a time. These characteristics provide some specific advantages for forest regeneration studies, such as the 

possibility to include multi-temporal data to better separate primary forests from secondary vegetation even if 

the deforestation event is not registered in the data used (REIS et al., 2020). Given that all dates are classified 

simultaneously, classification errors do not propagate in the trajectories, as observed with post-classification 

rule-based methods to eliminate invalid trajectories. CMAP also permits the use of multi-sensor data and 

different tiers of a hierarchical legend for each date and/or data type. The latter is an important characteristic 

to analyze areas and/or periods with low data availability. 

 

2.2.3 QUALITY ASSESSMENT  

 

This step still presents major implementation challenges. It usually depends on the existence of 

reference data collected in the field, using images with higher spatial resolutions, and/or based on auxiliary 

data. These types of data can be difficult to acquire when it comes to multi-temporal studies involving several 

observations because they depend on the systematic collection of data for the same study area over time 

(FOODY, 2010; LU; LI; MORAN, 2014). In general, quality assessments of LULC trajectories are based on 

the calculation of accuracy indices derived from contingency matrices, also known as confusion or error 

matrices, being common to independently calculate the accuracy of each LULC classification for each date as 

a proxy to assess the accuracy of the LULC trajectory. Given the lack of reference data for some dates, 

particularly the oldest dates, the accuracy of one classification is sometimes considered to be the accuracy of 

the other classifications obtained with the same classes, data, and methods, which may not be correct. 

According to Sexton et al. (2013), due to the intrinsic variations of each date either in the land cover or the 

images, classification errors are not constant across the years, even when the same techniques and data are 

used. To calculate accuracy indices for all dates, some studies have focused on collecting reference samples 

from the same remote sensing images used in the classification. In such cases, it should be noted that the 

calculated accuracy indices are likely to be overestimated. Nonetheless, different tools can facilitate the 

selection process of reference samples, including those specially developed to observe time series data. Some 

of these tools have been analyzed in Jakimow et al. (2020). 

Regardless of the selected tool, a crucial step in analyzing the quality of LULC trajectories is to define 

which feature of the trajectories is to be evaluated. In some cases, the correct classification of a certain set of 

transitions is sufficient, regardless of the exact moment that specific classes/changes were observed. Other 

studies may demand the correct observation of each class for each time. Specifically, attention should be paid 

to misclassification of areas containing classes under transition. Even when carrying out an analysis of a LULC 
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classification on a single date, the classes used could represent stages in a gradient, with unclear limits between 

them (POWELL et al., 2004). Powell et al. (2004), for example, analyzed errors sources in LULC 

classifications based on Landsat 5/TM images in an area in the State of Rondônia, Brazil. According to the 

authors, the dominant classes in the study area were in a gradient between pasture and secondary vegetation. 

Reference samples were obtained from high-resolution images and based on the visual analysis of five trained 

interpreters. These interpreters disagreed in almost 30% of the samples, mainly in those located along borders 

between targets, in mixed pixels (pixels covering more than one class), in transition areas (classes overlapping 

the gradient), or due to geometric correction problems (POWELL et al., 2004). Thus, the accuracy of the 

reference samples must be evaluated and considered in this type of analysis, as demonstrated by Foody (2010) 

and Olofsson et al. (2014). 

In studies that involve many dates, however, this type of problem should not heavily affect the 

classification of images sensed before and after the transition date(s). If the exact moment when an area has 

changed from one class to the next on the gradient is not important, the obtained trajectory is similar, regardless 

of which of the two classes is assigned to the area under transition. Therefore, misclassifications in certain 

dates do not necessarily imply errors in LULC trajectories. Since forest regeneration is a continuous process, 

it is natural that the classes involved in the analysis represent a gradient. Fallow agriculture/shrubby pasture 

areas can be considered transition classes between agriculture/pasture and secondary vegetation, for example. 

