MARÉS TERRESTRES: SUA IMPORTÂNCIA EM GEODÉSIA

Prof. CAMIL GEMAEL

1 — Introdução

Até o início de 1983 os estudos no Brasil sobre a "força de maré" (tidal force) praticamente se limitavam a sua mais sensível conseqüência: as marés *oceânicas*. E como tal, pouco ou nenhum interesse despertavam na maioria dos geodesistas e geofísicos.

Nos últimos doze meses, entretanto, esse panorama sofreu radical transformação graças às investigações que vem sendo desenvolvidas pela Universidade Federal do Paraná através do seu Curso de Pós-Graduação em Ciências Geodésicas; é o que mostramos neste trabalho.

Gostaríamos de enfatizar, face à pobreza de informações existentes no hemisfério sul, a importância de tais investigações não apenas para o Brasil mas para a comunidade geofísica internacional.

Na primeira parte do presente trabalho, à guisa de motivação, passamos em revista alguns conceitos básicos da teoria das marés terrestres, sempre realçando as aplicações geodésicas; na segunda parte, descrevemos as estações permanentes e as estações temporárias recém-instaladas.

2 — Escorço Histórico

O fenômeno das marés *oceânicas*, pela sua magnitude e pela sua natureza cíclica, foi reconhecido por muitos povos da antigüidade; para as civilizações que floresceram às margens do Mediterrâneo, entretanto, passou despercebido, porque nesse mar interior a amplitude da maré é, via de regra, muito fraca.

HERÓDOTO (450 AC) observou o fenómeno no Mar Vermelho e um século mais tarde ARISTÓTELES o correlacionou com a Lua. Os registros históricos se sucedem de maneira vaga e,para dar apenas mais um exemplo, PLÍNIO, no início do primeiro milênio, em sua "História Natural", fala da correspondência entre a amplitude da maré e as fases lunares.

Mas da mesma forma que na "precessão dos equinócios", já conhecida de HIPARCO no século II AC, e em outros problemas, a compreensão do fenômeno das marés oceânicas deveria aguardar até que NEWTON presenteasse a Humanidade com a Lei da Gravitação Universal (1687). Com LAPLACE, no último quartel do século XVIII, o fenômeno recebeu tratamento matemático que ganhou realce quando THONSON (Lord Kelvin), cem anos depois, introduziu a análise harmônica na predição das marés. O aperfeiçoamento da teoria continuou com DARWIN, RAYLEIGH, etc., e, neste século, com DOODSON, CARTWRIGHT, MUNK e outros.

Já a idéia de uma terra não totalmente rígida e, por conseguinte, sujeita a deformações elásticas sob a influência de forças perturbadoras, não tem mais de século e meio. Também aqui se percebe o gênio de Lord Kelvin preconizando, em conseqüência da atração luni-solar, a exemplo do que ocorre com a hidrosfera, deformações periódicas na litosfera, obviamente em escala reduzida. Porém muitas décadas deveriam se passar até que a tecnologia construisse equipamento suficientemente preciso para monitorar tais movimentos.

As investigações sobre as marés terrestres receberam notável impulso durante o "ano geofísico internacional" (1957) após o qual as estações de observação se multiplicaram rapidamente e se estenderam por várias regiões do globo.

Mas quando se fala em análise de dados experimentais o enfoque é diferente conforme se trate de "maré oceânica" ou de "maré terrestre". Por exemplo, no segundo caso a determinação dos valores teóricos da amplitude e da fase de cada uma das chamadas "componentes" é sumamente importante, pois de sua comparação com os correspondentes valores observados resultam informações preciosas sobre a física do interior da Terra. Já no primeiro caso (oceânicas) a determinação dequeles parâmetros é irrelevante pois o que interessa são certas constantes que permitem a "predição das marés" com vistas à navegação marítima.

De qualquer forma o deslocamento de partículas líquidas (marés oceânicas) e as deformações elásticas da crosta (marés terrestres), manifestações em escalas diferentes do mesmo fenômeno, produzido pela ação gravitacional da Lua e do Sol, constituem hoje assunto de grande relevância pelas suas implicações com várias ciências como a Astronomia, a Geofísica, a Geodinâmica, a Oceanografia, a Dinâmica de Órbitas e, no que nos interessa mais de perto, a Geodésia. Para realçar a sua importância nessa área é suficiente lembrar que desde 1957 a Associação Internacional de Geodésia mantém o "Centro Internacional de Marés Terrestres" com sede em Bruxelas.

