APLICAÇÕES MATRICIAIS EM ÓPTICA GEOMÉTRICA

Wilson Alcântara Soares

RESUMO

O estudo da óptica geométrica para sistemas ópticos simples, tais como os de lentes delgadas e únicas, não apresentam grandes dificuldades. Quando se parte para a análise de um sistema mais complexo, como, por exemplo, a objetiva de uma máquina fotográfica moderna, métrica ou não, tornase quase impraticável seguir o comportamento das imagens e respectivos objetos, que, sucessivamente, são formados, lente por lente, através da objetiva, principalmente, no que diz respeito a equações detalhadas, o que faz com que apareçam várias equações com várias incógnitas.

A aplicação de matrizes simplifica sobremaneira o rastreamento do raio luminoso pela objetiva, ou em qualquer outro sistema óptico, sendo, praticamente, uma técnica do tipo "Ray Tracyng", sendo que ainda tem a vantagem do uso de técnicas computacionais.

À proposta deste material é informar sobre mais uma ferramenta de trabalho para os estudiosos do assunto e, em particular, para os fotogrametristas, visando, quem sabe, servir de base para futuros trabalhos na área.

1. AS MATRIZES DE APLICAÇÃO 1.1. Matriz de Transmissão

A matriz de transmissão é aquela que caracteriza a passagem do raio luminoso por um meio homogêneo [2].

Na fig. 1.1 têm-se que e é a expessura do meio de propagação. O eixo x caracteriza o eixo óptico do sistema, considerando que o sistema não tem distorção discentrada. A cota do raio luminoso ao penetrar no meio é dada por y e ao sair por y'. A direção* do raio luminoso é θ ao penetrar no meio e θ' ao sair.

* Direção é o ângulo que a reta suporte, do raio luminoso forma com a horizontal (θ).

A cota y', com que o raio luminoso sai do meio de propagação, difere da cota de entrada y de um valor Δy fig 1.1, de onde se tira que

$$y + \Delta y = y' (1.1)$$

sendo que a extensão de Δy é dada por

$$y = e \cdot tg \theta \cdot (1.2)$$

Para situações em que θ é pequeno, têm-se

 $\theta = tg \theta$, então: $y = e \cdot \theta$ e a equação 1.1 transforma-se em $y + e \cdot \theta = y'$ (1.3)

A observação da fig. 1.1 leva à igualdade

$$\theta = \theta'(1.4)$$

Monta-se o sistema abaixo

$$y + e. \theta = y'$$

 $\theta = \theta'.$

A expressão matricial do sistema é,

$$\begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} y^{\prime} \\ \theta^{\prime} \end{bmatrix}.$$

Define-se a matriz de transmissão T

$$\Gamma = \begin{bmatrix} 1 & e \\ & \\ 0 & i \end{bmatrix}.$$

1.2. Matriz de Refração

A refração ocorre quando um raio de luz muda de um meio de propagação A para um meio B. Na fig. 1.2.1, S é a superfície de separação dos dois meios, é o dióptro. O ponto de incidência, no meio A, e o ponto de refração, no meio B

RBC - 37

[3], são coincidentes, logo as suas respectivas cotas são iguais. y = y' (1.5)

As direções dos raios incidente e refratado são dadas por $\theta \in \theta'$, respectivamente.

Fig 1.2

R é o raio da superfície esférica *S*, cuja extremidade coincide com o ponto de incidência. A reta suporte de *R* é a normal à superfície, n. $\beta \in \beta'$ são, respectivamente, os ângulos de incidência e refração e α é um ângulo auxiliar.

