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ABSTRACT 

L1-norm adjustment corresponds to the minimization of the sum of 

weighted absolute residuals. Unlike Least Squares, it is a robust 

estimator, i.e., insensitive to outliers. In geodetic networks, the main 

application of L1-norm refers to the identification of outliers. There is no 

general analytical expression for its solution. Linear programming is the 

usual strategy, but it demands decorrelated observations. In the context of 

Least Squares, it is well known that the application of Cholesky 

factorization decorrelates observations without changing the results of the 

adjustment. However, there is no mathematical proof that this is valid for 

L1-norm. Besides that, another aspect on L1-norm is that equal weights 

may guarantee maximum robustness in practice. Therefore, it is expected 

to also provide a better effectiveness in the identification of outliers. This 

work presents contributions on two aspects concerning L1-norm 

adjustment of leveling networks, being them: the validity of Cholesky 

factorization for decorrelation of observations and the effectiveness for 

identification of outliers of a stochastic model with equal weights for 

observations. Two experiments were conducted in leveling networks 

simulated by the Monte Carlo method. In the first one, results indicate 

that the application of the factorization as previously performed in the 

literature seems inappropriate and needs further investigation. In the 

second experiment, comparisons were made between L1 with equal 

weights and L1 with weights proportional to the inverse of the length of 

the leveling line. Results show that the first approach was more effective 

for the identification of outliers. Therefore, it is an interesting alternative 

for the stochastic model in L1-norm adjustment. Besides providing a better 

performance in the identification of outliers, the need for observation 

decorrelation becomes irrelevant if equal weights are adopted. 
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RESUMO 

O ajustamento pela norma L1 corresponde à minimização da soma dos 

resíduos ponderados. Diferentemente do Método dos Mínimos Quadrados, 

ele é robusto, ou seja, insensível a outliers. Em redes geodésicas, a 

principal aplicação da norma L1 refere-se à identificação de outliers. Não 

há uma expressão analítica geral para sua solução. Programação Linear é 

a estratégia usual, mas isso demanda observações decorrelacionadas. No 

contexto dos Mínimos Quadrados, sabe-se que a aplicação da fatoração de 

Cholesky decorrelaciona observações sem modificar os resultados do 

ajustamento. Porém, não há demonstração matemática de que o mesmo 

vale para a norma L1. Além disso, outro aspecto sobre a norma L1 é que 

pesos iguais podem garantir a máxima robustez na prática. Assim, se 

espera que também provenha maior efetividade na identificação de 

outliers. Este trabalho apresentou contribuições com relação a dois 

aspectos do ajuste pela norma L1 de redes de nivelamento: a validade da 

fatoração de Cholesky para decorrelacionamento de observações e a 

efetividade de identificação de outliers com um modelo estocástico de pesos 

iguais para as observações. Dois experimentos foram conduzidos em redes 

de nivelamento simuladas pelo método de Monte Carlo. No primeiro, 

verificamos que a aplicação da fatoração como previamente realizada na 

literatura parece inadequada e necessita de maior investigação. No 

segundo experimento, comparações foram feitas entre ajustamentos pela 

norma L1 com pesos iguais e com pesos inversamente proporcionais ao 

comprimento das linhas de nivelamento. Os resultados mostram que a 

primeira abordagem foi mais efetiva para identificação de outliers. Assim, 

essa é uma alternativa interessante para o modelo estocástico no ajuste da 

norma L1. Além de proporcionar um melhor desempenho na identificação 

de outliers, a necessidade de decorrelacionamento das observações torna-se 

irrelevante se pesos iguais forem adotados. 

 

PALAVRAS-CHAVE: Norma L1. Decorrelacionamento de observações. 

Pesos iguais. Outlier. Simulação de Monte Carlo. 

 

 

* * * 

Introduction 

 

It is well known that the Least Squares (LS) adjustment causes 

incorrect results when outliers are present in an observation set 

(ROFATTO, MATSUOKA and KLEIN, 2017). Because the L1-Norm 

Minimization (L1NM) is a robust method, resistant to outliers, several 

authors have already tried it in the adjustment of geodetic networks, such 

as Marshal and Bethel (1996), Amiri-Simkooei (2003), and Yetkin and Inal 
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(2011). The main application of L1NM corresponds to outlier identification 

in the network, for later adjustment by LS. 

In linear adjustment computations, Equation 1 expresses the 

functional model, in which Amxn is the coefficient matrix of the xnx1 vector of 

unknowns, Lmx1 is the vector of the observed values, vmx1 is the residual 

vector, m is the number of observations, and n is the number of unknowns. 