On the other hand, secondary vegetation classes can also be divided into different development stages, and 

incorrect classification of a stage on a given date may not affect the trajectory analysis. Nonetheless, possible 

problems regarding class definition (when an area effectively becomes secondary vegetation and at what stage 

of development) and classification (capacity for discrimination among these classes) can be particularly 

troublesome in some forest regeneration studies. This characteristic hinders the establishment of the exact time 

of vegetation formation, even in studies with observations for all dates of interest. Therefore, analyses that 

seek to quantify secondary vegetation areas on each date or calculate the age of secondary vegetation demand 

greater care. 

Other methods to evaluate trajectory quality involve analyzing LULC trajectories based on logical 

rules regarding the probability of transitions, without using reference samples (LIU; ZHOU, 2004; 

AZEREDO et al., 2016). This type of analysis is particularly useful at identifying invalid transitions as 

classification errors. These errors can be represented by a transition validity map (REIS et al., 2020). 

It is also possible to assess the quality of the classifications with uncertainty analyses 

(REIS et al., 2017) in spite of these not being a direct indicator of accuracy. An example of this type of analysis 

is to vary the LULC classification approach (classifier, parameters, set of training samples) and account for 

variations in the LULC classification/trajectory results (i.e., to identify pixels that lead to unstable 

classifications). Considering supervised classifiers, it is common for algorithms to assign classes to each 

pixel/object as a function of the lower or higher values of some measurements calculated for each class, such 

as probability or distance. For results obtained using these classifiers, Wulder et al. (2018) also mention the 

possibility of generating quality maps with the differences between the highest and second highest values of 

these measures. In these analyses, smaller differences indicate greater uncertainty in the classification. Other 

examples of uncertainty indices are presented and discussed in Gonçalves et al. (2009). 

 

2.3 Extraction and analysis of information 
 

LULC trajectories can be used, for example, to identify the date of LULC changes (ZHU et al., 2016); 

to calculate the percentage of the studied area covered by each class in each date, the percentage of the changed 

area and/or of types of transitions (YUAN et al., 2005; SEXTON et al., 2013; HERMOSILLA et al., 2015; 

ZOUNGRANA et al., 2015; FRANKLIN et al., 2015; HERMOSILLA et al., 2018); and to analyze the 

occurrence and spatial patterns of trajectories (MENA, 2008; MÜLLER-HANSEN et al., 2017). The visual 

interpretation of results and calculation of indices on the results from one or two consecutive dates are among 

the usual methods. Some of the commonly used indices are: fragmentation indices, the percentage/area 

occupied by each LULC and/or change class, the number and shape of features of a given LULC/change class, 
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the distance between features, the area-perimeter ratio of features, and Shannon's diversity index, among others 

(GILLANDERS et al., 2008). It should be noted, however, that a comparison of information derived for each 

date or bi-temporal changes is not an analysis of trajectories per se. Despite the potential to generate important 

results, much of the temporal information contained in the trajectories is ignored by the analyst due to this type 

of simplification. 

 The study conducted by Carvalho et al. (2019) exemplifies how to use information derived for each 

date or pair of dates when carrying out a forest regeneration analysis. The authors evaluated changes in the 

historical patterns of secondary vegetation accumulation in the State of Pará between 2004 and 2014 using 

data from the Land Use and Land Cover Mapping of Deforested Areas in the Legal Amazon Project 

(TerraClass). TerraClass data are described in Section 3. According to the authors, the conversion rate of 

secondary vegetation to clean pastures/mechanized agriculture increased after 2010, which corresponds to a 

period with a decrease in the rate of primary forest deforestation. For the same period, the authors identified 

decreased areas of classes with supposed greater regeneration potential: occupation mosaics and regenerating 

pastures. Thus, the authors point to a possible tendency for secondary vegetation areas to decrease in the years 

following the analysis. Additionally, the authors found differences in the spatial concentration of secondary 

vegetation in the northern and southern regions of the State of Pará. These regions present different historical 

rates of occupation and deforestation of primary forests. 

