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ABSTRACT
Remote sensing is a key tool for studying the tropical Amazonian forests, which have a substantial role on the global 
climate system and on the carbon and water cycles. In this article, we overview recent advances in remote sensing for 
estimating tropical forest structure and biomass, for analyzing phenological patterns across tropical landscapes, and for 
quantifying the impacts of natural and human-induced environmental changes on this ecosystem. This review highli-
ghted the importance of the combined use of optical and microwave data and of the integration of the remote sensing 
products with the fi eld-based information for understanding the functioning of Amazonian ecosystems, its composition 
and the stressing factors (e.g., deforestation, fi re, droughts) that can directly impact this biome.

Keywords: Impacts of Environmental Changes, Forest inventory, Biomass Modeling, Phenological Forest Patterns, 
Forest Degradation.

RESUMO
Sensoriamento remoto é uma ferramenta essencial para estudar fl orestas tropicais Amazônicas, que têm um papel 
fundamental no clima global e nos ciclos de carbono e água. Neste artigo revisamos recentes avanços em sensoria-
mento remoto para estimar biomassa e estrutura de fl orestas tropicais, para analisar padrões fenológicos regionais, e 
para quantifi car os impactos das mudanças ambientais naturais e induzidas pelo homem sobre este ecossistema. Esta 
revisão destacou a importância do uso combinado de dados ópticos e de micro-ondas e da integração dos produtos de 
sensoriamento remoto com informação de campo para compreender o funcionamento do ecossistema Amazônico, sua 
composição e os fatores de estresse (p.ex., desfl orestamento, queimadas, secas) que podem diretamente afetar este bioma.

Palavras-chave: Impactos das Mudanças Ambientais, Inventário Florestal, Modelagem de Biomassa, Padrões da 
Fenologia Florestal, Degradação Florestal.
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1. INTRODUCTION

Amazonia is the world’s largest continuous 
tropical forest playing a substantial role on 
the global climate system (HOUGHTON et 
al. 2000). This biome covers an area of about 
5.3 million km2 of humid lowland undisturbed 
rainforest (EVA; HUBER 2005), accounting for 
40% of the global tropical forest area. Because 
of its dimension, any perturbations within this 
system can have signifi cant global impacts on 
the climate and on the carbon and water cycles. 
Even small, changes in the functioning of this 
ecosystem are likely to produce significant 
climatic feedbacks (COX et al. 2004). 

Three major processes operate in opposite 
directions determining the role of Amazonia on 
the climate system: (1) the natural absorption 
of carbon from the atmosphere, through the 
photosynthesis process, and its subsequent 
fi xation in the biomass, resulting in forest growth 
(MALHI et al. 1998); (2) the reduction in forest 
ecosystem productivity because of the impact 
of increased temperature and/or severity of 
droughts on net primary productivity, ecosystem 
respiration and mortality rates (CLARK 2004, 
PHILLIPS et al. 2009), which reduces the 
magnitude of the natural C sink; and (3) the 
human-induced emissions of  greenhouse gases 
into the atmosphere, as a result of land use 
practices such as deforestation and biomass 
burning. The balance between these processes 
will determine the role of Amazonia in mitigating 
or accelerating climate impacts.

For instance, Amazonian undisturbed 
forests are estimated to be a major tropical 
C sink in the global C budget (PAN et al., 
2011), which contributed to a sustained sink 
of 0.47 (0.34 – 0.59) Pg C yr-1 since the 1980’s 
(PHILLIPS et al., 2009).  Conversely, DeFries et 
al. (2002) and Aguiar et al. (2012) estimate that 
deforestation in Amazonia was a net C source 
of 0.28 (0.17–0.49) Pg C yr-1 during the 1990s 
and 0.10-0.15 Pg C yr-1 for 2009, respectively. 
Quantifi cation of these processes over massive 
geographical areas is critical for countries to 
evaluate the status of their natural resources. 
It is estimated that gross deforestation in this 
region, which converted a total of ~ 765,000 
Km2 of primary forest into other land uses to date 
(http://www.obt.inpe.br/prodes/), is responsible for 

75% of Brazilian greenhouse gases emissions, 
around 20% of global emissions of (MCT, 2010). 
Maintaining the stability of these stocks is, 
hence, critical for countries such as Brazil, which 
hosts approximately 75% of the total Amazonian 
area, to contribute to climate change mitigation. 

In the context of Amazonia, which implies 
in a large geographical area with dynamic 
processes operating at multiple scales, remote 
sensing is a key tool that allows the quantifi cation 
of carbon stocks in forest biomass, the evaluation 
of seasonal changes in forest canopy, which 
ultimately will determine the direction and 
magnitude of carbon, water and energy fl ows 
between the canopy and the atmosphere, and 
the monitoring of stressing factors that controls 
the changes in forest biomass through time. The 
importance of remote sensing on these issues is 
refl ected in the increased number of publications 
since the 1980s (Figure 1).

 In this article, we aim to provide an 
overview of the recent developments of remote 
sensing technology that allowed the scientifi c 
community to advance in these three fronts 
cited above. We will examine the contribution 
of: (1) RADAR remote sensing for estimating 
tropical forest structure and biomass; (2) multi-
temporal optical remote sensing for analyzing 
phenological patterns across tropical landscapes; 

Fig. 1 - Trend in the number of papers published 
focusing on remote sensing of Amazonian 
forests. The results presented are based on 
Google Scholar searching tool using “Remote 
Sensing” + Amazon as keywords. The fi gure 
demonstrates that, since early 1980s, the 
number of articles published annually on the 
theme increased from 255 (1980-1985) to 7150 
(2014), totalizing by the end of the period 27,339 
published articles.
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and (3) multi-sensor and multi-temporal 
remote sensing for quantifying the impacts 
of environmental changes (deforestation, fi re, 
droughts) on tropical forest canopies.

2. RADAR REMOTE SENSING FOR ES-
TIMATING TROPICAL FOREST STRUC-
TURE AND BIOMASS

Amazonian tropical forests are structurally 
complex and carbon-rich ecosystems, due to the 
size–frequency distribution of trees (CLARK; 
CLARK, 2000) and the three-dimensional 
arrangement of canopy (leaves, branches, 
trunks) from the superior strata to the ground 
(RICHARDS, 1996). The availability of light, 
humidity and constantly high temperatures 
infl uence the biological processes that control 
tree recruitment, competition, and growth 
rates (NICOTRA et al., 1999). One of the key 
variables that is infl uenced by this fl oristic and 
structural complexity is the forest aboveground 
biomass (AGB), in both horizontal and vertical 
gradients. Furthermore, this forest complexity 
is also related to disturbance intensity and 
spatial heterogeneity driven by edaphic and 
geomorphometric features of the landscape 
(CLARK; CLARK, 2000). Understanding forest 
structure variation and estimating forest biomass 
at regional and global scales by performing 
wall-to-wall mapping of the landscape are 
critical elements to provide information on the 
role of forests in determining the magnitude of 
terrestrial carbon fl ux, caused by deforestation or 
fragmentation processes, and their contribution 
to global climate change. 