For the stochastic model, it is usual to assume that the a priori variance 

factor σ02 is unitary. Thus, the matrix of weights Pmxm is given by the 

inverse of the covariance matrix of the observations Σmxm (Equation 2). 

Different ways of adding datum information to the system of equations are 

shown in Ghilani (2010). 

 

  𝐴𝑥 = 𝐿 + 𝑣      (1) 

 

𝑃 = 𝜎0
2 ∗ 𝛴−1 = 𝛴−1     (2) 

 

Under the assumption that observations follow the normal 

distribution, the most probable solution of the adjustment is usually 

obtained by the LS method, also referred to as L2-norm minimization 

(AMIRI-SIMKOOEI, 2003), which minimizes the sum of the squared 

elements of v weighted by P (Equation 3). As a consequence, it can be 

demonstrated thatx is given by Equation 4. Further information on LS 

adjustment of geodetic networks can be found in Ghilani (2010). 

 

𝐿𝑆: 𝑚𝑖𝑛(𝑣𝑇𝑃𝑣)                    (3)    

 

𝑥 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝐿                                               (4) 

 

Independent observations have no correlation with each other 

(GEMAEL, MACHADO and WANDRESEN, 2015). Thus, the matrix of weights 

Pmxm is diagonal. For the specific case of leveling networks, it is usual to 
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adopt weights of the observations as inversely proportional to the length of 

the respective leveling lines. For mathematical proof of this approach to the 

stochastic model we also recommend Ghilani (2010). 

On the other hand, L1NM corresponds to the minimization of the sum 

of the absolute residuals weighted by the vector of weights of observations 

pmx1 (Equation 5), comprised of the elements of the main diagonal of P 

(AMIRI-SIMKOOEI, 2003). Therefore, since Equation 5 does not take 

correlations into account, observations should be independent (YETKIN and 

INAL, 2011). 

 

𝐿1𝑁𝑀: 𝑚𝑖𝑛 (𝑝𝑇|𝑣|)    (5) 

 

Unlike LS, there is no general analytical expression for the solution of 

L1NM. Linear programming is the usual strategy for L1NM (AMIRI-

SIMKOOEI, 2018). Based on the basic concepts of Marshal and Bethel 

(1996), Amiri-Simkooei (2003) has presented a detailed L1NM formulation 

for implementation by the simplex method of linear programming.  Readers 

interested in linear programming and simplex method should refer to 

Dantzig (1963).  

Other approaches for L1NM solution can be found in Koch (1999), 

Junhuan (2005), Baselga (2007), Khodabandeh and Amiri-Simkooei (2011), 

and Amiri-Simkooei (2018). On the whole, it is essential to highlight that it 

is common in L1NM to consider the premise of independent observations in 

the network. Therefore, with P being diagonal, the obtainment of vector p is 

trivial, which allows the application of Equation 5.   

 

1 Observation decorrelation and equal weights in L1NM 

 

What if observations are not independent? Although not in the L1NM 

context, this issue has already been addressed in geodetic literature by Yang 

(1994), Yang, Song and Xu (2002), and Klein et al. (2015), for example. 
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Regarding L1NM, Yetkin and Inal (2011) have brought an attempt to 

circumvent this limitation. They have adopted the exact same formulation 

as Amiri-Simkooei (2003), with only one more detail: in the presence of 

correlation between observations of the network (P not diagonal), the 

authors have applied a solution for the observation decorrelation via 

Cholesky factorization of the matrix P. As a consequence, the authors have 

indicated that the “new” matrix P' is not only diagonal but also equal to the 

identity matrix I of the same dimensions; that is, all weights become 

unitary. 

However, we emphasize that Strang and Borre (1997), who were 

mentioned by Yetkin and Inal (2011) on this issue, have demonstrated 

Cholesky factorization non-influence only in the results of the LS 

adjustment. Despite this, Cholesky factorization was applied in L1NM (not 

LS) by the latter authors. 

Let W be the lower triangular matrix computed in the Cholesky 

factorization of P (P=WTW). In the context of LS adjustment, adopting P’=I, 

transformed matrix of coefficients A’=WA, and transformed vector of 

observed values L'=WL, the vector x of unknowns remains unchanged in 

relation to the original system (Equation 6). Thus, it becomes a system with 

the same solution for the unknowns of the original but now with 

uncorrelated (independent) observations. The result for the residual vector 

v’=Wv is also related to the residual vector v of the original system. 

