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Abstract

The terpretaiion of digital images is formu-
lated by an analysis at two levels. At the low
level the image is segmented based on textures.
To the regions thus obtained a wmeaning is at-
tributed at the high level of the analysis. The
segmentation as well as the interpretation are
formulated as labeling processes which possess
the Markov property so that their distributions
follow from Gibbs distributions. The image
model and the object model for the interpre-
tation are therefore determined by Gibbs distri-
butions. The results for the interpretation of an
acrial photograph of an urban area in the fre-
quency bands red, green and blue are given.

1 Introduction

The interpretation of digital images taken by
sensors in aeroplanes or satellites is a task which
needs to be solved because of the ever increasing
demand for creating or updating maps of differ-
ent scales of the surface of the earth. The infor-
mation contained in digital images is not only
needed in cartography but also in geodesy and
photogrammetry to feed geoinformation sys-
tems. The automatic retrieval of the data fromn
the digital images is necessary, as the standard
procedure to obtain the information takes too
much time. Unfortunately, this part of the field
of computer vision is extremely difficult to solve
despite of many years of investigations. In the
following first results are presented of an au-
tomatic interpretation of an aerial photograph
taken in the three channels red, green and blue

of an urban area with streets, houses, garages,

lawns, hedges and bushes.

Interpretation of digital images means to iden-
tify objects and attribute a meaning to them. in
order to describe the content of the image. Some
prior knowledge on the coutent is needed for the
interpretation. This knowledge is collected in
the object model which contains the information
on tne objects and the relations between the ob-
jects. The objects, like streets, honses and so ou
have to be described by their geometry and their
functionality so that a semantic model is needed.
A relation between objects, which is very help-
ful for the interpretation, is the neighborhood.
It is the context of objects which has to be con-
sidered when interpreting digital images.

An image model is also needed, by which the
appearance of the objects in the digital image
is described. Starting from the pixels, picture
primitives have to be extracted to model the.
objects of the image. This process is generally
formulated at different levels. At the low level
of the image analysis the pixels are combined to
form edges and regions, the picture primitives.
At & higher level of the inage analysis the primn-
itives may be put together to object primitives
which at a high level of the analysis form the ob-
jects whose meaning is found by relating them
to instances of the object model.

In the following two leveis of image analysis are
considered based on the assumption that the ob-
jects contained in the image differ by their tex-
tures. Hence, at the low level a segmentation
is applied to gather pixels of identical textures
in regions. At the high level of the analysis a
mezning is attributed to the regions so that the
content of the image can be described.

The segmentation at the low level as well as the
interpretation at the high level are defined as la-
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heling processes. At the low level each pixel gets
a label by which the region is obtained and ai
Lhe high level each region gets a fabel frow which
the weaning follows. The labeling processes are
introduced as randow fields whicl possess the
Markov property, that is, the conditional densi-
ties of the labels depend on the values of the la-
bels in the neighborhood. By maximizing these
densities the values of the labels are estimated.
In addition the measurements of the grey values
of the three frequency bands are introduced as
random variables of a Markov random field as
well as the data derived from the regions and
used for the interpretation at the high level. As
mentioned, prior information on the objects is
available so that Bayesian inference is applied.

Markov random fields have been frequently ap-
plied for the image processing at the low level,
like restauration, edge detection and segmen-
tation, see for instance (INOCH AND SCHMIDT
1994, p.299: Pan 1994). At the high level
MODESTINO AND ZHANG (1992) interpreted an
image by defining the labels of the objects as a
Markov random field. Their work was consid-
erably improved by KOSTER (1995) who rigor-
ously applied Bayesian statistics and added to
the neighbors of objects the indirect neighbors.

Markov random fields have Gibbs distributions
according to the theorem of HAMMERSLEY AND
CLIFFORD from 1971, see for instance (Kocu
AND SCHMIDT 1994, p.261). Gibbs distribu-
tions are very flexible to define by means of
cliques which are based on neighborhoods so
that relations between objects can be easily
introduced. But also prior information can
be readily incorporated by Gibbs distributions.
The main part of the image model for the in-
terpretation applied here is constituted by the
texture. It is described, as will be shown, by a
Gibbs distribution so that this distribution de-
fines the image model. The object model is also
determined by a Gibbs distribution, since the
Gibbs distributions introduced for the labeling
process at the high level of the image analysis
need information from the object model.

In the following chapters the image interpreta-
tion is described by considering the analysis at
the low level together with the analysis at the
high level. The theory for such an aproach has

w

w

i . N L r ! R % . { = )

heen outhned by Kocn (1995). For easy ref-
crence Lthe maln resulls are repeated hore io-
gether with refinements which were necessary.