Remote sensing, in the forest biomass 
mapping context, has a critical role because 
many of the forest attributes of interest are 
retrievable at varying accuracy levels with a 
cost-effective value. Forest inventories assisted 
by remote sensing reap not only the benefi ts of 
producing results with lower cost and lesser time 
consumed than traditional methods, but also the 
advantage of conducting inventories in large 
forest areas or even sometimes life-threatening 
areas (HOU et al., 2011). Optical remote-sensing 
systems (visible and infrared wavelengths) are 
limited in the tropics by cloud cover. However, 
new advances in microwave technologies can 
provide cloud-free data for mapping and forest 
monitoring and also for biomass estimate. It 

is interesting to note some possibilities and 
limitations of remote sensing data and methods, 
listed by Gibbs et al. (2007), which can support 
forest mapping and inventory at a national scale 
(Table 1).

Knowledge of the forest structure and the 
resulting biomass estimation can be obtained by 
indirect methods derived from remote sensing-
based estimations, such as tree height, crown 
closure and stand types as major inputs. These 
variables are commonly used for estimating stand 
mean tree diameter and wood volume (KOCH, 
2010). The wood volume can, subsequently, be 
multiplied by a biomass expansion factor for the 
fi nal biomass estimation (CHÁIDEZ, 2009). For 
readers who are just beginning to learn about 
the applicability of remote sensing in forestry, 
the synergy between the use of laser scanning, 
known as Light Detection and Ranging (LIDAR) 
and Synthetic Aperture Radar (SAR) is discussed 
in Saatchi (2010) and Treuhaft et al. (2010). The 
synergy between multi- and hyperspectral data 
for forest biomass mapping is presented in an 
exhaustive overview by Koch (2010).

Within the range of sensor-products, this 
section focus on demonstrating how the specifi c 
remote sensing technology - RADAR - has been 
used as a tool for analyzing forest structure 
and estimating biomass in the Amazon. The 
physical principles of radar-interaction with the 
components of forest structure is very complex, 
especially in tropical forest areas, whose 
structure determines the scattering mechanisms 
of the incident radiation that hits the target and 
returns to the RADAR sensor. The content of 
leaves, branches and stems in the canopy as well 
as the ground are the components that produce 
scattering in forests. The interaction of the 
radar-signal with the targets and the consequent 
response received by the sensor also depends 
on the wavelength, polarization, and angle 
of incidence. According to Koch (2010), for 
forest cover mapping and biomass estimations, 
three basic approaches based on SAR data are 
used: backscatter, coherence, and phase-based 
approaches. One should remember that there are 
certain effects in the relationship between radar-
signal and structural components of the forest 
stand, such as roughness of targets and humidity 
content, which should also be considered 
in the analysis. The SAR interferometric 
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Table 1: Benefi ts and limitations of remote sensing data to forests structure and biomass studies  

vegetation cover, such as biomass index [BMI = 
(σ°HH + σ°VV ) / 2], canopy structure index [CSI = 
σ°VV / (σ°VV + σ°HH )], or volume scattering index 
[ VSI = σ° HV / (σ°HV + BMI) ], with important 
use in studies of tropical forests with radar data.

A fi rst step in understanding the variability 
of forest structure is through the radar polarimetric 
signature (VAN ZYL et al., 1987), where the 
polarization states of the electric fi elds Ev (vertical 
polarization), and Eh (horizontal polarization) , 
which are associated with the radar backscatter 
(σ) and the dependence of the amplitude on 
the polarization mode, can be represented 
graphically as a function of ellipticity (  ) and 
orientation ( ) angles of the transmitted wave, 
defi ning a three-dimensional surface plot called 
a polarization response (SANTOS et al., 2009) 
(Figure 2a, b, c). Density of trees, regular spatial 
distribution of trees, trunk diameter, density of 

techniques, such as repeat–pass or single 
pass interferometry (InSAR) and polarimetric 
interferometry (PolInSAR), can also provide 
detailed information about three-dimensional 
forest structure of the scattering targets under 
study (TREUHAFT et al., 2009). 

Some work in tropical areas show the 
proven applicability of radar (HOEKMAN; 
QUINONES, 2000; SANTOS et al., 2003; 
GONÇALVES et al., 2011; and SAATCHI et al., 
2011), explaining the contributions of coherent 
and incoherent polarimetric attributes of forest 
structure complexity, when modeling forest 
volume or biomass. In turn, Pope et al. (1994) 
developed indices based on ratios and normalized 
differences of multi-polarimetric data using 
backscattering values (σ°) of horizontal (HH), 
vertical (VV) and cross polarizations (HV), 
which can be related to certain characteristics of 
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twigs and branches, the moisture content of the 
leaves and soil types as well as dielectric constant 
of targets are some variables that infl uence this 
polarimetric behavior, whose signatures also 
show variations as a function of radar frequency 
and/or local incidence angle.

For modeling forest biomass through full-
polarimetric SAR information, the attributes 
are classified into incoherent and coherent 
categories. The incoherent attribute types are 
based on information from the real part of each 
pixel. They are represented by the backscatter 
coeffi cient (σ°); the ratio of parallel polarization 
(Rp), the ratio of cross polarization (Rc), the total 
power (PT), reported by Woodhouse (2006); 
and also by the indices for forest environments, 
formulated by Pope et al. (1994), named as the 
biomass index (BMI), the canopy structure index 
(CSI) and the volume scattering index (VSI). 
The coherent attributes are derived from SAR 
phase-information (HENDERSON; LEWIS, 
1998), which are represented by polarimetric 
coherence of HH-VV (γ) and phase difference 
of HH-VV (Δφ). Furthermore, we analyzed the 
parameters resulting from the decomposition by 
coherence matrix [T], defi ned as entropy (H), 
anisotropy (A) and the mean alpha angle ( ) 
(CLOUDE; POTTIER, 1997); the magnitude 
(αs) and Touzi phase (Фαs), also derived from 
the same former decomposition (TOUZI, 2007). 
Additionally, we considered the orientation angle 
(ψ) and heliticity (τm), derived from two stages: 
(1) the Graves matrix [G]; and (2) the Kennaugh-
Huynen matrix, described in Touzi et al. (2009). 
Also, the volume scattering components (Pv), 
double bounce (Pd) and surface (Ps), resulting 
from the decomposition matrix [C], according 
to Freeman and Durden (1998).

To show the full-polarimetric capability in 
the estimate of tropical primary and secondary 
forest biomass, one example is the model 
developed by Narvaes (2010), which tested 
a number of attributes (Figure 3a) derived 
from ALOS/PALSAR images that, following 
statistical criteria, defi ned the best performance 
model (Equation 1):

[AGB = –  1221.37 – 70.31 (σ°HH) + 1064.65 
(PV) + 6.28 (α S2) – 2.42 (Ф S2) + 3.44 (ФS3) + 
6.05 (τm)] …..     (1)

Where: σ°HH is the backscatter coeffi cient 
at HH polarization; PV is the volume scattering 
component of Freeman’s decomposition; αS2 is 
the Touzi’s magnitude of medium scattering; 
ФS2 and ФS3 are the Touzi’s phase of the medium 
and low scattering, respectively; and τm is the 
heliticity mean angle. 

The selected attributes demonstrate 
the importance of radar phase information to 
estimate the biomass of primary and secondary 
forests. The biomass estimation error of the 
predictive model mentioned above is around 8%, 
based on independent sampling blocks used for 
the validation (Figure 3b).

