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ABSTRACT

The support vector machine (SVM) is a group of theoretically superior machine learning algorithms and has recently
become an effective tool for pattern recognition. The aim of this work was to compare this newer classification algorithm
against a traditional statistical classifier and to assess their accuracy. The area surrounding the [tumbiara reservoir in the
State of Goids, Brazil was selected as the study area. The classes were defined in accordance with the Cover Classification
System of the Food and Agriculture Organization of the United Nations (FAO). Training sets were collected for each
class, and the algorithms were then applied. A confusion matrix and Kappa coefficients were used to evaluate the
classification algorithm. The computed accuracy was approximately 71%, and the Kappa coefficient was 0.64 for the
SVM classification. For the maximum likelihood (ML) the overall accuracy was 49% and the Kappa coefficient was 0.36.
According to these results, the optimal class separation by the SVM algorithm was considered to be appreciably better
than the ML classification.

Keywords: Tropical Reservoir, CBERS, Support Vector Machine.
RESUMO

O Miquina de Suporte Vetorial (MSV) é um grupo tedrico de algoritmos de aprendizagem de maquina e
recentemente se tornou uma ferramenta efetiva para o reconhecimento de padrdes. O objetivo deste trabalho foi o de
comparar esse novo classificador contra os classificadores estatisticos tradicionais e avaliar sua acuricia. A 4rea
selecionada para realizar esse experimento foi a drea de influéncia do reservatdrio hidrelétrico de [tumbiara (GO). As
classes selecionadas foram obtidas pelo sistema de classificacdo de cobertura da FAO. Amostras de treinamento foram
coletadas para cada classe e os algoritmos de classificagdo foram entdo aplicados. O coeficiente Kappa foi utilizado
para avaliar os classificadores. Os resultados mostraram que para o algoritmo MSV a acurécia foi de 71% com um
coeficiente Kappa de 0,64. Para o algoritmo de méxima verossimilhanga a acurdcia foi de 49% com Kappa de 0,36. De
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acordo com esses resultados, para a classificag@o da drea de estudo selecionada, o algoritmo MSV apresentou melhor

resultado na separacdo das classes propostas pela FAO.

Palavras chaves: Reservatdrio Tropical, CBERS, Méquina de Suporte Vetorial.

1.INTRODUCTION

Problems in remote sensing data processing
are usually based on a specific identification of land
cover, an estimation of biophysical parameters and
features extraction. Moreover, the complexity of these
problems increases with the complexity of the area
analyzed. Land use and land cover mapping is one
of the most important remote sensing applications.
Briassoulis (1993) explained that the concepts of land
cover and land use are similar, but not equivalent.
Land cover is the physical, chemical and biological
state of the terrestrial surface, represented by forests,
water or built-up areas. Otherwise, land use is
defined by the human activities associated with the
land cover, such as cattle-raising, recreation,
conservation and residential areas.

Over the last three decades, remote sensing
has increasingly become a prime source of land cover
information due to the advancements in satellite sensor
technology and increases in the number of countries
with Earth Observation Systems (FOODY and
MATHUR, 2004). These technologies have enabled
the acquisition of land cover information over large
areas at various spatial, temporal, spectral and
radiometric resolutions. One of the major approaches
to derive land cover information from remotely
sensed imagery is digital classification (HUANG et
al. 2002).

Classification is the process that allows a
correlation between pixels from satellite images and
classes on the terrestrial surface. Most works with
remotely sensed images involve the use of the
reflectance and radiance of each pixel in order to
assign it to a number of land cover classes (HUANG
etal. 2001). Spectral reflectance characteristics can
identify the cover type if the sensor is able to measure
data at several wavelengths (RICHARDS, 1993).
For each pixel, the set of samples is analyzed to
provide a label that associates the pixel with a
particular land cover. The algorithms usually used for
this process are known as image classifiers
(MATHER, 1999). These classifiers can be
separated into supervised and unsupervised
classifiers. Among the unsupervised classifiers we can
mention Isodata and K-means. Among the supervised
classifiers are maximum likelihood, the minimum
distance, spectral angle mapper, decision tress, neural
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networks and, more recently, the support vector
machine (SVM).