Information on the age of the secondary vegetation (NUNES et al., 2020; SILVA JUNIOR et al., 2020) 

and the duration and/or intensity of regeneration processes can also be extracted from LULC trajectories. For 

example, Müller et al. (2016) and Jakovac et al. (2017) extracted the number and duration of forest regeneration 

cycles from more than 29 years of Landsat time series data. Müller et al. (2016) first detected deforested areas 

and then classified secondary vegetation areas along the BR-163 highway between the States of Pará and Mato 

Grosso. The authors observed differences in the duration and frequency of regeneration cycles, depending on 

the types of predominant land use and the proximity of forests. Jakovac et al. (2017) segmented and classified 

an image time series from the municipalities of Tefé and Alvarães, in the State of Amazonas, using the Breaks 

for Additive Season and Trend (BFAST) (VERBESSELT et al., 2010) and Random Forest algorithms. The 

authors observed an average decrease in the regeneration cycle duration between the periods 1987-2000 and 

2001-2014 in areas with shifting agriculture, which indicates that an agricultural intensification process 

occurred in the region (JAKOVAC et al., 2017). 

Nevertheless, one study can analyze information on each date, pairs of dates, and trajectories jointly. 

Wang et al. (2020) used TerraClass data for the entire Brazilian Legal Amazon between 2000 and 2014 to 

analyze the deforestation of secondary vegetation. Their analysis consisted of comparing consecutive data 

pairs, which were stratified according to the age categories of secondary vegetation determined by stacking 

TerraClass data. The authors observed two distinct phases of secondary vegetation deforestation: 1) between 

2000 and 2008, and 2) between 2008 and 2014. In the first period, they observed decreasing secondary 

vegetation/primary forest deforestation rates. In the second period they observed increasing deforestation of 

secondary vegetation along decreased deforestation of primary forest. The authors suggest that an increased 

pressure on forest systems in the second period had been absorbed by areas that were regenerating. The authors 

also concluded that 91% of secondary vegetation areas had been converted to pasture at some point in time, 

regardless of the age of that vegetation. 

Another common question in LULC trajectory studies is what are the main types of existing 

trajectories. LULC trajectories can be typified by the duration/intensity of the observed processes or by their 

composition, i.e., the ordered sequence of LULC classes. We identified two main composition-based methods 

to define LULC trajectory types. The first method consists of exhaustively defining the typologies based on 

the observed LULC transitions (PINHEIRO et al., 2016; CORSINI, 2018; ASSIS et al., 2020). The second 

method is the use of automatic clustering algorithms to identify groups of pixels with the same spatio-temporal 

pattern (AZEREDO, 2017).  

To cite an example of the first composition-based method, Corsini (2018) observed differences in 

aboveground biomass patterns and how these had been impacted by fire and deficit of water in defined types 

of forest regeneration trajectories in the Brazilian Legal Amazon. These trajectories corresponded to certain 
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class sequences in TerraClass data for the years 2004, 2008, and 2010. This type of analysis is feasible for a 

few dates since an increase in the number of analyzed dates generally leads to an even bigger increase in the 

number of possible trajectories. Given that forest regeneration processes can involve diverse LULC 

trajectories, identifying all possible typologies a priori can be a very complex and expensive task. It can also 

result in subjective and/or synthetic analyses that focus on only a few previously identified processes. 