The case cited above reports the use of 
polarimetry. However, the modeling of biomass 
from radar interferometry techniques has 
also been a very broad fi eld of research and 
applicability, as shown by Neeff et al. (2003), 
Kugler et al. (2006) and Treuhaft et al. (2010). 
Interferometry approach is indicated for tropical 
areas because forests, generally, have a high 
biomass content; thus the possible saturation 
effect of the radar-signal is minimal compared 
to the simpler techniques of polarimetry. 

An alternative approach to extract forest 
structural information from radar interferometry 
is based on tomography technique (CLOUDE; 
PAPATHANASSIOU, 2008), where a real 3D 
imaging of the scene is acquired by creating an 
additional synthetic aperture layer containing 
information on elevation. This technique uses a 
coherent combination of images obtained from 
multiple baselines of fl ight tracks. However, 
researches in this fi eld of radar tomography for 
tropical forests are in the early stages (CLOUDE 
et al., 2009; LOMBARDINI et al., 2012; DINH 
et al., 2013).

3. MULTI-TEMPORAL OPTICAL RE-
MOTE SENSING FOR ANALYZING PHE-
NOLOGICAL PATTERNS

3.1 Land surface phenology

Phenology is a key component for 
monitoring terrestrial ecosystem changes in 
response to climatic variations on short and 
long time scales (HMIMINA et al., 2013; 
LIANG et al., 2011). Vegetation phenology is 
important because it affects terrestrial carbon 
cycling at different ecosystems and climate 
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regimes; eco-physiological and hydrologic 
processes; and land-atmosphere interactions 
(GANGULY et al., 2010; HEIMANN et al., 
1998). Phenological observations over tropical 
forests are generally carried out using two main 
approaches: (1) surface observations and (2) 
orbital optical remote sensing (MELAAS et al., 
2013). Both approaches have their advantages 
and disadvantages. By using traditional ground 
observations, detailed phenology metrics are 
obtained for individual plants or species. These 
metrics cannot be captured by remote sensing 
that aggregate phenological information at 
the spatial resolution of the whole canopy as 
observed by sensors onboard of satellites. On 
the other hand, fi eld observations of vegetation 
phenology are punctual, expensive and time 
consuming, providing only little information on 
the spatial variability of timing of phenological 
events (SOUDANI et al., 2012). Because of 
the limited number of fi eld-based phenological 
studies in tropical forests, remote sensing, due 
to the high temporal data acquisition and large 
area coverage, is still the best alternative for 
large-scale monitoring of phenology. However, 

uncertainties in data processing and pixel quality 
control for noise reduction in satellite data time 
series can affect the correct identifi cation of 
vegetation phenological markers (VERBESSELT 
et al., 2010; SOUDANI et al., 2012). Noise is 
generally a result of atmospheric effects and 
variable Sun-viewing geometry.

“Land surface phenology”, which is distinct 
from the traditional defi nition of phenology, 
is a term that has been used to represent the 
seasonal pattern of variation in vegetated land 
surfaces observed from remote sensing (TAN 
et al., 2011). The sensor that best represent the 
state-of-art of land surface phenology is the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS), on board Terra and Aqua satellites. 
Since 2000, MODIS has provided an excellent 
basis for regional-to-global scale land surface 
phenological studies (AHL et al., 2006; ZHANG 
et al., 2006; GANGULY et al., 2010). MODIS 
presented signifi cant improvements in terms of 
spectral resolution (36 spectral bands), spatial 
resolution (250 m for bands 1-2; 500 m for bands 
3-7; 1 km for bands 8-36), geolocation accuracy 
(50 m at nadir), calibration, and data processing 

Fig. 2 - PALSAR/ALOS polarimetric behaviour of (a) primary forest (b) forest with timber 
exploitation, and (c) intermediate secondary succession in the Amazonian region.  
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for atmospheric correction and cloud screening 
(HMIMINA et al., 2013). At the orbit of 705 km, 
MODIS uses a large fi eld-of-view (FOV) of ±55º 
to obtain a 2,330-km swath and to provide global 
coverage every one to two days. For land surface 
phenology studies using MODIS, products based 
on vegetation indices (VIs) are generally used. 
Two MODIS products can be highlighted: (1) 
the VIs products that include more specifi cally 
the Normalized Difference Vegetation Index 
(NDVI) and the Enhanced Vegetation Index 
(EVI); (2) the Global Land Cover Dynamics 
(MLCD) product, which is based on the EVI 
and is informally called the “MODIS Global 
Vegetation Phenology product”. 

3.2 MODIS Vegetation Indices products

In relation to the fi rst and most commonly 
used approach in tropical forests, spatial and 
temporal variations in NDVI and EVI are 
operationally derived at 16-day and monthly 
intervals from the Terra and Aqua satellites for 
seasonal and inter-annual monitoring of the 
vegetation. The EVI was proposed by Huete 
et al. (2002) to reduce atmospheric and soil 
background influences on the NDVI and to 

have improved sensitivity over high biomass 
regions (less signal saturation with increasing 
Leaf Area Index (LAI)). Data for both VIs can 
be analyzed at 250 m, 500 m, 1 km and 0.05° 
spatial resolutions (e.g., the product MOD13Q1 
MODIS/Terra Vegetation Indices 16-Day L3 
Global 250-m SIN Grid V005). 

The use of compositing VIs products 
instead of daily data is due to two main 
reasons. First, when compared to nadir-viewing 
instruments, large FOV sensors like MODIS 
have the advantage of increasing spatial and 
temporal coverage. On the other hand, because 
of the anisotropy of vegetation, the off-nadir 
viewing introduces changes in sensor signal in 
response to variations in Sun-viewing geometry 
(GALVÃO et al., 2011). In short, strong 
reflectance differences not associated with 
canopy photosynthetic activity or phenology 
can be registered by MODIS at the bands used 
for VIs determination between consecutive 
days (BREUNIG et al., 2011). The resulting 
directional effects are target and wavelength 
dependent. As a consequence of this spectral 
dependence, these effects are not completely 
removed by the determination of VIs. 

Fig. 3 - ALOS/PALSAR polarimetric attributes tested to construct the model (a) and performance 
of aboveground biomass model compared from the fi eld measured in the independent sampling 
blocks (b). 
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Second, atmospheric effects (e.g., molecular 
scattering, absorption, and aerosols), including 
cloud cover, introduce large uncertainties on 
VIs determination. Thus, atmospheric correction 
is essential to support phenologic studies. 
Compositing schemes try to select the highest 
quality pixels in the compositing period for 
more precise time-series analysis. For land 
surface phenology, an important question is how 
to shorten the compositing period to look for 
better phenologic markers without adding more 
uncertainties in time series analysis. MODIS data 
have been frequently reprocessed and there were 
signifi cant improvements with the transition 
from Collections 4 to 5. Maybe the answer for 
this question and for the other current issues 
relies on future improvements in atmospheric 
and bidirectional reflectance distribution 
function (BRDF) correction procedures and in 
small adjustments on VIs formulation.