First resulls are also presented. they are taken

from (Koster 1995).

2 Modified Bayes’ Theorem

If @ denotes the vector of unknown parameters,
y the vector of observations, the posterior den-
sity p(8|y) of the parameters 8 given the obser-
vations y follows from Bayes’ theorem by

p(6ly) o p(0)p(y|0) | (2.1)

where x denotes proportionality, p(8) the prior
deunsity and p(y|€) the likelihood function, see
for instance (KocH 1990, p.4). Conditional
densities will serve as prior densities in the fol-
lowing so that (2.1) needs to be modified. This
is readily accomplished by the definition of the

conditional density p(8|y, z), see for iustance

(IKocu 1988, p.107),

p(0,y,2)
By, 2} =210
A8l ) p(y, z)

where z denotes an additional randow vector.
By applying the definition (2.2) for p(y|@, z) we
find

p(6,y,z) = p(0,2)p(y|0, z)
and furthermore

p(8,z) = p(z)p(6|z)

ply, z) = p(z)p(y|z) .

By substituting these results in (2.2) we obtain
a modified Bayes’ theorem

p(Bly, z) o p(0]2)p(y6, z) . (2.3)

since p(y|z) is constant, because y and z are
assumed as given. The prior density p(9|z) in
(2.3) is now definied by a conditional distribu-
tion.

The unknown parameters 8 are determined by
the MAP estimate 6 of 6

@ = argmétx p(Bly, z) . (2.4)



3 Markov Random Fields

As mentioned in the introduction. the hwage -
terpreation is solved by a labeling process at the
low level and ai the high level of the iimage anal-
vais. Al the low level pixels are labeled. Let

be the set of pixels
D=dr={mmn] , 0<mi M
' (3.1)

where 7 € Q denotes a pixel at the position
{m.n) with M being the waximum number of
cows and NV of columus of the digital image. The
labeling of the pixels s defined as the Markov
randow field E'(r) with value ¢,., which deter-
mines the texture 1o which the pixel » belongs,

E(r)=¢,1r€ef) (3.2)
with
Gl I8 €= liinn T}, (3.3)

where ¢ denotes the label, & the set of labels and
T the number of textures.

Pixels belonging to the sawe texture form a re-
gion representing an object. Thus, at the high
level of the image analysis we have the set K of
regions with K elements

K={l,....K} (3.4)

and p € A being an element of A'. The labeling
of the regions is defined as the Markov random
field E(p) with value ¢,, which determines the
meaning of the object represented by the region

P

E(p)=¢,pEX (3:5)
with
by = b dEE, &=l T}, (3.6)

where [ denotes the label, £ the set of labels and
U7 the number of objects.

As mentioned in the introduction, Markov ran-
dom fields have Gibbs distributions. If the vec-
tor € contains the values of the realization of
the Markov random field E(r) or £(p), its prob-
ability density function p(€) is given by the
Gibbs distribution, see for instance (KOoCH AND
SCcHMIDT 1994, p.258)

1 v
ple) = — exp(=Ule)), (3.7)

where Z denotes the normalization constant and
["{€) the energyv. Tt is determined by sumiming
over Lhe polentials 1(6]

Uej= ) Ude)

ce(!

fcd2S )

where ¢ is a cligue and € the set of cliques of the
graph defined for the Markov random field. We
mey differentiate hetween a single-site clique «q.

a two-sites clique ¢9, a cligne ¢, with ¢ nodes

!
up to the clique ¢o with maximumn number () of

nodes. Thus we obtain instead of (3.8)

Tle)= Y Usle)+ Y Unlel+...

c1€C) co €07
+ Y U)ot ) Ueyle) (39)
Cq E(-'(q ¢ E(’»)

with €4,C5,...,C,...,Cq being the set of
single-site cliques, of two-sites cliques and so
onand " =C;UCU.. . UEU.. . UlY.

Due to the great number of pixels the normaliza-
tion constant Z in (3.7) is difficult to compute
for inage processing. The conditional density
ple;|0¢;) of the value ¢; of the Jabel at node 2
with 7 € {r,p} given the values ¢; in the neigh-
borhood, abbreviated by d¢;, is therefore used

peildei) ocexp{= > Ucle)},

e(é)eC

(3.10)

where the sum is taken over the cliques «(2)
which contain the node 7 (KocH AND SCHMIDT
1994, p.262).