Da fig. 1.2.1, pode-se tirar as igualdades

$$\beta = \theta + \alpha \quad (1.6)$$

$$\beta' = \theta' + \alpha \quad (1.7); \text{ mas,}$$

sen $\alpha = \frac{y}{R} = \frac{y'}{R}$ e, para α pequeno,
sen $\alpha = \alpha$, então

$$\alpha = \frac{y}{R} = \frac{y'}{R} \quad (1.8)$$

Aplicando-se a lei de Snell-Descartes [3], resulta:

$$n_A.sen \ \beta = n_B.sen \ \beta'$$
e, para β pequeno,
 $n_A.\ \beta = n_B.\ \beta'(1.9)$

Substituindo-se as eqs. 1.7 em 1.9

 $n_A.(\theta + \alpha) = n_B.(\theta' + \alpha)$, e as eqs. 1.8 le-

 n_A . $\theta + n_A$. $\frac{y}{R} = n_B$. $\theta' + n_B$. $\frac{y'}{R}$, chegando-

vam a:

$$n_A.(\theta + \frac{y}{R}) = n_B.(\theta + \frac{y'}{R})$$
, onde

se em:

nA

nR

$$\frac{1}{R} \cdot \left(\frac{n_A}{n_B} - 1 \right) \cdot y + \frac{n_A}{n_B} \cdot \theta = \theta' (1.10)$$

Com as equações 1.5 e 1.10, monta-se o sistema, após fazer

$$= k:$$

$$y = y'$$

$$\frac{1}{R} (k - 1) \cdot y + k \cdot \theta = \theta'.$$

Para simplificar a expressão, toma-se

$$\frac{1}{R}(k-1) = r.$$
 (1.11)

A expressão matricial do sistema, anteriormente, descrito é

$$\begin{bmatrix} 1 & 0 \\ r & k \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} y' \\ \theta' \end{bmatrix}.$$

Defini-se a matriz de refração por 2,1

$$R = \begin{bmatrix} I & 0 \\ r & k \end{bmatrix} ,$$

e as matrizes
$$M \begin{bmatrix} y \\ \theta \end{bmatrix} e M'$$

A aplicação das matrizes de transmissão e de refração seriam expressas da forma

$$TM = M'$$
$$RM = M'$$

Para melhor acompanhamento do trajeto do raio luminoso pelo sistema óptico, acresce-se à matriz T e ao seu elemento e, um índice, que indica o meio de propagação por onde o raio de luz passa. Ex.:

$$\mathbf{T}_1 = \begin{bmatrix} 1 & e_1 \\ & \\ 0 & 1 \end{bmatrix} , \quad \mathbf{T}_2 = \begin{bmatrix} 1 & e_2 \\ & \\ 0 & 1 \end{bmatrix}$$

Procedimento análogo é feito com a matriz de refração, sendo o primeiro índice a referência ao primeiro meio de propagação, antes da refração. Como o elemento r, da ma triz R, é uma função de k, somente coloca-se o índice indicativo da superfície à qual ele está associado (eq. 1.11.)

$$R_{AB} = \begin{bmatrix} 1 & 0 \\ \\ \\ r1 & k_{AB} \end{bmatrix} \quad \text{, onde } k_{AB} = \frac{n_A}{n_B}$$

2. OS SISTEMAS ÓPTICOS

2.1. Sistema de uma Única Lente

Quando um raio luminoso atravessa um sistema ópt co qualquer, ele sofre refrações e transmissões sucessivas. Po⁻ se rastrear o raio de luz pela aplicação das matrizes de tr

RBC - 38

×

missão e refração, onde couber. Tomemos, por exemplo, o sistema óptico que segue, que é uma objetiva simples [4].

Fig. 2.1

Inicialmente, dispõem-se de um raio luminoso que parte de uma cota y, segundo um ângulo O. Este raio transmitese no meio 1, cujo índice de refração absoluto é n_1 . Sabe-se que o ponto de chegada, para a formação final da imagem, e o ponto de cota y' e direção O', no meio de propagação 3.

$$\begin{bmatrix} 1 & x_1 \\ \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = TI \cdot M.$$

Após a transmissão no meio 1, ocorre refração do meio para o meio 2. Pré multiplica-se a matriz de transmissão, to caso anterior, pela matriz de refração de 1 para 2, caracterando o rastreamento do raio luminoso.