Even using VIs from 16-days compositing 
schemes, atmospheric conditions are critical in 
some regions of the Amazon for land surface 
phenology. However, a very nice aspect of the 
MODIS VIs products is that they provide all the 
necessary information for a detailed analysis of 
NDVI and EVI on a per pixel basis, including 
the pixel quality retrievals, the input surface 
refl ectance of the bands used to generate the 
VIs, and the angles describing the Sun-viewing 
geometry during data acquisition. 

An example of the pixel reliability images 
retrieved for some compositing periods of 2001 
over the Tapajós National Forest, located in the 
Brazilian state of Pará, is illustrated in Figures 
4a-f. Good data (code zero), marginal data (code 
1) and cloudy data (code 3) for the different 
Days of Year (DOY) are represented by red, 
green and yellow colors, respectively. Code 2 
is obviously not represented because it refers to 
targets covered with snow/ice. Results of Figure 
4 were extracted from the MOD13Q1 product 
(MODIS/Terra Vegetation Indices 16-Day L3 
Global 250-m SIN Grid V005) and refer only to 
the area within the limits of the Tapajós forest 
(Figure 4a). From the inspection of Figure 4, we 
observed that the uncertainties were larger in the 
rainy season (December to May) due to the more 
frequent cloud cover (predominance of yellow 
color or code 3 in Figure 4b). They decreased 
towards the dry season (June to November), as 

expected. However, except for the DOY 209 
(July 27, 2001), having all pixels of the Tapajós 
forest in red color (code zero in Figure 4d), 
the uncertainties were still present in the dry 
season of the Tapajós region, as indicated by the 
presence of green (marginal data) and yellow 
(cloudy data) colors in the other dates. 

In Table 2, a detailed analysis showed that 
the high percentages of good data (code zero) 
were observed in the dry season only for two 
dates between July and August of 2001 (DOYs 
209 and 225 with 100% and 59% of good pixel 
retrievals, respectively). The other compositing 
dates in the rainy and dry seasons were dominated 
by cloudy (code 3) or marginal (code 1) data. 
The latter data require further inspection for 
other quality assurance information to reduce 
uncertainties in data analysis. 

Cloudy data in the rainy season does not 
generally allow a reliable analysis of the VIs 
behavior from December to May in the Tapajós 
region. Despite the uncertainties in pixel quality 
retrievals, when using only pixels having codes 
zero or 1 (good or marginal data) for a small 
portion of the Tapajós forest (red square in 
Figure 4a; 9 x 9 pixels), an increase in EVI was 
observed along the dry season (June-November) 
over seasonal semi-deciduous forest (Figure 
5). In reality, only two dates had pixels with 
zero code for this portion of the scene (green 
symbols in Figure 5). From June to November, 
NDVI presented much smaller variation because 
it is saturated at high LAI values (results not 
shown). According to Huete et al. (2006), 
the EVI increase in the sunnier dry season in 
tropical Amazonian forest may indicate that 
sunlight have more infl uence than rainfall in 
the phenology of these forests. As pointed out 
by Bradley et al. (2011), the majority of the 
Amazonian Terra Firme forest appears to have 
radiation as the driver of phenology.

In the literature, much of the studies 
assessing the phenologic variability of the 
Amazonian tropical forests have been devoted 
to understand the unexpected behavior of EVI 
along the dry season and, especially, in response 
to severe droughts (inter-annual variations). For 
example, when compared to non-drought years, 
Saleska et al. (2007) reported an increase in 
greenness for the 2005 drought, as expressed by 
higher EVI values over the Amazon, as opposed 



1421Revista Brasileira de Cartografi a, Rio de Janeiro, N0 66/7 - International Issue, p. 1413-1436, Dez/2014

Remote Sensing Of Amazonian Forests: Monitoring Structure

to field-based estimates of decreasing plant 
productivity and tree mortality (PHILLIPS et 
al., 2009). On the other hand, Xu et al. (2011) 
observed a widespread decline in photosynthetic 
activity for the 2010 drought (lower EVI values). 
Nice literature reviews on the potential causes 
of the unexpected green-up of vegetation with 
droughts, reported by Saleska et al. (2007), have 
been published by Asner and Alencar (2010) 
and by Anderson (2012). As summarized by 
Moura et al. (2012), the possible causes cited 
in the literature for the contradictory fi ndings 
about the tropical forest resilience to droughts 
include factors such as: leaf fl ush at the top of the 
canopy; changes in LAI; modifi cations in canopy 
structure associated with tree mortality; diurnal 

variability in leaf water; and clouds and aerosol 
effects (ANDERSON et al., 2010; BRANDO et 
al., 2010; SAMANTA et al., 2010). 

Even the intra-annual EVI variations 
reported by Huete et al. (2006) are not completely 
understood. Galvão et al. (2011) have shown 
that the EVI is strongly dependent on the near 
infrared refl ectance and is much more sensitive to 
solar illumination, view angle and view direction 
than the NDVI. While solar illumination is a 
source of intra-annual dry season EVI variability, 
view angle and view directions are sources of 
inter-annual variability of this index (MOURA 
et al., 2012; GALVÃO et al., 2013). These 
controversial fi ndings show that validation of 
detectable MODIS satellite phenologic patterns, 
using surface observations and other better 
spatial resolution sensors, is still necessary. 

3.3 MODIS Global Vegetation phenology 
product

The Collection 5 MODIS Global Land 
Cover Dynamics (MCD12Q2) provides 
combined information from the Terra and Aqua 
related to spatiotemporal dynamics in land 
surface phenology product at a spatial resolution 
of 500 m and at 8-day input data. As discussed 
by Ganguly et al. (2010), the MLCD algorithm 
described in Zhang et al. (2006) represents 
vegetation growth cycles using four transition 
dates estimated from time series of MODIS EVI: 
(1) green-up: the date of onset of EVI increase; 
(2) maturity: the date of onset of EVI maximum; 
(3) senescence: the date of onset of EVI decrease; 
and (4) dormancy: the date of onset of EVI 
minimum. When compared to the conventional 
EVI described in the previous section, the EVI 
from the MLCD is computed from MODIS nadir 
bidirectional refl ectance distribution function 
(BRDF)-adjusted reflectance (NBAR) data. 
The objective of this adjustment is to model 
refl ectance values as if they were acquired from 
nadir view (SCHAAF et al., 2002). The view 
angles effects on the EVI are then minimized in 
NBAR data.

According to Ganguly et al. (2010), the 
MLCD results are less reliable for tropical 
evergreen forests than for other ecosystems 
with predominance of deciduous forests. In 
tropical regions, there is a need to provide better 
characterization of the errors and uncertainties 

Fig. 4 - (a) MODIS color composites from 
the 16-days and 250-m MOD13Q1 product at 
the Tapajós region with the bands at red, near 
infrared and blue wavelengths in red, green 
and blue colors, respectively. Pixel reliability 
images are shown for different dates in 2001 
in (b) January 1; (c) May 8; (d) July 27; (e) 
September 13; and (f) November 16. In (b)-(f), 
good (code zero), marginal (code 1) and cloudy 
(code 3) data are represented in red, green and 
yellow colors, respectively. The red square in (a) 
indicates a portion of the image over seasonal 
semi-deciduous forest (81 pixels; 9 x 9 pixels) 
used to obtain Figure 5.
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associated with MLCD results, to develop 
improved methods for pre-processing input data, 
and to understand the nature and utility of the 
retrieved phenological metrics. Except for the 
tropics, when compared with fi eld observations 
in North American test sites, the authors showed 
that retrieved transition dates from the MLCD 
were generally realistic. However, on these 
North American sites, larger uncertainties were 
observed at the end of season metrics associated 
with vegetation senescence and dormancy than 
at the start of season metrics. 