3 - Potencial de maré

Designado por *potencial de maré* (W) no ponto P a diferença do potencial newtoniano produzido pela atração luni-solar no mencionado ponto e no centro da Terra, a partir da figura 1 obtem-se 05:

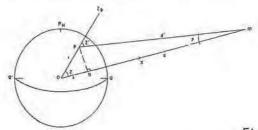


Fig. 1

$$W = \frac{km_i}{d_i} \quad \Sigma \left[-\frac{r}{d_i} \right]^n P_n(Z); \quad i = Sol, Lua. \quad (1)$$

Na fórmula supra, $P_n(Z)$ representa o polinômio de Legendre de grau n:

$$P_n(Z) = \frac{1}{n|2^n} \frac{d^n}{dt^n} (t^2 - 1)^n;$$
 (2)

$$t = \cos Z. \tag{3}$$

k é a constante gravitacional, m a massa do astro pertubador e Z a sua distância zenital geocêntrica.

Nas aplicações geodésicas o desenvolvimento pode ser limitado a n = 2 (com erro não superior a 1%):

$$W = \frac{kr^2 m_i (3 \cos^2 Z_i - 1)}{2d_1^3} = \frac{kr^2 m_i}{d_1^3} P_2 (Z)$$
 (4)

LAPLACE exprimiu o potencial de maré em função da latitude do observador e das coordenadas horárias do astro pertubador; utilizando a conhecida fórmula (fig. 2):

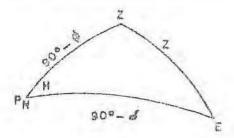


Fig. 2

$$\cos Z = \operatorname{sen}\phi \operatorname{sen}\delta + \cos\phi \operatorname{cos}\delta \operatorname{cos}H \tag{5}$$

obtém-se, após algumas transformações:

$$W = S + T + Z \tag{6}$$

com

$$S = \beta \cos^2 \phi \cos^2 \delta \cos^2 H \qquad SECTORIAL \qquad (7)$$

$$T = \beta \cos 2\phi \cos 2\delta \cos H$$
 TESSERAL (8)

$$Z = \beta(\text{sen}^2\phi - 1/3) \text{ (sen}^2\phi - 1/3)$$
 ZONAL (9)

$$\beta = 3 \text{ km} \text{ r}^2 / 4 \text{ d}^3 \tag{10}$$

Ao sectorial correspondem as componentes de maré semi-diurnas (período de 12 horas), ao tesseral as diurnas e ao zonal as componentes de longo período.

O desenvolvimento de Laplace proporciona uma visão panorâmica do problema mas ñão a precisão requerida em nossos dias. DOODSON,em 1922,ligou o seu nome ao problema: adotando variáveis astronômicas vinculadas ao Sol e à Lua mas que, ao contrário da declinação (δ) e do ângulo horário (H), variam linearmente com o tempo, formulou um desenvolvimento harmônico do potencial de maré que conta com quase 400 termos. DOODSON valeu-se da teoria lunar de BROWN; esta foi aperfeiçoada recentemente e novas constantes astronmicas e geodésicas surgiram,o que possibilitou a CARTWRIGHT e TAYLER apresentarem um desenvolvimento harmônico ainda mais preciso /01/.

4- Terra sólida e elástica

Até aqui, encaramos a Terra como um corpo sólido e rígido; a consideração de *elasticidade* conduz a um potencial formado por três parcelas:

$$W + W' + W'' \tag{11}$$

W é o potencial de maré da Terra sem oceanos e indeformável dado pela (1) ou pela (4);

W' é o potencial de deformação, consequência da redistribuição de massas determinada; pela deformação da Terra não rígida em resposta à perturbação luni-solar; W'' é a variação do potencial devido ao deslocamento do

ponto considerado.