An example of the second method is the clustering algorithm Grouping by Similarity of Temporal 

Evolution (GSTE) proposed by Azeredo (2017). The GSTE combines the traditional DTW, Classical 

Multidimensional Scaling (CMDS), and K-Means Clustering algorithms to analyze how a trajectory behaves 

over time. According to the author, the GSTE clusters portray characteristics such as the time interval between 

different processes, the duration of each process, and the classes observed at each given point in time. However, 

whereas LULC trajectories are generally presented in categories, the current version of GSTE is only 

applicable for numerical data. LULC classes need to be converted to values associated with different intensities 

of a single process to carry out a GTSE analysis, which may not be directly feasible when multiple processes 

are involved. Nonetheless, different clustering methods for categorical data have been proposed in the 

literature, such as K-Modes (HUANG, 1998), RObust Clustering using linKs (ROCK) 

(GUHA; RASTOGI; SHIM, 2000), and Generalized Self-Organizing Maps (GSOM) (HSU, 2006). We were 

unable to find studies that applied automatic clustering algorithms to analyze forest regeneration trajectories. 

Some examples of LULC trajectories are exemplified in Figure 2. In this figure, three LULC 

trajectories characterize forest regeneration cycles (S1, S2, and S3). From these, we can calculate three chosen 

attributes: time of use before regeneration, persistence of secondary vegetation, and duration of the forest 

regeneration cycle. We also exemplified LULC trajectories that do not characterize a forest regeneration cycle 

(S4) and invalid trajectories (S5). Note that some exemplified trajectories present the same sequence of events 

with different durations, and therefore, different values for each attribute (S1 and S2) whereas others present 

different sequences of events, which may impact the adopted typology and interpretation of results, but 

identical attribute values (S2 and S3). For these hypothetical examples, different methods of analysis may lead 

to very different interpretations of LULC change processes in the studied area. 

 

Figure 2 Examples of Land Use and Land Cover trajectories. 
 

 
Source: the authors (2020). 

 

Furthermore, new techniques to analyze LULC trajectories have been proposed by 

Azeredo et al. (2016) and Maciel et al. (2019). Azeredo et al. (2016) adapted some patterns from the mobile 

objects literature to study LULC trajectories. These patterns have been used in forest degradation analyses. 
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Although these patterns have not yet been applied to forest regeneration studies, they could be used to identify:  

 

a) trajectories that converge to specific classes that denote forest regeneration processes; 

b) trajectories with a given set of LULC classes in specific time windows. This enables secondary 

vegetation to be identified in certain time windows rather than on individual dates, thus decreasing 

quantification problems in areas under transition; 

c) trajectories that present similar LULC changes, either in the same or different periods. This is 

useful to identify the deforestation of secondary vegetation for certain types of use; 

d) trajectories that present similar process intensities, such as similar fallow/regeneration times; 

e) trajectories with inconsistent/invalid transitions. 

 

Maciel et al. (2019) formalized a space-time calculation logic called LUC Calculus. This tool can be 

used to investigate and characterize LULC trajectories according to four main predicates: conversion 

(CONVERT), recurrence (RECUR), evolution (EVOLVE), and maintenance (HOLD). These predicates, 

adapted to the context of forest regeneration analysis, can be interpreted as: 

 

a) CONVERT denotes the change between classes for two consecutive times of observation. 

Usage example: detection of all secondary vegetation areas that have been converted for agricultural 

use; 

b) RECUR denotes the observation of a recurring class after conversion of that class to another. 

Usage example: to correct invalid transitions and distinguish secondary vegetation and primary forest 

areas by the historical analysis of the trajectory; 

c) EVOLVE denotes events with one or more different classes interspersed between specific 

LULC changes. Usage example: to identify deforested primary forests that, after being abandoned, 

have regenerated to secondary vegetation. These areas can be identified regardless of their intermediate 

use; 

d) HOLD denotes a class that has remained the same throughout all observations over a 

determined period. Usage example: to identify areas of persistent secondary vegetation. 