Recently, the TIMESAT software (GAO 
et al., 2008) was modifi ed by Tan et al. (2011) 
to retrieve phenology metrics based on MODIS 

time series of EVI and NDVI calculated from 
8-days compositing Terra surface refl ectance 
products at 250 m and 500 m spatial resolutions. 
Derivative analysis preceded by Savitzky–Golay 
fi ltering was applied to defi ne key phenology 
dates and to retrieve a set of phenology metrics, 
which were compared with ground phenology 
observations over North America. Tan et al. 
(2011) discussed the difficulties to validate 
MODIS phenology metrics due to the scale-
mismatch with ground observations. According 
to them, results over North America showed also 
the need of additional analysis to defi ne the best 
VI (EVI or NDVI) to represent the phenologic 
metrics due to the lack of agreement between 
the indices.  

3.4 From moderate spatial resolution data 
to punctual fi eld phenological observations

Validation is essential for calibrating 
remote sensing based scientific algorithms. 
MODIS products are available at a range of 
spatial scales, whereas fi eld measurements are 
punctual. Thus, there is a constant need for 
data sets and methods that link ground-based 
observations of phenology to moderate spatial 
resolution land surface phenology products 
(MEELAS et al., 2013). The use of better spatial 
and spectral resolution airborne and satellite 
sensors is very important to address the scaling 
issue for MODIS validation (MORISETTE et 
al., 2002). In this context, a 30-year time series 
of Landsat images cannot be ignored in land 
surface phenology studies (MEELAS et al., 
2013). Furthermore, constellation of satellites 
(e.g., RapidEye) that allows us to acquire high 
spatial resolution data with more frequent revisit 
time is another possibility. Such sensors better 

Table 2: Pixel reliability from the 16-days and 250-m MOD13Q1 product indicating the percentage 
of good (code zero), marginal (code 1) and cloudy (code 3) data in the year of 2001 over the brazilian 
Tapajós national forest. The dry (June-November) and rainy (December-May) local seasons are 
indicated

Code

Day of Year (DOY)

Rainy Season Dry Season in the Tapajós Region Rainy Season

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 365

0 0 0 0 0 2 0 0 0 0 0 14 18 14 100 59 4 1 1 0 0 0 0 1 0

1 17 52 47 18 61 28 13 71 82 91 41 80 86 0 41 96 98 99 96 99 91 61 92 5

3 83 48 53 82 37 72 87 29 18 9 45 2 0 0 0 0 1 0 4 1 9 39 7 95
Total 

(%)
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Fig. 5 - Average and standard deviation MODIS 
EVI values over seasonal semi-deciduous forest 
of the Tapajós National Forest (red square of 9 
x 9 pixels in Figure 1a) using different quality 
retrieval pixels from the reliability image. Good 
data (zero code) were observed only in two dates. 
The 2001 dry season is indicated. 
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sample the tropical forest heterogeneity, but off-
nadir viewing (pointing instrument capability) 
should be considered with care in data analysis 
of VIs. Although still acquiring punctual 
measurements, tower-based digital cameras and 
instruments that track local seasonal variations 
in VIs or in vegetation phenology can also be 
helpful (RICHARDSON et al., 2007; SOUDANI 
et al., 2012).

Imaging Spectroscopy (hyperspectral 
remote sensing) comprises the simultaneous 
acquisition of spatially co-registered images, 
in many narrow, spectrally contiguous bands. 
From airborne level of data acquisition, when 
combined to LiDAR, imaging spectrometers can 
be used to relate phenological variation to micro-
topography, derived from fi ne scaled digital 
elevation models (DEMs), and to simultaneous 
measurements of vegetation structure (ASNER 
et al., 2012; SCHAEPMAN et al., 2009). From 
orbital level, the combined use of MODIS/Terra 
and Hyperion/Earth Observing One (EO-1) has 
contributed to improve the understanding of the 
phenologic variability in the Amazonian tropical 
forest (HUETE et al., 2008; GALVÃO et al., 
2011). 

Since 2000, Hyperion has been acquiring 
images in 196 calibrated bands (10 nm of 
bandwidth) in the 426–2395 nm range with a 
spatial resolution of 30 m and a swath width of 
7.7 km. The 16-day revisit time can be reduced 
by cross-track pointing to obtain time series of 
VIs during the dry season of tropical forests. 
Data can be obtained with different view angles 
(nadir and off-nadir) and directions (forward 
scattering and backscattering) (GALVÃO et 
al., 2011). Thus, when analyzing time series of 
Hyperion VIs, it is necessary to take into account 
the potential infl uence of the geometry of image 
acquisition on data variability (GALVÃO et al., 
2013). 

An example using Hyperion EVI is 
presented in Figure 6 for the seasonal evergreen 
forest of the Brazilian Mato Grosso state. Higher 
EVI values were observed in the backscattering 
mode (squares) than in the forward scattering 
direction (stars) due to the predominance of 
sunlit canopy components for the sensor (higher 
near infrared refl ectance). In the backscattering 
direction, EVI increased also with large view 
zenith angles. However, at Hyperion nadir 

viewing (circles in Figure 6), EVI increased 
towards the end of the dry season in agreement 
with the MODIS EVI behavior observed in the 
study area (results not shown). Galvão et al. 
(2011) associated this behavior with the strong 
near infrared dependence of EVI, with the 
decrease in solar zenith angle (SZA) and with 
the reduction in canopy shadows viewed by the 
sensors towards the end of the dry season.

Besides the conventional EVI and NDVI, 
hyperspectral instruments allow the calculation 
of several narrowband VIs that can be used to 
measure vegetation properties associated with 
structure (e.g., green leaf biomass; LAI), canopy 
biochemistry (e.g., pigments; moisture) and 
plant physiology (e.g., water stress) (ROBERTS 
et al., 2012; GALVÃO et al., 2013). Some 
hyperspectral VIs with equations and references 
are shown in Table 3 but a more complete list 
was presented and reviewed by Roberts et al. 
(2012). Because they are calculated from bands 
positioned at different spectral regions and have 
different sensitivity to view-illumination effects, 
time series of distinct hyperspectral VIs can be 
used to reduce MODIS EVI uncertainties in the 

Fig. 6 - Bidirectional effects on Hyperion EVI 
of the Seasonal Evergreen Forest in the 2005 
dry season for a study area located in the Mato 
Grosso state. Average and standard deviation 
EVI data calculated from nadir viewing (500 
pixels) are indicated by circles. Squares and stars 
indicate off-nadir viewing in backscattering and 
forward scattering directions, respectively. 
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assessment of phenologic variability along the 
dry season of tropical evergreen forests.