As três parcelas da (11) se relacionam através dos números de LOVE /07/:

$$W + W' + W'' = W + Wk - Wh = W(1 + k - h)$$
 (12)

O primeiro número de LOVE (h) exprime a razão entre a deformação (u) de um ponto da superfície da Terra elástica (real) e a deformação (u_r) da correspondente equipotencial da Terra rígida (teórica); o segundo número de LOVE (k) relaciona o potencial da Terra rígida (w) com o potencial de deformação (W'):

$$h = \frac{u}{u_r}; \qquad k = \frac{W'}{W} \tag{13}$$

5- Terra deformável, com oceanos

As marés oceânicas, produzidas pelas mesmas forças responsáveis pelas marés terrestres, vêm complicar o nosso problema. É o ônus que se paga para mitigar a fome sempre crescente de precisão e que uma vez mais confirma o velho aforismo de que "a ciência não morre porque cria mais problemas do que resolve".

Assim a variação da componente vertical da força de maré (tópico 6.2), registrada numa estação de marés terrestres, é perturbada pelo fluxo e refluxo das águas oceânicas. O grau dessa perturbação dependerá de certos fatores como a distância da estação considerada ao oceano, a espessura da litosfera, as suas características geológicas, etc. O tríplice efeito de tal perturbação pode ser resumido assim:

- a) Potencial de maré oceânica: devido à variação da força atrativa das águas oceânicas em seu movimento periódico.
- b) Deformação elástica da litosfera: produzida pela pressão (ou carga = load) que as marés oceânicas exercem sobre a crosta.
- c) Efeito indireto: perturbação do potencial decorrente da redistribuição de massa na litosfera(*).

Com o advento das modernas tabelas — cartas isofásicas e isoamplitudinais como as de SCHWIDERSKI /11/, /12/ que modelam com grande precisão a maré oceânica

global proporcionando para quadrados de 1° x 1° , cobrindo todos os mares, tanto a amplitude (em centímetros) como a fase em relação a Greenwich (em graus), simplificou-se o problema de calcular o potencial da maré oceânica W_M , assim /02/:

$$W_{M} \int_{0}^{\infty} G(\psi) H ds$$
 (14)

sendo H a altura da maré no elemento de área dS e ψ a distância angular entre esse elemento e o ponto de interesse; o kernel de integração tem a forma:

$$G(\psi) = \frac{k\delta}{r} \Sigma(\frac{a}{r})^{n} P_{n}(\psi)$$
(15)

δrepresentando a densidade da água do mar aqui admitida constante (1027 kgm-3). A integral deve ser estendida à total superfície dos oceanos.

6- Aplicações geodésicas

Potencial total

Nas aplicações de rotina da Geodésia Física considera-se, salvo exceções, apenas o geopotencial, ou potencial da gravidade de uma Terra rígida e não perturbada /03/:

$$W_G = \frac{kM}{r} \left\{ 1 - \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r} \right)^n \left[J_{nm} \cos m\lambda + \frac{a}{r} \right] \right\}$$

$$+ k_{nm} \text{ sen m}$$
 $) P_{nm} (v) + 0.5 (\omega r \text{ senv})$ (16)

sendo

 (ϱ, v, λ) : coordenadas esféricas do ponto no qual se quer calcular o geopotencial;

KM: constante geocêntrica de gravitação (*); a: semi eixo maior do elipsóide de referência;

J_{nm} e K_{nm}: coeficientes adimensionais;

 ω velocidade angular (*);

Pnm: harmônicos esféricos de superfície:

$$P_{nm}(v) = \frac{-\sin^{m} v}{2^{n}} \sum_{n=0}^{I} \frac{(2n-2k)|(-1)^{k}}{(n-m-2k)|(n-k)|k|} t^{n-m-2k}$$

$$m = 0 \rightarrow \text{zonais},$$

 $m \neq 0 \mid m = n \rightarrow \text{sectoriais},$
 $m \neq n \rightarrow \text{tesserais}.$
(17)

^(*) A rigor há ainda a considerar a oscilação do leito oceânico com o consequente reflexo na posição da camada líquida sobrejacente.

Face às explanações anteriores o potencial total, quando não há necessidade de considerar os efeitos da maré oceânica, assume a forma:

$$W_t = W_G + W(1 + k-h),$$
 (18)
 W_G sendo o geopotencial da Terra rígida dado pela

Se a precisão exigida não permitir que os efeitos da maré oceânica sejam negligenciados adicionamos a (14) à (18).