 $\begin{bmatrix} 1 & 0 \\ \\ r_{I} & k_{12} \end{bmatrix} \begin{bmatrix} 1 & x \\ \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ \\ \theta \end{bmatrix} = R_{12} T_{I} M$

Agora ocorre a transmissão da luz no interior da lente de espessura *e*.

$$\begin{bmatrix} 1 & e \\ 0 & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ r_1 & k_{12} \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & I \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = T_2 R_{12} T_1 M$$

Quando da ocorrência de uma nova refração, desta vez entre os meios 2 e 3,

$$\begin{bmatrix} I & O \\ r_2 & k_{23} \end{bmatrix} \begin{bmatrix} I & e \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ r_1 & k_{12} \end{bmatrix} \begin{bmatrix} I & x \\ 0 & I \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = R_{12} T_{12} R_{12} T_1 M$$

Por fim, há a propagação da luz até o ponto onde se forma a imagem. Este último meio de propagação tem a espessura x', que é a distância da imagem até a lente, então:

$$\begin{bmatrix} 1 & x' \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ r_2 & k_{23} \end{bmatrix} \begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ r_1 & k_{12} \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} =$$
$$= T_3 R_{23} T_2 R_{12} T_1 M$$

A análise do problema nos fornece a informação que os sucessivos produtos matriciais levam à imagem, a qual é determinada pela matriz M', logo

 $T_3 R_{23} T_2 R_{12} T_1 M = M' \qquad (2.1)$ que é a expressão matricial final.

2.2. Sistemas com várias lentes 2.2.a. Sistema com duas lentes

Na prática, o elemento de maior interesse é, justamente, a última expressão matricial escrita, como na página anterior. Agora será feita a análise em um sistema óptico constituído por duas lentes coladas. Um cálculo prévio seria necessário para a determinação dos elementos das matrizes constituintes do sistema. Nessa parte, o interesse é, apenas, o de determinar a seqüencia correta dos produtos matriciais.

 $T_4 R_{34} T_3 R_{23} T_2 R_{12} T_1 M = M'.$

2.2.b. Sistemas com várias lentes.

Com a figura do sistema óptico, segue a expressão matricial correspondente.

 $\begin{array}{l} T_8 \; R_{78} \; T_7 \; R_{67} \; T_6 \; R_{56} \; T_5 \; R_{45} \; T_4 \; R_{34} \; T_3 \; R_{23} \; T_2 \; R_{12} \\ T_1 \; M \; = \; M' \end{array}$

Fig: 2.3

2.2.c. Matrizes do sistema óptico

A expressão matricial entre as matrizes de transmissão mais extremas, carregam informações somente do sistema óptico, e por isso são chamadas de matrizes do sistema óptico. Nos casos anteriormente citados elas seriam expressas por:

I) Lente simples
$$S_1 = R_{23} T_2 R_{12}$$

- II) Sistema de duas lentes $S_2 = R_{34} T_3 R_{23} T_2 R_{12}$
- III) Sistema de várias lentes $S_3 = R_{78} T_7 R_{67} T_6 R_{56} T_5 R_{45} T_4 R_{34} T_3 R_{23} T_2 R_{12}$

Para os três casos acima, as equações matriciais poderiam ter sido escritas, simplificadamente, por

$$\begin{array}{l} T_3 \ S_1 \ T_1 \ M \ = \ M' \ , \\ T_4 \ S_2 \ T_1 \ M \ = \ M' \ , \\ T_8 \ S_3 \ T_1 \ M \ = \ M' \ , \end{array}$$

As matrizes acima descritas sempre serão da forma [4]

$$S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
(2.2)