 

𝑥 = ((𝑊𝐴)𝑇𝐼𝑊𝐴)−1(𝑊𝐴)𝑇𝐼𝑊𝐿 = (𝐴𝑇𝑊𝑇𝐼𝑊𝐴)−1𝐴𝑇𝑊𝑇𝐼𝑊𝐿 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝐿  (6) 

 

Formal proof of Cholesky factorization validity in the context of 

L1NM was not found either in Strang and Borre (1997) or in any other work 

in the related literature. As it seems inconsistent, a contribution of our work 

is the investigation of the consequences of using Cholesky factorization for 

L1NM results. 
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In addition, another point seems to deserve further investigation 

about the stochastic model in L1NM: the potential effectiveness of an 

adjustment with equal weights for observations in the identification of 

outliers. The numerical results of Kampmann and Krause (1997) suggest 

that equal weights provide the maximum robustness in practice for L1NM. 

This issue was also addressed in our experiments. 

In the experiments, we simulated leveling networks using Monte 

Carlo Simulation. It is a type of simulation that is based on repeated 

random samples of the input variables, with known probability distribution, 

to characterize the variation of the results of the model to be studied 

(RAYCHAUDHURI, 2008). The greater the number of random samples 

simulated, the more accurate the characterization tends to be. Its 

application is usual in many fields. It has also become common in the 

simulation of geodetic networks, as performed by Hekimoglu and Erenoglu 

(2007) and Rofatto et al. (2018), for example. Since it has never been done 

before in geodetic literature, the analysis of L1NM with Monte Carlo 

Simulation is also a contribution of our work. 

 

2 Methodology 

 

For the investigation of the elements discussed, two experiments were 

conducted in leveling network scenarios with independent observations. The 

first experiment (Experiment 1) aimed to evaluate the validity of the 

application of the Cholesky factorization for observation decorrelation for 

L1NM in the terms of Yetkin and Inal (2011). The solution of this 

adjustment was compared with and without decorrelation for the simulated 

scenarios. Since the solution for x (and v) may not be unique in L1NM 

(ABDELMALEK and MALEK, 2008), we compared the L1 norm itself of the 

vector of absolute weighted residuals, here called “L1 norm” for simplicity 

(equation 7), which must be equivalent for equally correct solutions. 
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 𝐿1 𝑛𝑜𝑟𝑚 = 𝑝𝑇|𝑣|     (7) 

 

 It is important to highlight that Yetkin and Inal (2011) dealt with 

correlated observations (non-diagonal P matrix)  in their experiments. 

However, if we had done this, we would not have been able to verify if 

Cholesky factorization changed (or not) the L1NM results, because 

covariances cannot be insert in L1NM by the formulation of Equation 5. 

Thus, we used a network with a diagonal P matrix. Therefore, we could 

solve L1NM without applying Cholesky factorization (value considered 

correct for reference), as well as with Cholesky factorization, to check if 

there is (or not) equality between these adjustments. 

The second experiment (Experiment 2) aimed to investigate whether 

L1NM with equal weights for observations is more effective than with usual 

weights of the observations as inversely proportional to the length of the 

respective leveling line in the identification of outliers. We considered 

outliers the observations with a L1NM residual higher than 3*σi, in which 

σi is the standard deviation of the respective i-th observation. Probability of 

correct identification (PCI) and the probabilities of Type II error, Type III 

error, Over-identification+, and Over-identification- were computed by 

adopting both stochastic models for comparison. A description of these 

indices is presented in Table 1. 

 

Table 1 – PCI and probabilities of errors 

Probability Description 

PCI 
probability of correctly identifying the outlying observation with 

no other observations 

Type II error 
probability of non-identifying an outlier when there is at least 

one outlier 

Type III error 
probability of misidentifying a non-outlying observation as an 

outlier, instead of the outlying observation 

Over-identification+ 
probability of correctly identifying the outlying observation and 

other observations 

Over-identification- 
probability of identifying more than one non-outlying 

observation, whereas the “true outlier” remains in the dataset 

Source: Adapted from Rofatto, Matsuoka and Klein (2017) and Rofatto et al. (2018).  
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 In order to evaluate the higher robustness of L1NM with equal 

weights, we also compared the “rate of null residual” and the “rate of 

highest residual” for the outlier. The occurrence of null residuals is common 

in L1NM (ABDELMALEK and MALEK, 2008). If it happens with the 

outlier, we can infer that its identification will not be viable, as it will be 

completely masked in the adjustment. This may indicate that the 

adjustment was not robust, not resistant to the outlier. In this context, it is 

expected that the outlier will have the highest residual in a robust 

adjustment.  

The experiments were conducted using the software Octave, version 

4.4.1. The solution of L1NM was performed by simplex method of linear 

programming, using the glpk routine of the same software. The reader can 

contact the authors to obtain the Octave codes. The experiments are 

unprecedented in geodesic literature, justifying the scientific relevance of 

this work. 