4. MULTI-SENSOR AND MULTI-TEMPO-
RAL REMOTE SENSING FOR QUANTI-
FYING THE IMPACTS OF ENVIRONMEN-
TAL CHANGES

As discussed above, quantifying spatial and 
temporal variation of biomass and phenological 
cycles of Amazonian forest is critical for 
analyzing the magnitude, seasonal cycle and 
direction of carbon fl uxes between the biosphere 
and atmosphere. However, both carbon stocks 
and fl uxes are exposed to natural and human-
driven disturbances or changes that can directly 
impact the Amazon biome carbon balance. In 
this section, we fi rst present an overview about 
the causes and consequences of environmental 
changes in Amazonia. This section is followed 
by case studies demonstrating the quantifi cation 
of the changes and impacts using currently 
available remote sensing technology and data.

4.1 Environmental changes in Amazonia

Remote sensing has been a key tool since 
mid 80s to detect environmental changes in 
Amazonia. The most pervasive changes are 

related to deforestation, degradation and fi res. 
Moreover, with climate change, increased 
frequency of droughts is becoming especially 
critical. Global climate models (GCMs), have 
been predicting increased drought probability in 
the region (LI et al., 2006, IPCC, 2007).

Historically, deforestation has been 
removing around 0.14 and 0.26 Pg C yr-1 over 
the decades of 1980 and 1990, respectively 
(HOUGHTON et al. 2000, DEFRIES et al. 
2002). Monitoring using Landsat imagery have 
demonstrated that annual deforestation rates, 
have been drastically reduced from 17,562 km2 
yr-1 (mean between 1988 and 2004) to 4,571 km2 
deforested in 2012 according to INPE/PRODES. 
Despite very uncertain yet, selective logging 
and forest fi re also contribute for increasing the 
deforestation impact. Studies using Thematic 
Mapper (TM) and Enhanced Thematic Mapper 
Plus (ETM+) optical sensors onboard of Landsat 
family satellites and MODIS sensor have 
demonstrated their capability to estimate burned 
area in Amazonia. During the 1997/1998 severe 
El Niño event, Alencar et al. (2006) estimated 
a total of 26,000 km2 of forests burned forest 
using Landsat imagery. This area burnt equates 
to a committed gross carbon emissions varying 

Table 3: Examples of some narrow-band vegetation indices that can be calculated from hyperspectral 
data
Vegetation Index Formula a Reference
Enhanced Vegetation Index 
(EVI)

2.5*((ρ864 - ρ671)/( ρ864 + 6* ρ671 – 
7.5* ρ467 + 1)) Huete et al. (2002)

Normalized Difference Infrared 
Index (NDII) (ρ823 – ρ1649)/(ρ823 + ρ1649) Hunt and Rock 

(1989)
Normalized Difference 
Vegetation Index (NDVI) (ρ864 - ρ671)/(ρ864 + ρ671) Rouse et al. 

(1973)
Normalized Difference Water 
Index (NDWI) (ρ854 – ρ1245)/(ρ854 + ρ1245) Gao (1996)

Photochemical Refl ectance Index 
(PRI) (ρ529 – ρ569)/(ρ529 + ρ569) Gamon et al. 

(1997)
Red Edge NDVI (RENDVI) (ρ752 – ρ701)/(ρ752 + ρ701) Gitelson et al. 

(1996)
Structure Insensitive Pigment 
Index (SIPI) (ρ803 – ρ467)/(ρ803 + ρ681) Penuelas et al. 

(1995)
Visible Atmospherically 
Resistant Index (VARI) (ρ559 – ρ640)/(ρ559 + ρ640 - ρ467) Gitelson et al. 

(2002)
Visible Green Index (VIg) (ρ559 – ρ640)/(ρ559 + ρ640) Gitelson et al. 

(2002)
Vogelmann Red Edge Index 
(VOG) ρ742/ρ722 Vogelmann et al. 

(1993)
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between 0.024 and 0.165 Pg C. Moreover, using 
MODIS data, Morton et al. (2013) estimated that 
forest fi res burned around 85,500 km2 of southern 
Amazonian forests between 1999 and 2010.

Climate variability, leading to droughts is 
also a major factor infl uencing the biomass and 
carbon dynamics in Amazonia. In the orbital 
remote sensing Era the Amazon was affected 
by at least three severe drought events mainly 
related to the El Niño Southern Oscillation 
(ENSO) phenomenon in 1982/1983, 1986/1987 
and 1997/and two associated to sea surface 
temperature anomalies occurring in the tropical 
north Atlantic in 2005 and 2010, perhaps linked 
to the Atlantic Multidecadal Oscillation (AMO) 
(MARENGO et al., 2011). Both events tend to 
reduce rainfall in Amazonia, with the north and 
eastern fl anks of the region being more affect 
by the ENSO and  the southern and western 
being more affected by the AMO (SAATCHI 
et al., 2013). Intensifi cation of drought impacts 
normally occurs by the association with fi res 
and deforestation (COCHRANE; LAURANCE, 
2008, HUTYRA et al., 2005, ARAGÃO et al., 
2008, MALHI et al., 2008). 

The multitude of sensors, with wavelengths 
ranging from visible (0.4 x 10-6 – 0.7 x 10-6 m) to 
microwave (1.0 x 10-2 m – 1.0 m) has recently 
enhanced our capacity to detect, monitor and 
quantify the impacts of droughts in Amazonia. 
For instance, Aragão et al. (2007) using rainfall 
data from the Tropical Rainfall Measuring 
Mission (TRMM) satellite showed that an area 
of 3,300,000 km2 was impacted by water defi cit 
during the 2005 drought. The stressed area was 
strongly related to tree mortality in the region 
(PHILLIPS et al., 2009) and with a 33% increase 
in fi re incidence (ARAGÃO et al., 2007). The 
water stress has also been related to anomalies 
in vegetation indices related to changes in the 
structure and photosynthetic capacity of the 
canopy (SALESKA et al., 2007). It is clear that 
alone, both human- or climate-induced changes 
are able to disrupt the stability of the system. 
Critically important, though, are the feedbacks 
between these two pathways of disturbance. 
Spracklen et al. (2012) demonstrated using 
data from MODIS and an atmospheric transport 
model that deforestation can significantly 
reduce rainfall in Amazonia. This means that 
deforestation is likely to exacerbate the impacts 

of natural climate variability in the region, with 
consequences for the function of Amazonia.

Here we presented an overview of the 
impacts of environmental changes measured 
by satellite. In the next section, we will explore 
some of the remote sensing technology available 
and applications in more detail.

4.2 Mapping deforestation and degradation

Since early 1990s,  quantification 
of deforestation rates in Amazonia using 
Landsat imagery and digital image processing 
techniques (e.g. SKOLE; TUCKER, 1993, 
SHIMABUKURO et al., 1998, HOUGHTON 
et al., 2000) has become an important fi eld of 
research within the remote sensing community. 
Among several techniques used, one of the most 
popular is the application of the spectral mixture 
analysis, which estimate sub-pixel fraction of 
different components contributing to the spectral 
response of the pixel in a multi-spectral dataset 
(SHIMABUKURO et al., 1998).  The usage of 
this simple concept increased rapidly because of 
its capacity to reduce the dimensionality of the 
multi-spectral dataset and accurately discriminate 
different land uses from tropical vegetation (e.g. 
ADAMS et al., 1995, SHIMABUKURO et al., 
1998, LU et al., 2003). Technically speaking, 
the spectral mixture model can be defi ned as a 
linear combination of the spectral response of 
each component within a pixel in a given spatial 
resolution. This mixture will determine the pixel 
value in each spectral band. To decompose 
the pixel into its component fractions, we can 
assume that (Equation 2): 

                      (2)

where i is the number of spectral bands 
in the multi-spectral dataset, k is the number of 
components that contribute to the refl ectance 
of the pixel (also known as endmembers), Ri is 
the refl ectance value of band i of a given pixel. 
Each pixel contains one or more endmembers 
and fk is the fraction of the endmember k within 
the pixel; Rik is the spectral reflectance of 
endmember k within the pixel on band i, and 
i is the associated error for band i. As fk is the 
fraction of an endmember within the pixel, then 
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the sum of all endmember fractions should be 
equal to 1 (Equation 3): 

                            (3)

Moreover, fk must be constrained between 
0 ≤ fk ≤1.