6.2 — Correção Gravimétrica

Por definição:

$$g = \text{grad } W_G$$
 (21)

mas sendo o geopotencial perturbado continuamente pelo potencial de maré,também o será o vetor de gravidade; utilizando a principal propriedade do potencial, a partir da (4) obtém-se a correção gravimétrica (componente vertical da força de maré) para o caso da Terra indeformável:

$$c_g^R = \frac{\delta W}{\delta r} = \frac{kMr}{d^3} (3 \cos^2 Z - 1);$$
 (22)

$$C_{g}^{R} = \frac{k M p^{3} (3 \cos^{2} Z - 1)}{r^{2}}$$
 (23)

p representando a paralaxe horizontal do astro perturbador; ou ainda:

$$C_g^R = \tilde{g} M^T p^3 (3 \cos^2 Z - 1)$$
 (24)

g denotando um valor médio para g e M^T a massa do astro perturbador quando se toma a massa da Terra como unitária.

Para o caso da Terra elástica:

$$C_g^E = \bar{g} M^T p^3 (3 \cos^2 Z - 1)\delta$$
 (25)

sendo δ o fator gravimétrico /07/:

$$\delta = (1 + h-1,5k)$$
 (26)

Finalmente, à Terra elástica e com oceanos deve-se acrescentar ainda mais uma correção que escapa ao âmbito deste trabalho e que envolve o potencial da maré oceânica WM e os "coeficientes de deformação" introduzidos por MUNK e MACDONALD /10/ cuja aplicação é facilitada com as tabelas de FARREL 02.

6.3 — Correção ap nivelamento geométrico

A figura 3 mostra que a presença de um astro perturbador altera a vertical e,por conseguinte,a vizada horizontal do nível, conduzindo a leituras falsas das miras.

As correções a introduzir por seção nivelada são, considerando, respectivamente, a perturbação lunar (L) e a solar (S) 05:

$$\delta h_L = 0.087 \text{ S sen } 2Z_L \cos(A_L - A)\gamma$$

 $\delta h_S = 0.039 \text{ S sen } 2Z_S \cos(A_S - A)\gamma$
(27)

sendo:

S o comprimento da seção em km; A o azimute médio da seção; δ correção em milímetros; γ o fator de "diminuição" dado por

$$\gamma = 1 - h + k \tag{28}$$

6.4. — Outras aplicações

Além das aplicações já mencionadas (correção ao geopotencial, ao valor medido de g, às diferenças de altitude do nivelamento geométrico) lembramos outras grandezas geodésicas também afetadas:

raio vetor geocêntrico; ondulação do geóide; desvio da vertical; ângulos horizontais e verticais; distâncias terrestres; (VLBI); órbita satelitária posicionamento.

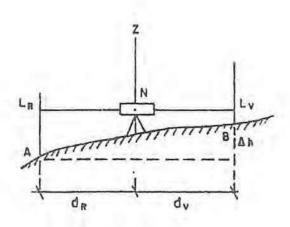
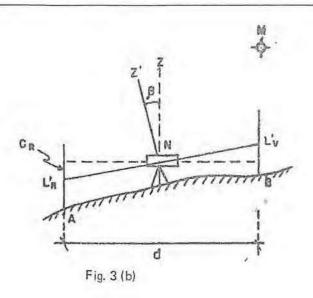
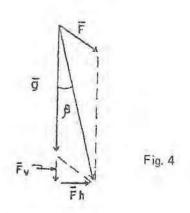




Fig. 3 (a)

^(*) No sistema Geodésico de Referência 1967: $KM = 398.603 \text{ m}^3\text{s}^{-2}$; $J_{2,0} = 10827 \times 10^{-7}$; $a = 6.378.160 \text{ m} \omega 7.292.115 \times 10^{-11} \text{rad s}^{-1}$

7 — Estações brasileiras de marés terrestres

7.1 — Conforme exposto na primeira parte deste trabalho, até o início de 1983 nada foi feito no Brasil em termos de marés da crosta sólida. Atualmente, entretanto, dois programas estão sendo desenvolvidos paralelamente:

- a) o da "Estação Permanente de Marés Terrestres de Curitiba";
- b) o das "Estações Temporárias" que,, como o nome indica, visa a implantação de estações permanentes (6 meses) em diferentes universidades brasileiras.