 

2.1 Monte Carlo simulations 

 

For the experiments, leveling network scenarios with independent 

observations were simulated by the Monte Carlo method. “Observations 

without outliers” and “bad observations” (outliers) with random sign for the 

scenarios were obtained as in the heteroscedasticity case (different weights 

for observations) of Hekimoglu and Erenoglu (2007).  

Following the strategy of these authors, the simulated leveling 

network used as the basis for the scenarios by the Monte Carlo method is 

shown in Figure 1 and Table 2. The observations Li were computed directly 

from the heights of the vertices of the network; that is, they represent the 

exact elevation difference between them, without any measurement errors. 

Intervals of magnitude of the generated outliers (from 3σ to 6σ, and 

from 6σ to 12σ, in which σ is the standard deviation of the respective 

observation) used in the reference cited were also used in this work. In 
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addition, one more interval (from 12σ to 25σ) for magnitudes of the 

generated outliers was added. For each experiment and each interval of 

magnitude of outliers, we simulated 200,000 scenarios with one outlier. A 

result accuracy analysis as a function of the number of simulations was 

performed by Rofatto et al. (2018). 

 

Figure 1 – Simulated leveling network 

 
Source: Prepared by the authors. 

 

Table 2– Simulated network – elevation differences 

Li 
Elevation 

difference (mm) 

Distance 

(km) 
Li 

Elevation 

difference (mm) 

Distance 

(km) 

L1 163854.9 49 L11 110227.2 62 

L2 6446.2 41 L12 155928.2 50 

L3 57037.0 38 L13 52875.0 35 

L4 126209.5 34 L14 62904.2 43 

L5 101128.6 22 L15 3889.5 20 

L6 296885.8 13 L16 42705.7 28 

L7 398014.4 23 L17 98891.2 19 

L8 60449.1 48 L18 115779.2 39 

L9 173710.4 15 L19 113222.5 27 

L10 167264.2 24 L20 46428.8 21 

Source: Prepared by the authors.  

 

The standard deviation of the observations adopted in the simulations 

is given by 𝝈𝒊 = 𝟏. 𝟎(𝒎𝒎) ∗ √𝑲𝒊, where K (in km) is the length of the 

respective leveling section. In each simulated scenario adjustment, the 
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height of point A was considered fixed and with value hA=0. Thus, all Monte 

Carlo scenarios contained 20 observations and 10 points of heights to be 

determined (unknowns), so the number of degrees of freedom was 10. 

 

3 Results and Discussion 

 

3.1 Experiment 1 

 

 At first, all simulated scenarios were adjusted by LS with the usual 

stochastic model of weights of the observations as inversely proportional to 

the length of the respective leveling lines. We adjusted each scenario with 

the application of Cholesky factorization for observation decorrelation and 

without decorrelation. Adjustment results in each scenario were always the 

same (as expected) for the “L1 norm” (Equation 7), considering the tolerance 

of 10-10mm-1 (mm-1 = 1/mm is the unit of “L1 norm”). 

 Then, all adjustments with and without the application of the 

Cholesky factorization to decorrelate observations were also performed by 

L1NM. Table 3 shows the percentage of scenarios in which the results for 

“L1 norm” (Equation 7) were equal, that is, the decorrelation succeed, 

considering different levels of tolerance. In order to highlight differences 

between L1NM and LS, Table 3 also presents the aforementioned LS 

results. 

 

Table 3– Success rate of decorrelation – Experiment 1 

Adjustment 

method 

Tolerance 

(mm-1) 

Magnitude of outliers 

3-6σ 6-12σ 12-25σ 

L1NM 10-1 83.46% 80.48% 78.54% 

L1NM 10-10 21.68% 20.96% 20.89% 

LS 10-10 100.00% 100.00% 100.00% 

Source: Prepared by the authors.  

 

Despite the equality of results with and without Cholesky 

factorization in 100% of LS adjustments, it happened in only approximately 
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20% of the cases for L1NM, considering the tolerance of 10-10mm-1. Even 

considering the tolerance of 10-1mm-1, equality for results in L1NM was not 

always achieved. Therefore, we verified that coherence between the results 

of L1NM with and without decorrelation through Cholesky factorization in 

the terms of Yetkin and Inal (2011) is not guaranteed. 

Moreover, we found that the higher the magnitude of outliers in the 

data, the greater the probability of non-coherence. Thus, although 

previously performed in the literature, we verified that the application of 

the factorization in this context seems inappropriate and still needs further 

investigation. 