 

3 AVAILABLE MAP PRODUCTS 
 

Different programs that monitor tropical forests on either local or global scales have generated LULC 

change data for the Amazon that can be used as auxiliary data in LULC trajectory analyses. Among these are 

programs focused on deforestation and/or degradation of primary forests, such as PRODES (INPE, 2020c), 

both the Deforestation Detection System in Real-Time (DETER) and its incorporated or derivative programs, 

such as the Forest Degradation Mapping in the Brazilian Amazon (DEGRAD) and intense DETER (INPE, 

2020d), the Deforestation Alert System (SAD) of the Instituto Homem e Meio Ambiente da Amazônia 

(IMAZON, 2020), and data from the Global Land Analysis and Discovery (GLAD) laboratory, such as the 

Global Forest Change dataset (HANSEN et al., 2013). It is also possible to use natural resource maps, such as 

the pioneers RADAM (Radar in the Amazon) and RADAMBRASIL (VAN ROESSEL; GODOY, 1974), as 

well as multi-temporal LULC classifications, such as the Monitoramento de Uso e Cobertura da Terra do 

Brasil (IBGE, 2015,2017,2020). However, projects that map deforested areas into LULC classes, among which 

secondary vegetation necessarily needs to be discriminated, are of particular interest to forest regeneration 

studies. Examples of such projects in Amazon include TerraClass and the Annual Mapping of Land Cover and 

Use in Brazil (MapBiomas). Their main characteristics are summarized in this section. 

TerraClass is developed by the National Institute for Space Research (INPE) in partnership with the 

Brazilian Agricultural Research Corporation (Embrapa). In this project, deforested areas mapped by PRODES 

in the Brazilian Legal Amazon are classified into land cover classes of interest. There are available 

classifications for years 2004, 2008, 2010, 2012, and 2014. Wang et al. (2020) also mention the use of 

TerraClass data from 2000, which is not currently available on the project's websites 
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(http://www.inpe.br/cra/projetos_pesquisa/dados_terraclass.php or https://www.terraclass.gov.br). The 

TerraClass project is based on classifying images from the Landsat family (or those with similar resolutions) 

and data from the Moderate-Resolution Imaging Spectroradiometer (MODIS). Different image processing 

techniques and stages of visual analysis, manual editing, and auditing are used in this project. The results are 

available with two legend versions, both with 30 m spatial resolution, and with three classes inherited from 

PRODES data (Hydrography, Non-forest, and Forest). In the first version, 13 land cover classes are mapped 

by TerraClass: Deforestation of the year, Annual agriculture, Pasture with exposed soil, Clean pasture, Shrubby 

pasture, Regeneration with pasture, Secondary vegetation, Reforestation (except for the 2008 data), Urban 

area, Mining, Mosaic of occupations, Others, and Unobserved area (ALMEIDA et al., 2016). Almeida et al. 

(2016) calculated a Global Accuracy of 76.6% and a Kappa index of 0.67 for the classifications in the States 

of Pará and Mato Grosso in 2008, with ground samples of the classes Annual agriculture, Mosaic of 

occupations, Clean pasture, Shrubby pasture, Regeneration with pasture, and Secondary vegetation. The 

authors observed the greatest misclassification rate among pasture classes. After merging the Clean pasture, 

Shrubby pasture, and Regeneration with pasture classes, the Global Accuracy and Kappa values increased to 

89.7% and 0.79, respectively. In the second legend, the classes are: Natural secondary forest vegetation, 

Deforestation of the year, Perennial agricultural culture, Semi-perennial agricultural culture, Temporary 

agricultural culture, Shrub cultivated pasture, Herb cultivated pasture, Silviculture, Urbanized area, Mining, 

Unobserved, and Others. 

Since TerraClass masks deforested areas detected by PRODES, of internationally recognized 

reliability, secondary vegetation areas can only be identified in previously deforested areas 

(ALMEIDA et al.  2016). This methodological aspect reduces the misclassification between forested and 

secondary vegetation areas considerably. However, TerraClass data are not annual and cover a relatively short 

period. As a result, some longer regeneration cycles would not be entirely observed if one were to only use 

this data set. Moreover, TerraClass data have misalignment problems inherited from PRODES (INPE, 2017; 

WANG et al., 2020). These problems must be corrected in order to carry out pixel-level analyses. Therefore, 

we indicate TerraClass data either to characterize short trajectories, as demonstrated in Corsini (2018) and 

Wang et al. (2020) and detailed in Section 2.3, or to be used as an auxiliary data for the LULC trajectory 

classification process, such as a classification mask, base classification to be updated, and/or for collection of 

reference samples. 