Machine learning algorithms are designed to
determine the location of decision boundaries that
produce the optimal separation of classes with the
fewest errors, thereby minimizing the confusion
between classes (VAPNIK, 1995). The SVM
classifier was introduced into statistical learning
theory by Vapnik (1995) and is focused on the
optimal separation between classes in the form of
the training cases that are placed at the edge of the
class descriptors. These training cases are called
support vectors. Training cases other than the
support vectors are discarded. This way, not only 1s
an optimal hyperplane fitted, but fewer training
samples are effectively used; thus, high classification
accuracy is achieved with smaller training sets
(MERCIER and LENNON, 2003).

Moreover, the SVM can be successfully
applied to the problems of image classification with
large input dimensionality (MELGANI and
BRUZZONE, 2004). Several studies (HERMES
et al. 1999; BROWN et al. 2000; PAL and
MATHER, 2005) have shown that the SVM
classifier presents better results in remotely sensed
images classification than other classification
methods such as neural networks and decision trees.
In comparison with Artificial Neural Networks
(ANNs), the SVM offers a solid mathematical
foundation that provides a probabilistic guarantee
of how well the classifier will generalize unseen data
(PERKINS et al. 2001).

While ANNs are based on the idea of
minimizing the errors in training data (i.e., empirical
risk), the SVM operates on a principle known as
Structural Risk Minimization (SRM) that minimizes
the upper boundary of the generalization error or
the errors in unseen data. A review about SVM
method can be accessed at Mountrakis et al. (2011).

Images acquired by a multispectral sensor,
such as the widely used Landsat Thematic Mapper
(TM) sensor, are used in classification processes.
Brazil and China jointly operate the China-Brazil
Earth Resources Satellite (CBERS) program, which
1s a partnership between these two countries in the
technical segment of space and science.
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In this research, our objectives were to assess
the classification by the SVM algorithm in its
application for CBERS images, to compare this
result against a traditional statistical classifier (ML)
and to assess the accuracy of the combination of
SVM/CBERS in remote sensing image classification.
Further, we sought to assess the potential of CBERS
data for image classification in general.

2. METHODS

2.1 Study area

To evaluate the efficiency of the SVM in
CBERS-2 CCD images classification, the area
surrounding the Itumbiara reservoir in the State of
Goids, Brazil was selected as our study area. This
area was chosen due to the diversity of land use
classes and the importance of these uses to the
reservoir water quality. The reservoir (18° 25’ S,
49° 06’ W) is located in the Cerrado biome, between
the states of Minas Gerais and Goids (Figure 1).

It is formed mainly by the rivers Paranaiba,
Araguari and Corumbd, and it has a dendritic shape,
with 814,000 m? of flood area. The watershed of
the Itumbiara reservoir features agriculture and
husbandry as its main economic activities, with a
great expansion of sugar cane plantations in the last
years. These activities have an influence on water
quality, because through them, organic and inorganic
matter and pesticides drain into the reservoir.

2.2 Remote sensing data

For this study, two CBERS-2 CCD scenes
were acquired (path/row 158/120 and 158/121) on
September 2nd, 2007 from the image database of
the Image Generation Division of the National
Institute for Space Research (INPE), which contain
images acquired by the LANDSAT 1-7, CBERS-
2 and CBERS-2B satellites (http://www.dgi.inpe.br

/CDSRY/). All of the images were fully cost
free when requested (via the Internet).

The bands used were band 2 (0.52-0.59 im),
band 3 (0.63-0.69 im) and band 4 (0.77-0.89 im),
which in combination cover the watershed area of
the Itumbiara reservoir. A scene, available on the
Global Land Cover Facility website (http://
glcf.umiacs.umd.edu/index.shtml), was used to
geometrically correct the CBERS scenes that were
restored in accordance with the procedures
described by Fonseca et al. (1993) using
instantaneous field of view (EIFOV) parameters
described by Gouvea et al. (2007).