By reducing dimensionality of multi-
spectral Landsat data and retaining the fi delity 
of information in the images, application of this 
model increased the effi ciency of segmentation 
procedure by using a single band as input 
(SHIMABUKURO et al., 1998). This method 
was then used for the development of the 
world’s oldest operational tropical deforestation 
monitoring system for the Brazilian Amazon 
(PRODES project). Following the experience 
with the Landsat data, and the availability of 
daily MODIS imagery, Anderson et al. (2005) 
proposed a similar method, using soil fraction 
images as the origin of INPE’s deforestation 
detection in near real time  project (DETER 
project), that provides monthly information 
about the deforestation rates in Amazonia (Figure 
7). 

The same concept has been used to quantify 
selective logging in Amazonia (ASNER et al., 
2004), fi re (COCHRANE, 1998, ANDERSON 
et al., 2005, SHIMABUKURO et al., 2009, 
ALENCAR et al. 2011, MORTON et al., 2011, 
LIMA et al., 2012) or both (MATRICARDI et 
al., 2010) from multiple optical satellite sources 
(Landsat, MODIS, SPOT). The study of selective 
logging and degradation, in general, is done by 
exploring the information contained in the non-
photosynthetic active vegetation fraction, which 
is related to dead organic matter produced from 
the disturbance. Studies aiming to detect fi res, 
on the other hand, tend to use the information 
in the shade fraction (e.g. SHIMABUKURO et 
al., 2009).

One of the key applications of this 
technique is to extract quantitative information 
on the areal extent of forests burned. Applying 
the linear mixture model to MODIS/Terra daily 
surface refl ectance data (MOD09 c4 product), 
Shimabukuro et al. (2009) showed that fire 
impacted a total area of 6,500 km2, with 2800 km2 
corresponding to forest understorey fi res. Figure 

8 illustrates an example of the application of the 
spectral mixture model technique in MODIS 
images (Figure 8a) for mapping burnt scars 
enhanced in the shade fraction image (Figure 8b) 
and subsequent integration with deforestation 
data for extraction of understory fi re information 
(Figure 8c).

Another critical point for discussion is 
the infl uence of droughts and how it can affect 
fi re patterns and forest functioning. So, in the 
next section we compiled information of studies 
using multi-temporal remote sensing data for 
evaluating these impacts.

4.3 Mapping and quantifying anomalies in 
multi-temporal datasets

Droughts in Amazonia are characterized 
by a shortage of rainfall during the dry season, 
leading the forest ecosystem to water defi cit 
(ARAGÃO et al., 2007) and consequent 
water stress with negative implication for tree 
survivorship (PHILLIPS et al., 2009). Several 
authors (e.g. ZENG et al., 2008, XU et al., 2010, 
ANDERSON et al., 2010) used rainfall data 
from the Tropical Rainfall Measuring Mission 
(TRMM) product 3B43 monthly precipitation 
to study the extent and intensity of droughts that 

Fig. 7 - Workfl ow of the DETER methodology 
implemented  for  genera t ing  monthly 
deforestation rates. Specifically the method 
starts with application of the linear mixture 
model to decompose the per pixel information 
into its soil, shade and vegetation fractions (1), 
followed by the region growing segmentation 
and unsupervised classifi cation of the segments 
(2) and finally, the process is completed by 
integrating the thematic map produced with 
information from previous deforested areas (3). 



1427Revista Brasileira de Cartografi a, Rio de Janeiro, N0 66/7 - International Issue, p. 1413-1436, Dez/2014

Remote Sensing Of Amazonian Forests: Monitoring Structure

occurred in Amazonia. The TRMM is a satellite 
with non-sun-synchronous equatorial orbit, with 
350 km of altitude and 35o degrees inclination to 
the Equator designed to measure tropical rainfall, 
between 50o south to 50o north latitude (http://
disc.gsfc.nasa.gov/precipitation/trmm_intro.shtml).  
This satellite carries onboard three instruments 
used to estimate rainfall: (1) the Precipitation 
Radar (PR), operating at a frequency of 13.8 
GHz (wavelength ~ 2.2 cm); (2) the TRMM 
Microwave Image (TMI), which is a nine-channel 
passive microwave radiometer operating at 
frequencies ranging from 85.5 GHz (wavelength 
~ 0.35 cm) to 10.65 GHz (wavelength ~ 2.8 
cm); and (3) the Visible and Infrared Scanner 
(VIRS), which is a fi ve-channel visible/infrared 
radiometer with wavelengths ranging from 0.63 
μm to 12 μm. The 3B43 algorithm use TRMM 
sensors and other independent sources of data 
to produce monthly rainfall data (mm/hr) at a 
spatial resolution of 0.25o by 0.25o. 

A common metrics to identify periods of 
time when rainfall is anomalously high or low 
in relation to the long-term observed temporal 
pattern is the calculation of z-scores. This metrics 
indicates the intensity and duration of anomalous 
periods in a time-series. So, for a dataset 
containing monthly data, for a given month, 
the anomaly (z-score) can be calculated as the 
departure of the specifi c month values from the 
mean long-term mean (l_mean) of the month, 
normalized by the standard deviation (σ) of the 
data. The monthly anomalies from the TRMM 
data (TRMManomaly) can, then, be calculated for 

each month (t) of a given year (y) in a pixel-by-
pixel basis with latitude (i) and longitude (j) as 
(Equation 4):

),(
),(),(

),(
,_

,_,
, ji

jiTRMMjiTRMM
jiTRMM

tmeanl

tmeanlty
tanomaly 




(4)
 
The information produced from this 

calculation allows the detection of spatially 
explicit deviations of rainfall values from the 
normal and the analysis of temporal changes in 
the anomalous patterns (Figure 9).

In Amazonia, this same approach has 
also been used for the analyses of anomalies in 
vegetation indices from MODIS (SALESKA et 
al., 2007, ANDERSON et al., 2010, ATKINSON 
et al., 2011, SAMANTA et al., 2011) and other 
multi-temporal satellite data, such as SeaWinds 
backscattering microwave data (FROLKING et 
al. 2011, SAATCHI et al., 2013), and MODIS 
Land surface temperature (TOOMEY et al., 
2011) as well as MODIS and AVHRR thermal 
anomalies (ARAGÃO et al., 2007). All these 
studies were interested in detecting the impact 
of droughts on forest canopy and fi re incidence.