4 Density Functions for the
Labeling Processes

At the low level of the image analysis the pixels
are labeled according to their affiliation to tex-
tures. Clusters of pixels are generally attributed
to one texture rather than a few pixels. This
fact can be introduced as prior information on
the label €, for the pixel r from (3.2) expressed
by the conditional density
pler|0e) x exp{—[a, + Z Bs(L(er, €rp5)
SEN,
. [(€rvfr—s))]} (4.1)
with

1(&.@):{ by K& Fg

0, if €=y,



The index s denotes a ueighbor of the pixel » in

oad V.. a, and i, Lhe parawmeters
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O Lie densiiy, paratnelers o, coubrol tne

nmuber of pixels abiributed to one fex-

fure and .7, the directions of the bonndaries of
the textures. {4.1) is a special case of the Gibbs
distribution (3.10) (NOCH AND SCHMIDT 1994,

p3LE3).

The measurements of the gray levels in the dif-
ferent {requency bauds of the digital image cou-
Let these
measturements define a Markov random field so
that the density may be obtained by the condi-
tional normal distribution, a special case of the

Ladn Bhe information on the textures.

(iibbs distribution. Let g, be the vector of mea-
surewnents of gray levels for different {requencies
like red. green and blue at the pixel 7, the like-
lithood function then follows with (KNocn anD

SCHMIDT 1994, p.308; NocH 1995)

jTI\
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Py, |0y, 6 Oer ) X pxp{ Z

Mook — Z /5S(k(y7'+s,k_'/l'(k i yv'—s.k“ltfk.)]z}}a
.S'E,\f,
(4.2)

where with ¥, = (y,1) the measurement y, of
the frequency & at pixel r is cousidered as being
independent from the measurement of the dif-
ferent frequencies at pixel r. The parameters of
the density are the wean ji.p of y,1, its variance
afk and f3,.4. which describes the texture at the
frequency & for identical labels ¢, and 0Oe,.

With the prior density (4.1), which can be as-
sumed as being conditionally dependent on dy,.,
and with the likelihood function (4.2) we obtain
the posterior density for ¢, from (2.3) with

pley,. 0y,.06) x

plefoe ) ply, 10y, €, d€,) . (4.3)
By means of this density the MAP estimate
(2.4) for the label ¢, is obtained either by a
deterministic or a stochastic procedure (KocH
AND SCHEMIDT 1994, p.324). A deterministic
method is applied here, which is much faster
thau a stochastic approach. For each texture
training sets are assumed to be available so that
the parameters of the density (4.2) can be esti-
mated. Approximate results for the segmenta-
tion are used to estimate the parameters of the

density (4.1). (4.3) is therefore applied i itera-
The iteration is

7]!'1[-'~ ii]\'!

sodely based on the

fikelithaod tinction (0.2).

"The regions obtained rom the

segmentation are
l:\:l)oIml at the high level of the image analysis
in order to find their meaning. Priov informa-
vion on the label ¢, in (3.5) comes from the fre-
guency of the occurrence of the objects in the
- . ,

scene. These frequencies as well as the frequency
of the ocenrrence of neighboring objects are as-
sumed as given by the object model. The priog
information is expressed by the conditonal den-
sity (3.10) for the label ¢, of the region p with
€ = (¢,). By substituting (3.9) we obtain (Kocu

1995; KOSTER 1995, p.24)

X exp{— Z l. (e

i €] 0¢,)

c(p)ec
=Y Ugle)—..= > U (e} (44)
ca(p)edy Q(P)Ey
Let Sy, be the number of cliques with ¢ sites,

thus 51 = 1. We then obtain instead of (4.4)

Plepldey) o exp{—Up11(€) —

Spy Spe

Z U [h‘]u Z U pQ
Sy 5=A SpQ 5=
ge{l,....Q},0€{l,....5,}. (45)

where .5),, has been used to normalize the con-
tribution of the potentials of the cliques with
equal nodes. The potential of one clique is now
denoted by Up,.(€) in order to indicate that the
region p belongs to the clique, that ¢ sites con-
stitute the clique and o is its number within the
cliques of ¢ sites.

Applying the frequencies mentioned above we
may also write

PleplOey) o ppi(€) .- ppgl€) .- ppole)  (4.6)
with
I‘q
pog(€) = [J] poyole)]/ 5,
o=1

where p,,(€) denotes the contribution of the
cliques with ¢ sites to the density and ppg.(€)
the contribution of clique o within the cliques of
¢ sites. The number 5, has been used again for
the normalization. By comparing the right hand



sides of (4.5) and (4.6) we conclude (KOSTER

1995, p.25)
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or
(4.7)

Data, which characterize the regions to be inter-

Pogol€) x exp{—Upgo(€)} .

preted, should be invariant with respect to the
scale and the rotation of the regions. Observa-
tions describing the form and the compactness
of a region are therefore suitable for the interpre-
tation. By forming the ratio of the areas of two
regions and the difference of the orientations of
two regions, the data for the relations between
two regions are obtained. If the ratios and differ-
ences are added, relations between three regions
are found. This may be continued to higher or-
der relations.