A mosaic with the CBERS scenes was made,
and the area of interest around the reservoir was
established. The classes to be identified by the
classifiers were defined in agreement with the Land
Cover Classification System of the Food and
Agriculture Organization of the United Nations
(FAO), version 2 (DI GREGORIO, 20053), as
shownin Table 1.
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Fig. 1 - The location of the Itumbiara reservoir.
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Table 1: Classes established for the CBERS-2 CCD

images classification
Cultivated and Areas where the natural
Managed Terrestrial vegetation has been removed
Areas ormodified and replaced by

other types of vegetative cover
of anthropogenic origin. This
vegetation is artificial and
requires human activity to
maintain it in the long term.

Natural and Semi-
Natural Vegetation

Areas where the vegetative
cover s in balance with the
abiotic and biotic forces of its
biotope. Semi-natural
vegetation is defined as
vegetation not planted by
humans but influenced by
human actions.

This class describes areas that
have an artificial cover as a
result of human activities, such
as construction (cities, towns,
and transportation), extraction
(open mines and quarries) or
waste disposal.

Artificial Surfaces
and Associated Areas

This class describes areas that
do not have an artificial cover as
aresult of human activities.
These areas include areas with
less than 4% vegetation cover,
like bare rock areas, sands and
deserts.

Bare Areas

Natural and Artificial
Water Bodies

Areas that are naturally covered

by water, such as lakes and

rivers, or areas that are covered

by water due to the construction

of artefacts, such as reservoirs,
canals or artificial lakes.

2.3 Training data selection

The training dataset used in this study
consisted of 81,268 points (pixels). Small patches
of homogenous pixels for each class were identified
and labeled in the images. This process is a
commonly used sampling method (CAMPBELL,
1996). These regions of interest were shaped
irregularly and included numerous points. The
distribution of classes in the training dataset is
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showed in Table 2. This training dataset was used
as input for the ML and SVM.

Table 2: Distribution of classes in the training dataset.

Class # of points
Natural and Artificial Water Bodies 39,879
Natural and Semi-Natural Vegetation 16,353
Artificial Surfaces and Associated Areas 6564
Cultivated and Managed Terrestrial Areas 9679
Bare Areas 8793

2.4 Maximum Likelihood Classifier (MLC)

The MLC is the most commonly used method
of classification in remote sensing. This method
assumes that the statistics for each class in each band
are normally distributed and calculates the probability
that a given pixel belongs to a specific class. All pixels
are classified through this method, unless a
probability threshold is selected. Each pixel is
assigned to the class that has the highest probability
(i.e., the maximum likelihood).

A pixel with the maximum likelihood is
classified into the corresponding class. If the highest
probability is smaller than a threshold, the pixel
remains unclassified. The equation 1 shows how the
maximum likelihood classifies each pixel in the image
(RICHARDS, 1993).

1 1 1
g,(x)—lnp(w,.)—gln‘z,‘—E(x—m’_)'z,’(x—m,.) (1)

where i = class; x = n-dimensional data (where n is
the number of bands); p(w,) = the probability that
class w. occurs in the image and is assumed the same

for all classes; ‘Z i‘: the determinant of the

. . . -1 .
covariance matrix of the data in class w; Zi =its

inverse matrix; m, = the mean vector. For a detailed
explanation of MLC, refer to Mather (2001). The
MLC is a classical parametric classifier that relies
on second-order statistics of the Gaussian
probability density model for each class (DUDA and
HART, 1973). The equation for this classifier is given
below:

D =In(a,) ~[o.51,(|Cov,|]]-[0.5(X — &.f Cov;(x ~ )] (2)
where D = likelihood; ¢ = the particular class; X =
the measurement vector of the candidate pixel; m_
=the mean vector of the sample of class c; a = the

per cent probability (or a priori knowledge) that a
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candidate pixel is a member of class c; Covc =the
covariance matrix of class c; ICovCI =the determinant
of Cov_and Cov -1 = the inverse of Cov ..