In addition, Experiment 1 further corroborated the theory on the 

subject, in the case of decorrelation for LS adjustment, for which the results 

with and without Cholesky factorization were always consistent. 

 

3.2 Experiment 2 

 

 Table 4 shows the PCI and the probabilities of Type II error, Type III 

error, Over-identification+, and Over-identification- for 200,000 scenarios 

simulated with one outlier for each different interval of magnitude of the 

outlier.  

 

Table 4– PCI and probabilities of errors – Experiment 2 

Outlier Weights PCI Type II Type III Over+ Over- 

3-6σ 
Equal 44.89% 27.70% 11.91% 12.85% 2.68% 

Usual 44.16% 28.97% 13.05% 9.91% 3.90% 

6-12σ 
Equal 70.53% 1.23% 1.19% 26.58% 0.47% 

Usual 66.89% 1.71% 2.91% 19.94% 8.55% 

12-25σ 
Equal 71.76% 0.00% 0.00% 28.24% 0.00% 

Usual 68.17% 0.00% 0.01% 21.83% 9.99% 

Source: Prepared by the authors.  

 

 In Experiment 2, PCI was always higher in the adjustment by L1NM 

with equal weights, for all magnitude ranges of the inserted outlier. 

Therefore, this approach for the stochastic model was more effective for 
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L1NM in the identification of outliers than the usual one. Both stochastic 

models tended to provide higher PCI with the increase of the magnitude of 

outliers in the data. 

 The probabilities of Type II and Type III errors also “improved” with 

equal weights, as their values were lower. Only Type II errors were equally 

zero for 12-25σ outliers. In addition, they decreased as the magnitude of the 

outlier increased for both stochastic models. Probabilities of Over- were 

advantageous (lower) with equal weights as well. Moreover, they tended to 

decrease for higher magnitudes of outliers, while the usual weight ones 

tended to increase.  

 Probabilities of Over+ were always higher with equal weights, which 

was its only disadvantage. However, it is important to remember that, 

although among false positives, Over+ is the only error in which an existing 

outlier is at least identified (the main point in ever applying L1NM). 

Therefore, it is better to have Over+ than Over-. If we add the PCI and 

Over+ for 12-25σ outliers, for example, we can see that all outliers were 

identified with equal weights, while 90% were identified with usual weights, 

even though the difference of PCI was 3.59% (significantly less than 10%). 

 Finally, Table 5 presents the “rate of null residual” and the “rate of 

highest residual” for the outlier. Equal weights always provided less of the 

first, and more of the second, which indicates the higher resistance to the 

outlier in relation to usual weights in this experiment. Both stochastic 

models tended to provide a lower “rate of null residual” and a higher “rate of 

highest residual” with the increase of the magnitude of outliers in the data. 

 

Table 5 – Rate of null and highest residual of the outlier – Experiment 2 

Outlier Weights 
Null 

residual 

Highest 

residual 

3-6σ 
Equal 5.40% 63.92% 

Usual 15.50% 58.22% 

6-12σ 
Equal 0.15% 95.17% 

Usual 10.33% 84.29% 

12-25σ 
Equal 0.00% 99.94% 

Usual 9.97% 89.82% 

Source: Prepared by the authors.  
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4 Conclusion 

 

This work presented contributions regarding two points concerning 

L1-norm adjustment: the validity of the application of Cholesky 

factorization for observation decorrelation and the effectiveness in 

identifying outliers of a stochastic model with equal weights for 

observations. Two experiments were performed in leveling network 

scenarios with independent observations, simulated by the Monte Carlo 

method. 

Regarding Cholesky factorization, although its application for 

observation decorrelation is appropriate in LS adjustment, it presented at 

least alarming results for L1NM. This indicates that the application of 

factorization in the latter context, as previously performed in the literature, 

seems inappropriate and still needs further investigation. Therefore, this 

result suggests that other methods for decorrelation should be tested, and 

that the formulation of Cholesky factorization for application in L1NM 

should be re-evaluated. 

However, we also verified that L1NM with equal weights may be an 

interesting alternative, because of the advantage seen in relation to the 

usual stochastic model. Besides providing a better performance in the 

identification of outliers, the need for observation decorrelation becomes 

irrelevant if equal weights are adopted. Therefore, future work should be 

developed in order to obtain a better understanding of the influence of the 

stochastic model for the identification of outliers by L1NM. 

Finally, in this work we considered the absolute residual over 3σ as 

the objective criterion for the identification of outliers in L1NM. Although 

this limit is common in LS approach, we believe further investigations must 

be conducted in order to analyze possible objective criteria specific for the 

results of L1NM. 
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