Let the observations for the regions and their re-
lations define a Markov random field. According
to the representation (3.9) of the Gibbs distribu-
tion, the data for the regions are connected with
the one-site cliques and the data for the rela-
tions between two and more regions with cliques
of two and more nodes. Let y, be the vector of
observations for region p, then

'yp:[y;l,...,y;q,...,y;Q]/ (48)
with
ypq:(ypqw)a ge{l,...,Q},
o€ {1""7‘5'2711} » U E {la'-'vvq} ?

where y,,, denotes the vector of observations for
the cliques with ¢ sites and yp40, the observation

itself. For each clique with ¢ sites ¥V, observa- .

tions are available.

By assuming the components of y,, as being nor-
mally distributed and independent although ra-
tios and difference of observations have been
used, the likelihood function is obtained by
(KocH 1995; KOsTER 1995, p.23)

p(yplaypa €P706P) X exp{

Vi 1 .
- Z QT(yPU‘U - .ullve)z = e
u=1 11ve
1 Spg Vg 1 "
_S_ZZQ 2 (yPQOU-/J'qoue) e
P9 5=1 v=1 aqove

36
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The parameters p ., and of the density,
the expected value and variance of y,,.,, depend
on the labels ¢, and de,, they are given by the

object model.

The posterior density p(cplyp,'o“yi,,i)ep) is ob-
tained as (4.3) with (4.5), (4.7) and (4.9) from
(2.3)
\ )

Pleplyy, 0y, O6p) &

])(Epiae;o)p(‘yplayp’fpa 867,) . (4.10)

This density is used for the MAP-estimate of
¢p. Again the deterministic procedure is much
faster than the stochastic one (KOSTER 1995,
p.61).

5 Results

The interpretation has been applied to a part of
the RGB aerial photograph “glandorf”, which
constitutes a test data set of the ISPRS Work-
ing Group HI/3 (FrITSCH ef al. 1994). This
digital image contains many shadows so that the
grey values of the colors red, green and blue were
trarsformed into the HSI color model (hue, sat-
uration and intensity) (GONZALES AND WoODS
1992, p.234). In the HSI color model the shad-
ows appear only in the intensity. Figure 1 shows
the intensity by means of grey values of the
part of the image “glandorf”. Eight training
sets were selected from the digital image for the
segmentation. They represent streets, bushes,
lawns, meadows and shadows from trees and
houses. The remaining three sets show three
kinds of textures for the roofs of houses. The
results of the first segmentation based on the
likelihood function (4.2) are given in Figure 2.
Figure 3 shows the final results of the segmen-
tation. It contains 389 regions after applying a
median filter which corrects minor misclassifica-
tions. As a comparison Figure 4 contains the
seginentation of the RGB image. The houses
cast the intensive shadows, the contours of the
houses are better preserved in Figure 3. This
segmentation is used for the interpretation, al-
though quite a number of regions are not cor-
rectly identified.
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Fight objects had to be identified in the digi-
tal image: sireets (), houses (ho), annexes or
garages («), hedges (fie). lawns ([), meadows
{m), bushes (b), greens within streeis (g). Ob-
servatious have been gathered for one-site, two-
sites and three-sites cliques, five for the one-<ite
cliques and three for the two- and three-sites
cliques. The five observations for the one-site
cliques are measures for the form, the round-
ness and the compactness of the regions and the
first and second HU-invariant. The three obser-
vations for the two- and three-sites cliques are
the area, the orientation and the mean grey level
of the regions.

For a comparison the segmented image of Figure
3 has been visually interpreted. The results are
shown in Figure 5, where the identified objects
are represented by grey values. Large areas la-
beled as unknown could not be interpreted at
all. This is due to the errors in the segmenta-
tion. Figure 6 finally shows the results of the
automatic interpretation. About 33 % of the
objects are incorrectly labeled in comparison to
the visually interpreted image. These results are
encouraging for further development.
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Fig. 1: Intensity ol colors of the {ig. 2: Pirst segmentation of the

digital image HSI image

| Fig. 3: Segmented HSI image | Fig. 4: Segmented RGB image



Fig. 6: Automatic interpretation

2~ ho
——
-~ he
9 == g
6 — m
T=~b

unknown
i ==
— ho
8—a
4 — he
B—|
6 —m
T— b
8—g