7.2 — Estação permanente de Curitiba

A primeira estação permanente de marés terrestres do país foi implantada no Centro Politécnico Flávio Suplicy de Lacerda (UFPR) em Curitiba, por iniciativa do Curso de Pós-Graduação em Ciências Geodésicas. Sua posição geográfica é a seguinte:

 $\phi = 25^{\circ} 27' 15,25'S; \lambda = 49^{\circ}14'15,56''W; h = 913,2m$

e recebeu do Centro Internacional de Marés Terrestres a matrícula 7305.

Dispõe, no momento, de um gravimetro Askânia GS—11 modificado e de um LaCoste Romberg modelo D; o primeiro foi cedido por empréstimo á UFRPr pela Universidade de Bonn e o segundo pelo CNPq. Ambos são dotados de um capacitor transdutor que comanda a pena de um registrador para o registro gráfico das variações temporais da gravidade (componente vertical da força de maré); um relógio de quartzo intercalado no circuito permite o deslocamento da pena para a construção das marcas horárias que possibilitarão, posteriormente a medida das ordenadas horárias da curva da maré terrestre.

Mais recentemente, o LaCoste Romberg foi adaptado ao "método zero" que mantém o "beam" do gravímetro na linha de leitura, aumentando a sua precisão /06/, /09/.

Os gravímetros acham-se instalados em um pilar, no sub-solo, e os registradores estão localizados no piso superior; isso significa que as visitas diárias de rotina não implicam em descidas à sala dos gravímetros evitando-se, assim, perturbações de temperatura.

7.3 — Estações temporárias

Visando, no plano internacional, colaborar com o "Trans-worl tidal gravity profile", e no âmbito nacional principalmente determinar o fator gravimétrico em várias regiões do país (além de investigações sobre a interação marés oceânicas — marés terrestres), a UFPr engajou-se num programa conjunto como Observatoire Royal de Belgique. Objetivo: instalar no país cerca de 12 estações temporárias (6 meses) de marés terrestres /04/.

Até o momento já foram instaladas e funcionaram com êxito as estações temporárias de Santa Maria (RS), Viçosa (MG), Campo Grande (MS), Cuiabá (MT), Goiânia (GO), Curitiba (PR) e Caicó (RN). Em funcionamento, provavelmente até fevereiro de 1986: Belém (PA), Manaus (AM) e Salvador (BA).

Em cada uma dessas estações foi ou está instalado um gravímetro La Coste Romberg modelo G com "output" eletrônico, registrador de gráfico e relógio de quartzo; ou um Geodinâmico, este dotado de um microprocessador que acumula na momória informações digitalizadas durante uma hora quando então são transferidas para uma fita magnética; todo esse equipamento foi cedido por empréstimo pelo Observatório Real da Bélgica.

Em janeiro de 1986, durante a 4ª Expedição Brasileira à Antártica, será instalada uma estação temporária de marés terrestres na primeira estação antártica brasileira — Comandante Ferraz — situada na Ilha Rei George, no arquipélago das Shetland do Sul.

Resultados provisórios

Na folha 81 mostramos um exemplo de resultados obtidos, no caso ainda provisórios, na estação 7305 (Curitiba) com o gravímetro Geodinâmico nº 783. A análise dos da-

dos — 3792 ordenadas horárias cobrindo um intervalo de 173,5 dias - foi efetuada pelo método dos mínimos quadrados com os filtros de VENEDIKOV e o desenvolvimento do potencial de CARTWRIGHT - TAYLER, usando o programa elaborado por DUCARME do Observatório Real da Bélgica.

Foram separadas sete ondas (grupos) semi-diurnas (Q1, O_1 , NO_1 , P_1 , S_1K_1 , $J_1 \in OO_1$), seis diurnas $2N_2$, N_2 , M_2 , L_2 e K2) e uma ter-diurna (M3). Na 5ª coluna aparecem os valores do fator gravimétrico para os diferentes constituintes; obviamente, o mais importante é o valor da componente semi-diurna lunar principal M2.