A pixel is assigned to class ¢ for which the
likelihood is the highest. A good estimation of the
mean vector and covariance of the population is
essential; hence a sufficient quantity of ground truth
data should be sampled.

As a parametric classifier, ML relies heavily
on a normal distribution of the data in each input
band. In cases where there is high correlation
between bands or in which ground truth data is
homogeneous, the inverse of the variance-
covariance matrix becomes unstable. ML training is
long and time consuming because it involves two
matrix multiplications for each pixel and for each
class.

2.5 Support Vector Machine (SVM)

Recently, the SVM has become an important tool
for the classification of remote sensed images. Many
studies have shown that the SVM provides better
classification results than other widely used methods,
such as the MLC and neural network classifiers
(THEODORIDIS)and KOUTROUMBAS, 2003).
The SVM is based on statistical learning theory and
is designed to determine the location of decision
boundaries that produce the optimal separation of
classes (VAPNIK, 1998).

One of the main results of statistical learning
theory is that the error probability of a classifier is
upper delimited by a quantity depending not only
on the error rate achieved on the training set, but
also on the intrinsic property of the classifier that
serves as a measure of the “richness” of the set of
decision functions the classifier can implement. The
richer the set of decision functions, the higher the
classifier’s capacity.

The SVM is based on the SRM principle
(Structural Risk Minimisation), which aims at
reaching the minimum of the upper bound of the error
probability of the classifier by achieving a trade-off
between the training set and the capacity. The risk
of a learning machine is bounded by the sum of the
empirical risk estimated from training samples and a
confidence interval. The strategy of SRM is to keep
this empirical risk fixed and to minimize the
confidence interval, or to maximize the margin
between a separating hyperplane and the closest
data points.
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A separating hyperplane is a plane in a multi-
dimensional space that separates the data samples
of two classes. The optimal separating hyperplane
is the one that maximizes the margin from the closest
data points to the plane. Itis discovered through the
identification of the most representative training
samples (i.e., the support vectors).

The SVM was initially designed for “two-
class” problems. For multiple classes, an appropriate
multi-class classifier is needed. Two strategies have
been proposed for these problems. One compares
one class with the others taken together. This strategy
generates n classifiers, where n is the number of
classes. The final output is the class that corresponds
to the SVM with the largest margin; one class
determines n hyperplanes. This method requires the
solution of n quadratic programming optimization
problems, each of which separates one class from
the remaining classes (“‘one against the rest”).

The other approach is to combine several
classifiers (“one against one”), creating a binary
classifier for each possible pair of classes. All of the
possible two-class classifiers are evaluated from the
training set of n classes, with each classifier trained
on only two out of n classes, giving a total of n(n-1)/
2 classifiers. Applying each classifier to the test data
vectors gives one vote to the winning class. The data
1s assigned the label of the class with most votes.

If the training dataset is not linearly separable,
a kernel method is used to simulate a non-linear
projection of the data in a higher dimensional space,
where the classes are linearly separable. According
to the theoretical development of the SVM, the
kernel function plays an important role in locating
complex decision boundaries between classes.

The kernel functions convert non-linear
boundaries in the original data space into linear ones
in the high-dimensional space, boundaries that can
be located using an optimization algorithm. The
SVM has four kernel functions: (i) linear, (ii)
quadratic, (ii1) polynomial and (iv) radial base
function (RBF). The selection of a kernel function
and of the appropriate values for the corresponding
kernel parameters may affect the performance of
the SVM.