The MapBiomas project is produced by a collaborative network of institutions. This project aims to 

produce annual LULC classifications for the entire Brazilian territory by using automatic techniques to classify 

Landsat images. In general, mosaics constructed from Landsat image statistical variables (median, amplitude, 

and standard deviation, etc.) for each year are classified independently. Invalid transitions are then corrected 

in the post-classification process with spatial and/or temporal filters based on pre-established rules 

(SOUZA et al., 2020). The images, LULC classes, accuracy, and methodological details vary depending on 

the MapBiomas collection. The Global Accuracy values are estimated from samples collected from visual 

interpretation of the images. Only general information on the collection of samples is contained in the 

documentation of the collections (Algorithm Theoretical Basis Document - ATBD), which is also constantly 

changing. To the date (November 2020), eight collections have been published. There is no distinction between 

primary, degraded, or secondary vegetation classes in collection 3.x to 5 (MAPBIOMAS, 2020). 

Collection 2.x is the last one that separated the primary forests and secondary vegetation classes. It 

contains annual data between 2000 and 2016, with Global Accuracy indexes for each year that vary at around 

80% for the Amazon biome. Neves et al. (2020) harmonized the legends of the TerraClass (first legend) and 

MapBiomas collection 2 maps and then compared the classification results between the overlapping areas of 

the 2004, 2008, 2010, 2012, and 2014 maps. Considering all years in a joint analysis, the authors found that 

only 3.56% of the areas classified as secondary vegetation in TerraClass products were also classified as such 

in the MapBiomas 2 products. The remaining areas of secondary vegetation in TerraClass results were mostly 

classified as Forest (80.34%) and Pasture (13.96%) by MapBiomas. Despite these differences, the agreement 

among both classifications is around 87% of the pixels. This happens because the predominant class in both 

maps is forest, which can influence the values of Global Accuracy presented by the MapBiomas data. 
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Therefore, although the data from MapBiomas collection 2 enables longer and annual analyses, one must 

consider the possible misclassification between forest and secondary vegetation areas.  

Nevertheless, it is possible to reclassify forests that occur in areas with evidence of deforestation as 

secondary vegetation in more recent MapBiomas collections (NUNES et al. 2020; 

SILVA JUNIOR et al., 2020). In this case, evidence of deforestation means the observation of a class other 

than forest in a previous observation. Nunes et al. (2020) used this approach to separate primary forest areas 

from secondary vegetation areas in the MapBiomas data from collection 3.1, for the Amazon biome. From 

these data, the authors grouped the pixels of secondary vegetation by estimated age and calculated both the 

area covered by secondary vegetation in the biome and the area of secondary vegetation deforestation. They 

also presented carbon capture estimates. It must be highlighted that this approach is unable to identify 

secondary vegetation areas if there is no evidence of deforestation throughout the time series. Therefore, Nunes 

et al (2020) found smaller proportions of deforested areas occupied by secondary vegetation than TerraClass 

for corresponding periods. Using a similar approach, Silva Junior et al. (2020) created a database containing 

increment, extension, and age of secondary vegetation  estimates for the years 1986 to 2018 using data from 

the MapBiomas collection 4.1. These results were also validated by TerraClass data through a method that 

compares the proportion of the class in a given regular cell-grid. The authors concluded that although there is 

statistical evidence that the average proportion of secondary vegetation found by processing MapBiomas data 

is smaller than that mapped by TerraClass (via Mann-Whitney test and p-values < 0.001) the results of the two 

data sets are comparable. In addition to these studies, the MapBiomas project is currently working on a native 

module for forest regeneration analysis. To date, there is no information available about the accuracy of the 

secondary vegetation classes. 