Em um sistema genérico, a aplicação das matrizes seria $T_n S T_1 M = M'$, ou

$$\begin{bmatrix} I & x_n \\ 0 & I \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} I & x_1 \\ 0 & I \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} y' \\ \theta' \end{bmatrix}$$
, logo

$$\begin{bmatrix} a+c.x_n & b+d.x_n \\ & & \\ c & d \end{bmatrix} \begin{bmatrix} y+\theta . x_1 \\ & \\ \theta \end{bmatrix} = \begin{bmatrix} y' \\ \theta' \end{bmatrix} , ou$$

$$\begin{bmatrix} ay + a.x_1. \ \theta + c.x_n.y + c.x_n.x_1. \ \theta + b. \ \theta + d.x_n.\theta \\ c.y + c.x_1. \ \theta + d.\theta \end{bmatrix} = \begin{bmatrix} y' \\ \theta' \end{bmatrix}$$

Por igualdade entre as matrizes, após as devidas evidenciações, tira-se

$$(a+c.x_n).y + (a.x_1+c.x_1.x_n+b+d.x_n). \theta = y'$$
 (2.3)

A equação 2.3 informa que, dos infinitos raios luminosos que partem da extremidade do objeto, com cota y, que atingem o sistema óptico, todos chegam na extremidade da imagem, a qual possui cota y'. Isto informa que, independe, da orientação dos raios luminosos que partem do objeto, dada por θ , caracterizando uma independência de θ , logo o seu coeficiente deve ser nulo, então

$$a.x_1 + c.x_1.x_n + b + d.x_n = 0$$
, que leva à
 $x_n = -\frac{a.x_1 + b}{c.x_1 + d}$ (2.4), onde

x_n é a distância da lente até a imagem;
x₁ é a distância do objeto até a lente;
a, b, c e d são os elementos da matriz do sistema.

Observa-se a simplicidade dos cálculos com sistemas ópticos complexos, pois basta conhecer a matriz do sistema e a distância do objeto até o sistema, que é possível determinar a posição da imagem.

Outro elemento de fundamental importância é obtido à partir da equação 2.3, sem o termo em θ , por ser o seu coeficiente nulo:

$$(a + c.x_n)y = y', \text{ ou}$$

 $a + c.x_n = \frac{y'}{y}$ (2.5)

A equação 2.5 fornece a razão entre a cota do objeto e a cota da imagem [5], que é a ampliação, escala da foto em relação ao objeto, ou, ainda, o aumento linear transversal [5].

3. CONCLUSÃO

A aplicação de matrizes em óptica geométrica corresponderia a se ter uma matriz de transformação que relaciona

RBC - 40

pontos do terreno com pontos da foto, a exemplo do que é feito em Fotogrametria.

A determinação da posição dos pontos nodais, distância focal equivalente e análise geral de um sistema óptico, é possível, à partir das matrizes dos sistemas ópticos, o que não unito explorado em Fotogrametria. Têm-se em mão uma ferramenta de trabalho muito poderosa e que merece muita atenção, visando, inclusive, descobrir outras aplicações dentro de toda a sua potencialidade.

Prof. Wilson Alcântara Soares

CEFET - Pr. Av. Sete de Setembro, 3165 Departamento de Física — 80.000 Curitiba Pr. UFPr - Centro Politécnico - Dep. de Física Jardim das Américas — 80.000 Curitiba Pr. Setor de Ciências Exatas.

REFERÊNCIAS BIBLIOGRÁFICAS

1. COX, A., ÓPTICA FOTOGRÁFICA. BARCELONA; Traduzido do Inglês por DURAN, R.S., 304p.

2 EISBERG, R.M. LERNER, L.S., FÍSICA FUNDA-MENTOS E APLICAÇÕES, vol. IV, São Paulo, Editora McGraw-Hill, 1983, 414p.

3 FERENCE JR, M., CURSO DE FÍSICA - ONDAS (SOM E LUZ). São Paulo, Editora Edgard Blücher Ltda; 224p.

4 HERZBERGER, M., MODERN GEOMETRICAL OP-TICS. New York, Interscience Publishers, Inc., 1958, 504p.

5 SEARS, F.W. ZEMANSKY, M.W., FÍSICA - CALOR - ONDAS - ÓPTICA. Vol II, Ao Livro Técnico, Rio de Janeiro, 1973, 440p.