D 80KM

TRANS WORLD PROFILE

SOUTH AMERICA

STATION CURITIBA

STATION 7305

CURITIBA PARANA COMPOSANTE VERTICALE

BRESIL

25 27 15.35

49 14 15.6W

H 913M

P 3M

CENTRO POLITÉCNICO-GEODÉSIA-U.F.PR. PROF. C. GEMAEL

GRAVIMETRE GEODYNAMICS 783

CALIBRATION

INSTALLATION

MAINTENANCE

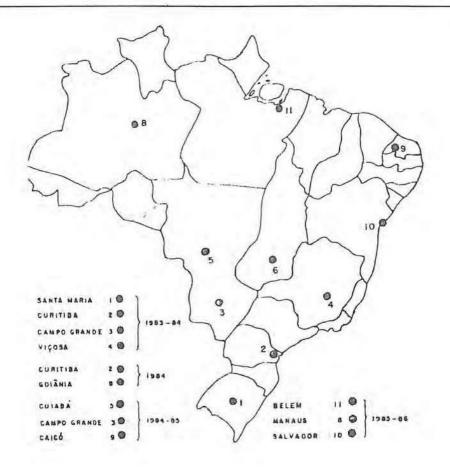
P. MELCHIOR – OBSERVATOIRE ROYAL DE BELGIQUE

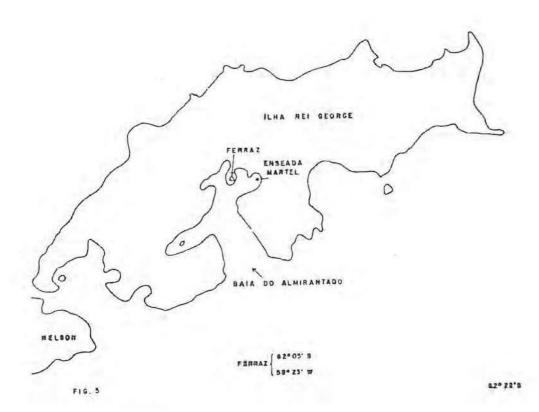
BRUXELLES - FUNDAMENTAL STATION/N050.4 V/