In addition, the SVM includes a penalty
parameter (C) that allows a certain degree of
misclassification, which is particularly important for
non-separable training sets. This penalty parameter
controls the trade-off between the permission of
training errors and the requirement of rigid margins.
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It creates a soft margin that permits some
misclassifications, such as allowing some training
points on the wrong side of the hyperplane.
Increasing the value of the penalty parameter
increases the cost of misclassifying points and forces
the creation of a more accurate model that may not
generalize well.

This study utilized the pair-wised classification
strategy with the RBF kernel. This function was
chosen because the others are variations of it.
Further, in accordance with Melgani and Bruzzone
(2004) the RBF shows the best results in the optimal
separation between classes. The gamma (g) of the
kernel function was 0.333, and the penalty
parameter (C) was 100.

2.6 Testing dataset

An accuracy assessment was performed in
order to evaluate the maps generated by the
classifications. An equalized random sampling was
used to generate ground truth points that were
assigned reference values identified from a ground
truth map. A total of 500 points (pixels), 100 pixels
per class, were chosen from each classification map.
The accuracy of these classifications was measured
using the overall accuracy. The significance of the
accuracy differences was tested using a confusion
matrix and Kappa statistics in accordance with
Hudson and Ramm (1987).

Cultivated And Managed Terrestrial Arcas [l Watural and Semi-Natural Vegetation -
I Anificial Surfaces and Associsted Areas [ None

I vatural and Arnificial Water Bodies

Nascimento, R. et al.

3. Results and discussion

The application of the restoration process
using the EIFOV parameters described by Gouvea
etal. (2007) resulted in an image with better visual
quality. This procedure improved the use of CBERS
images in the classification processes. The output
map of the SVM classification is shown in Figure 2.
The overall accuracy of this classifier was 71% with
a Kappa coefficient of 0.64.

The confusion matrix of SVM classification
(with producer’s and user’s accuracy) is shown in
Table 3, and the commission and omission errors
are shown in Table 4. The producer’s and user’s
accuracies are ways of representing individual class
accuracies that serve as replacements for the overall
classification accuracy, and have been introduced
by Story and Congalton (1986).

Producer’s accuracy gives an indication of the
accuracy of what the model was able to itself predict,
whereas user’s accuracy describes how well the
training data was discerned. Errors of commission
represent pixels (or percentage) that belong to
another class that are labeled as belonging to the
class of interest; errors of omission represent pixels
(or percentages) that belong to the ground truth class
for which the classification technique has failed to
identify the right class.

Analyzing Table 3, it can be observed that

e aF o TE

Bare Areas

Fig. 2 - Comparison between the classification produced by the support vector machine classifier and the

ground truth map.
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Table 3: SVM'’s confusion matrix.

User’s

WB v CMA AS BA Total
accuracy (%)

‘Water bodies (WB) 95 0 0 0 0 95 100
Vegetation (V) 0 43 0 1 0 44 98
Cultivatedand 2 27 91 18 11 149 61
managed areas (CMA)

Artificial surfaces (AS) 3 30 5 58 19 115 50
Bare areas (BA) 0 0 4 0 70 97 72

Total
Producer’s accuracy
(%)

100 100 100 500

95 91 70

the class “water bodies’ was the best classified, with
high results in user’s and producer’s accuracies. All
of the water bodies areas were correctly identified
as water bodies, and 95% of the areas called water
bodies on the map were actually water bodies on
the ground. Vegetation presented a high user’s
accuracy, but a lower producer’s accuracy.

Although 98% of the vegetation areas were
correctly identified as vegetation, only 43% of the
areas called vegetation on the map were actually
vegetation on the ground. In general, all the classes
showed a satisfactory classification. The algorithm
was inadequate for classifying urban areas, which
are represented by the artificial surfaces and
associated areas class.