As an example, Saatchi et al. (2013) 
used data from the Ku band (13.8 GHz, ~2.2 
cm) scatterometer SeaWinds onboard of the 
QuickSCAT platform to detect the impact and 
long-term recovery of Amazonian vegetation 
to the 2005 drought. QuickSCAT satellite is 
equipped with the SeaWinds active microwave 
sensor that operates in a Ku band frequency, 

Fig. 8 - (a) Color composite of MODIS bands 6 (red channel), band 2 (green channel) and band 1 
(blue channel). (b) Shade fraction image overlayed by the result of the classifi cation of burnt areas 
and (c) same as (b) but overlayed with the forest/deforestation mask from PRODES project. Source: 
Modifi ed from Shimabukuro et al. (2009). 
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with a native spatial resolution of ~25 km 
(FROLKING et al. 2011). Because of the 
incidence angle (~50o), the pulse emitted does 
not penetrate more than 5 meters into the canopy 
(SAATCHI et al., 2013). This characteristic 
makes this sensor an excellent alternative for 
detecting changes in canopy properties of forests, 
such as canopy water content (FROLKING et 
al., 2011) and canopy structure.

Saatchi et al. (2013) demonstrated that 
Amazonian forests experienced a decline in 
backscatter in an area of 2.1 million km2 during 
the 2005 dry season. The region with more 
intense anomalies was in the southwest of 
Amazonia, corroborating with previous studies 
(ARAGÃO et al., 2007, ARAGÃO et al., 2008, 
FROLKING et al., 2011). Interesting, when 
comparing a region not affected by drought 
(Figure 10a) with one intensively affected 
(Figure 10b), it is clear that QuickSCAT data 
detects the impact of drought on forest canopy. 
Moreover, these data also show a slow recovery 
of the forest canopy after the drought (Figure 

10b), which can have major implications for the 
dynamics of C stocks in Amazonia if drought 
events becomes more frequent and intense in 

Fig. 9 - (a) Integration of monthly surfaces of rainfall derived from TRMM data for the generation 
of (b) pixel-by-pixel anomalies for a three-month period (July-August-September - JAS) of 2005. 
(c) Temporal changes in the magnitude of anomalies for fi ve Amazonian regions, displayed in the 
map at the bottom right of the panel. Anomalies are measured in units of standard deviation.

Fig. 10 - Temporal changes in anomalies derived 
from SeaWinds Ku band active microwave 
sensor from (a) a region not affect by drought and 
(b) the epicentre of the 2005 Amazonian drought. 
Note the anomalous decline in backscatter during 
the 2005 dry season follow by the slow recovery 
of the signal. Source: Saatchi et al. (2013). 
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this decade.

5. CONCLUSIONS 

This review shows that over large 
geographical areas, as the case of Amazonia, 
remote sensing is perhaps the most important tool 
to assist the quantifi cation of forest structure, to 
evaluate how vegetation changes seasonally, and 
to assess how the region is impacted by climate 
changes and how these changes affect, in turn, 
vegetation. 

The accurate mapping of tropical forest 
structure, aboveground biomass and carbon 
stocks from regional to continental scales is 
nowadays a requirement for supporting climate 
change mitigation policies that can be achieved 
by using  current remote sensing technologies 
available (especially from airborne and satellite 
radar sensors, and from LIDAR). However, it 
is crucial to keep in mind that these techniques 
must be supported by fi eld-based forest surveys. 
The Amazon covers a vast territory with complex 
landscape and several anthropogenic processes 
operating at multiple spatial and temporal scales, 
with well-defi ned causes and effects. Therefore, 
in order to use this technique to support policy 
makers at governmental and institutional levels, 
there is a need to systematize procedures for 
mapping and inventorying forests, integrating 
multi-sensor data. This systematic analysis 
would provide maps of forest dynamics and 
disturbances for the entire Amazon, with a 
standardized method and accuracy necessary for 
territorial planning and biodiversity conservation.

This review also highlighted the important 
contribution of MODIS since 2000 for land 
surface phenology studies over tropical forests. 
The MODIS VIs product (NDVI and EVI) 
has been the most commonly used approach 
for this purpose. However, even using 16-
day compositing images, cloudy data does 
not generally allow a reliable analysis of the 
VIs in the rainy season. Uncertainties in data 
analysis have also precluded the extensive use 
of the MODIS Global Vegetation Phenology 
Product, which is less reliable for tropical 
evergreen forests. Because of the uncertainties 
associated with atmospheric correction and view-
illumination geometry, much of the phenologic 
studies on the Amazonian tropical forests have 
tried to understand the unexpected increase 

of MODIS EVI along the dry season and, 
especially, in response to severe droughts (inter-
annual variations). These controversial fi ndings, 
when compared to fi eld reports of decreasing 
plant productivity, indicated that validation 
of detectable MODIS satellite phenologic 
patterns, using surface observations and other 
better spatial and spectral resolution sensors, 
is still necessary. For example, the combined 
use of MODIS/Terra and Hyperion/EO-1 has 
contributed to improve the understanding of 
the phenologic variability in the Amazonian 
tropical forest. When combined to LiDAR, 
hyperspectral sensors can be used to relate 
phenological variation to micro-topography 
and to vegetation structure. Finally, land surface 
phenology studies can benefi t from the transition 
from low to high signal-to-noise (SNR) orbital 
imaging spectrometers, and especially from 
sampling (e.g., Hyperion/EO-1 with 7.7 km of 
swath width) to global coverage hyperspectral 
missions. This is the case of the proposed NASA 
HyspIRI mission, to be launched in near future, 
with 150 km of swath width, more than 200 
bands, 60 m of spatial resolution and with 19 
days revisit time.

Remote sensing has also played an 
important role in quantifying the impacts of 
natural and human-driven disturbances or 
changes that can directly impact the Amazon 
biome carbon balance. Deforestation, selective 
logging and forest fi res are the main human-
driven disturbances occurring in Amazonia. The 
use of data from Landsat sensors and MODIS 
has improved our understanding on the extent, 
spatial confi guration and recurrence time of 
these events. However, there is an urgent need to 
improve not only the long-term quantifi cation of 
both extent of impacts of selective logging and 
fi re, but also the evaluation of the recovery time 
of these areas.   

Orbital microwave technology enhanced 
our capacity to measure spatially explicit 
changes of rainfall patterns in Amazonia and how 
this variable does varies temporally. Moreover, 
this same technology allowed the identifi cation 
of slow recovery of the forest canopy after the 
drought. One key aspect that must be better 
understood is the biophysical meaning of the 
information. Therefore, long-term systematic 
fi eld surveys are urgently required to resolve this 



Santos J. R. et. al.

1430 Revista Brasileira de Cartografi a, Rio de Janeiro, N0 66/7 - International Issue, p. 1413-1436, Dez/2014

gap in our knowledge.
Changes in forest structure and functioning 

can have major implications for the dynamics 
of C stocks in Amazonia if drought events 
become more frequent and intense in this 
decade. Therefore, remote sensing is likely to 
be at the front of this scientifi c fi eld for many 
years to come as a scientifi c tool to support 
the conservation and management of natural 
resources in Amazonia. These are, at present, the 
most pressing demands of society, government, 
and non-governmental organizations, which 
see Amazonia as an important component of 
the Earth system that can help in alleviating 
or mitigating the impacts of climate and 
environmental changes.
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