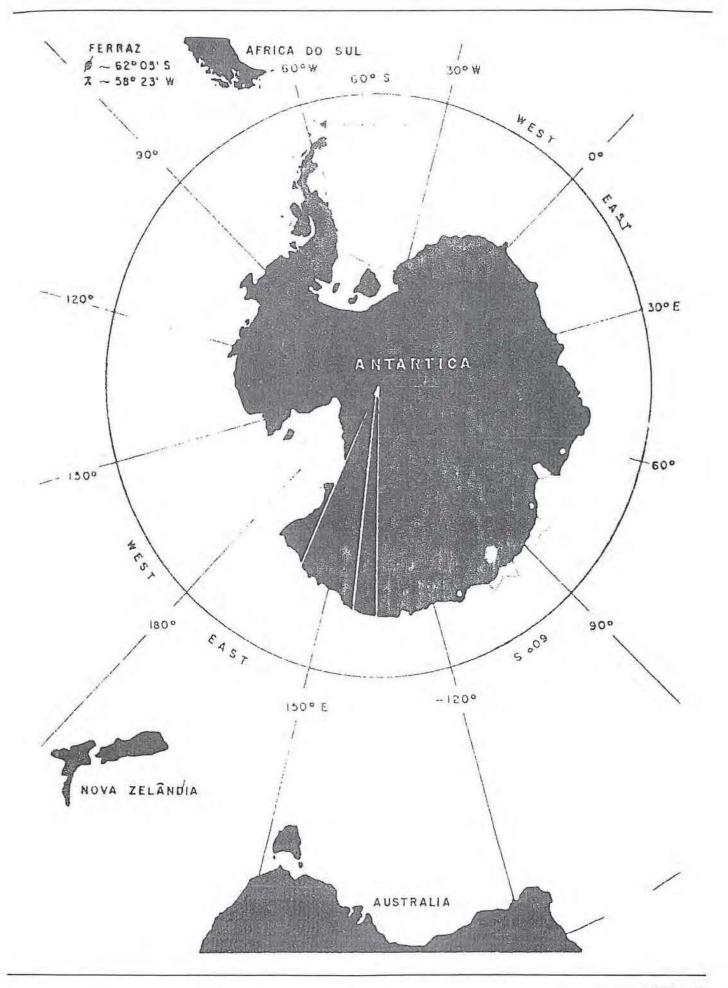
B. DUCARME. C. GEMAEL, J. BITTENCOURT, MILTON CAMPOS

C. GEMAEL, J. BITTENCOURT, MILTON CAMPOS

TIME INTERVAL


173.5 DAYS


3792 READINGS


9 BLOKS

WAVE GROUP			ESTIMATED AMPL.		AMPL,		PHASE		RESIDUE		
ARGUMENT N WAVE			R.M.S.	FACTOR	R.M.S.		R.M.S.	AMPL.	PHASE		
AKU	DIVIENT	14	WAVE		K.WI.D.	PACTOR	R,M.S.	DIII.	K.M.J.	AMI D.	TIMOL
133.	136.	20	01	5.66	.07	1.2268	.0160	204	.750	.31	176.3
143.	145.	16	01	28.57	.07	1.1855	.0030	-1.379	.146	.93	132.2
152.	-155.	15	N01	2.35	.06	1.2408	.0320	1.316	1:478	.16	-160.8
161.	163.	10	P1	12.65	.07	1.1280	.0066	.282	.335	.29	-12.2
164.	168.	23	S1K1	39.04	.07	1.1519	.0021	.084	.105	.49	-173.2
175.	177.	14	J1	2.25	.07	1.1897	.0381	-2.172	1.838	.10	121.4
184.	186.	11	001	1.18	.06	1.1385	.0565	-4.213	2,835	.09	73.3
233.	-23x.	20	2N2	2.26	.03	1.2080	.0185	4.652	.882	.20	65.8
	-248.	24	N2	14,12	.05	1.2053	.0038	2.045	.182	.72	44.0
252.	-258.	26	M2	71.86	.04	1.1744	.0007	1.759	.036	2,36	69.2
265.	-265.	9	L2	2.00	.04	1.1545	.0209	.903	1.032	.03	107.5
267.	273.	9	S2	33.29	.04	1.1696	.0015	1.953	.071	1.16	77.5
274.	-277.	12	K2	8.89	.04	1.1476	.0050	2,322	.246	.37	106.1
335.	-375.	16	М3	1.21	.02	1.1132	.0228	.432	1.159	.05	10.04
STANDARD DEVIATION			D	2.96	5D	1.70	TD .93 MICROGAL				
01/K1	01/K1 1.0291 1		-01/1-K1 1.2210		M2/01 .990		6				

CENTRAL EPOCH TJJ =2445730.0

Referências bibliográficas

- CARTWRIGHT, D.E., & TAYLER R.J. New computation of the tide-generating potential. Geophys. J.R. Astr. Soc (23), 45-71 (1971).
- FARREL, W.E. Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10 (3) 761-797 (1972).
- GEMAEL, C Geodésia Física. Curso de Pós-Graduação em Ciências Geodésicas, UFPr, Curitiba, 1981.
- GEMAEL, C Earth tides in Brazil.
 Geowissenschaftliches Lateinamerika Kolloquium, Marburg (Alemanha), 1984.
- GEMAEL, C Marés Terrestres no Brasil. (Submetido à Revista de Geofísica do IPGH), 1984.
- 06 . HARROSON, J.C. & SATO, T. Implementation of elestrostatic feedback with a LaCoste Romberg model G gravity meter.
- MELCHIOR, P. The tides of the planet earth. Pergamon Press., 1978.

- 08 . MELCHIOR,P. and allii Tidal loading along a profile Europe — East Africa — South Asia — Australia and the Pacific Ocean. Phys. Earth Planet. Inter, 25, 71-106 (1981).
- MOORE, R.D. & FARREL, W.E. Linearization and calibration of electrostatically feedback gravity meters, J. Geophys. Res., 71 (5), 928-932
- MUNK, W.H. and MACDONALD, G.J.F. The rotation of the earth. Cambridge University Press, London, 1960.
- SCHWIDERSKI, E.W. Global ocean tides. Part I: a detail hydrodynamical interpolation model. NSWC TR 3866, Maryland, 1979.
- SCHWIDERSKI, E.W. Global ocean tides, Part II: the semidiurnal principal lunar tide M₂. NSWCTR 79-414, Maryland 1979.
- VANICEK, P. Tidal correction to geodetic quantitics. NOAA TR NOS 83 NGS—14, Rockville, USA.
- 14. WAHR, J.M. Body tides on an elliptical, rotating and oceanless Earth. *Geophys. J.R. Astr. Soc.* (64), 677-703. (1981).