According to Maurano and Escada (2019), variations in each collection of the historical classifications 

of MapBiomas limit the applicability of this data when it comes to operational and continuous area estimates. 

In forest regeneration studies, these variations cause the observation of different trajectories, from which 

different rates of atmospheric carbon absorption can be calculated, for example. The inability to identify 

secondary vegetation areas without the evidence of deforestation events can also be detrimental to analyses in 

regions dominated by older secondary vegetation, such as in the northeastern part of Pará State 

(CAPANEMA et al., 2019). Thus, MapBiomas data are suitable for preliminary analyses and over large areas, 

which should, subsequently, be refined for more detailed forest regeneration studies. 

 

4 FINAL CONSIDERATIONS 
 

In this manuscript, we reviewed the main data and methods used to classify and analyze LULC 

trajectories. We also discussed them in the context of their applicability in forest regeneration studies in the 

Brazilian Amazon. In general, one can either use 1) methods suitable for single images or pairs of images 

successively or 2) tools focused on the analysis of remote sensing time series images and LULC trajectories. 

The studies and remote sensing products reviewed in this paper are based mainly on Landsat images. 

These images are freely available for use with atmospheric and geometric corrections. Nonetheless, cloud 

cover continues to present scientific challenges in the Amazon Biome, mainly when it comes to carrying out 

historical analyses. Given that the combination of radar and optical images constitutes a possible alternative to 

increase the number of time series observations, methods that combine different types of data are important 

for LULC trajectories in the Amazon. Therefore, methods capable of dealing with sparse time series, multi-

sensor data, and different aggregations of a given legend are of particular interest to forest regeneration studies. 

Another recurring problem among trajectory classification techniques is that several steps are needed, 

including a post-classification step to correct invalid trajectories. The CMAP classifier stands out for 

classifying image time series directly on valid-only LULC trajectories in a single step using multi-sensor data 

at different tiers of a hierarchical legend. Currently, the computational cost of CMAP is high for large areas 

and/or long time series, which can limit its operational use. Improvements to the performance of CMAP and 

the incorporation of new base classifiers to the algorithm, as well as new methods for calculating the probability 

of transitions within the classifier, are expected shortly. 

Despite the diversity of proposed techniques and tools to analyze LULC trajectories, quality 
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assessment methods are mostly based on calculating accuracy indices for each observed time. Similarly, most 

studies are still based on mono or bi-temporal techniques. One must pay attention to possible overestimations 

of accuracy values in these studies. This is particularly important when quantifying LULC class/change areas 

for each date. In this sense, one of the major challenges when it comes to analyzing LULC trajectories is 

developing methodologies to estimate their accuracy and to allow adequate information extraction.  

Forest regeneration studies focused on trajectory information can be summarized into one of the 

following categories: 1) those that evaluate only a few dates and/or classes and, consequently, only a few types 

of trajectories or 2) those that calculate the age of secondary vegetation. There is a pressing need to evaluate 

forest regeneration analysis tools that permit a greater number of dates and classes of interest. Such tools will 

enable regeneration processes hitherto not discriminated to be identified. Specifically, it is important to 

quantify specific forest regeneration process characteristics, such as persistence/age of secondary vegetation, 

and intensity, type, and use time before abandonment in areas with different occupation histories and under 

the influence of different public policies. These types of studies have the potential to improve the precision 

and accuracy of carbon emission estimates. They are also important for biodiversity studies because areas of 

secondary vegetation can connect forest patches. From a socio-economic point of view, such studies can reveal 

how different forms of occupation produce different landscapes and forest regeneration dynamics, which are 

important to consider when it comes to elaborating conservation policies, territorial ordering, and sustainable 

land use practice incentives. 
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