This inadequacy can be observed in table 4,
which exhibits the commission and omission errors.
The artificial surfaces class exhibited the highest error
of omission; 42% of the pixels classified as not being
of this class actually were. The Kappa coefficient
determined in this calculation was 0.64. Coefficients
between 0.61 and 0.8 represent moderate
agreement, so that, in these terms, the classifier in
this case obtained a satisfactory accuracy (LANDIS
and KOCH, 1977).

e L RS S Y i
s R G RN

W i b

Il Matural and Artificial Water Bodies

Cultivated And Managed Terrestrial Areas [l Natural and Semi-Natural Vegetation

Some classes presented as mismatching
because of their similar spectral response. This
mismatching can be associated with the spectral and
radiometric resolutions of the CCD sensor and the
presence of noise (POLIDORIO et al. 2006).

Table 4: The commission and omission errors of
SVM classification.

Errors of commission (%)
0.00
227
38.93
49.57
27.84

Errors of omission (%)
6.00
57.00
9.00
42.00
30.00

Water bodies

Vegetation

Cultivated and Managed Areas
Artificial surfaces

Bare areas

The ML Classifier presented an overall
accuracy of 49%, with a Kappa coefficient of 0.36,
which represents a poor agreement (MARCAL et
al. 2005). Figure 3 shows the comparison between
the ML classification (Figure 3(a)) and the ground
truth map (figure 3(b)). The confusion matrix of ML
classification is shown in Table 5, and the commission
and omission errors in Table 6.

The class that was best classified in the ML
classification was water bodies (as in the SVM
classification); this class presented with lower

Table 5: MLC'’s confusion matrix.

w v CM AS B Tota User’s

B A A 1 accuracy (%)
Water bodies (WB) 65 2 3 0 0 69 94
Vegetation (V) 17 74 53 22 55 221 33

Cultivated and managed areas (CMA) 7 27 17 17 80 34

Artificial surfaces (AS) 10 8 14 60 8 100 60
Bare areas (BA) 1 4 4 1 20 30 67
Total 1010 100 1010 500

0 0 0 0

Producer’s accuracy (%) 27 20

= e

AW

- Bare Areas
- Artificial Surfaces and Associated Areas - MNone

Fig. 3 - Comparison between the maximum likelihood classifier and the ground truth map.
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accuracy than it did for SVM. Of the water bodies’
areas, 94% were correctly identified as water
bodies, but only 65% of the areas called water
bodies on the map were actually water bodies on
the ground. Although only 33% of vegetation areas
were correctly identified as vegetation, 74% of the
areas called vegetation on the map were actually
vegetation on the ground.

The classifier was not efficient for classifying
the classes of cultivated and managed areas and
vegetation (see table 6). In these cases, there was a
misclassification. The highest omission error was
80%, which was observed for the bare areas class.

Table 6: The commission and omission errors of
maximum likelihood classification.

Errors of commission (%) Errors of omission (%)
‘Water bodies 6 35
Vegetation 66 26
Cultivated and Managed
Areas
Artificial surfaces 40 40
Bare areas 33 80

66 73

The results show a better performance of the
SVM approach and corroborate the results reported
by several authors (i.e. Mathur and Foody, 2008;
Dixon and Candade, 2008). The classifiers agreed
in some cases, and the best fit in both classifications
was that of natural and artificial water bodies. The
better classification produced by the SVM affirms
that CBERS images can be utilized in land use and
cover classifications.

4. Conclusion

The aims of this study were to assess the
classification by the SVM algorithm in CBERS
images, to compare this result against a traditional
statistical classifier (ML) and to assess the of SVM/
CBERS accuracy in remote sensing image
classification.

Furthermore, we sought to assess the
potential for CBERS data in image classification.
The support vector machines classifier presented
good results with minimum errors and presented
better results than the maximum likelihood classifier.
This result allows a more operational classification
with less matrix addition.

For best results in CBERS-2 CCD
classification, the authors suggest the testing of the
other kernel functions for support vector machine
classification and the comparison of the results with
other classifiers. Despite the spectral and radiometric
resolutions available for this study, the CBERS
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images showed a good potential for land use
classifications.
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