

Revista Brasileira de Cartografia (2014) Nº 66/5: 1117-1133 Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto ISSN: 1808-0936

AVALIAÇÃO DO POSICIONAMENTO GNSS OBTIDO PELOS MÉTODOS CINEMÁTICO RTK/NTRIP E PPP EM TEMPO REAL

Evaluation of the GNSS Positioning Obtained by Method Kinematic RTK/NTRIP and PPP in Real Time

Alexandre do Nascimento Souza; Sílvio Jacks dos Anjos Garnés & Haroldo Antonio Marques

Universidade Federal de Pernambuco - UFPE Departamento de Engenharia Cartográfica / Programa de Pós-Graduação em Ciências Geodésicas e Tecnologias da Geoinformação Av. Acadêmico Hélio Ramos, s/n - 2º andar - Cidade Universitária - Recife - Cep: 50740-530, Brasil. {alexandre0363, sjgarnes, haroldoh2o}@gmail.com

> Recebido em 08 de Março, 2014/ Aceito em 24 de Maio, 2014 Received on March 08, 2014/ Accepted on May 24, 2014

RESUMO

Neste trabalho foram analisados os métodos de posicionamento PPP cinemático em tempo real via software BNC V. 2.6 do BKG (*Bundesamt für Kartographie und Geodäsie*), posicionamento RTK (*Real Time Kinematic*) usando o protocolo NTRIP da RBMC-IP e o posicionamento relativo cinemático pós-processado, tomando-se como referências os vértices da Rede de Referência Cadastral da Cidade do Recife, implantados pela empresa ENGEFOTO no ano de 2009. Os levantamentos foram realizados com um receptor GNSS Hiper Lite +, em trajetórias cinemáticas, com permanência sobre os pontos de referência por um período de aproximadamente 2 minutos apenas para reconhecimento do vértice a posteriori por meio do instante da observação. Os resultados das precisões médias para cada tipo de levantamento foram respectivamente de: pós-processamento relativo (0,039 m); PPP em tempo real BKG (0,465 m) e RTK/NTRIP (1,235 m). Por outro lado, as discrepâncias médias com relação à posição conhecida das estações foram respectivamente de: pós-processamento relativo (0,207 m); RTK/NTRIP (2,855 m); PPP tempo real BKG (10,458 m). Durante a realização dos experimentos ocorreram muitas perdas de sinais, principalmente na portadora L₂ e também problemas no recebimento dos dados do *mountpoint* RTCM3EPH a partir do *caster* do IGS no caso do PPP cinemático em tempo real.

Palavras chaves: GPS, NTRIP, PPP, RTK.

ABSTRACT

In this work, we analyzed the positioning methods PPP real-time kinematic via software BNC V. 2.6 of BKG (Bundesamt für und Kartographie Geodäsie), RTK positioning (Real Time Kinematic) using the NTRIP protocol of RBMC-IP and post-processed positioning kinematic relative, taking as reference the vertices of the Cadastral Reference Network of Recife, ENGEFOTO implemented by the company in 2009. The surveys were conducted with kinematic trajectories remaining on the reference points for a period of approximately 2 minutes. The results of the averages accuracies for each type of survey were respectively: for post-processing (0.039 m); PPP real time BKG (0.465 m) RTK/NTRIP (1.235 m). Moreover, the discrepancies with respect to the average known position of the stations were respectively:

post-processing on (0,207 m); RTK/NTRIP (2,855 m); PPP real time BKG (10,458 m). During the experiments were many dropouts, especially in L2 carrier and also problems in receiving data of mountpoint RTCM3EPH from the caster of the IGS in the case of PPP kinematic in real time.

Keywords: GPS, NTRIP, PPP, RTK.

1. INTRODUÇÃO

Neste artigo é investigado e comparado os resultados de posicionamento GNSS utilizando os métodos PPP cinemático em tempo real; RTK via NTRIP e posicionamento relativo pósprocessado, tendo como referências pontos de coordenadas geodésicas bem estabelecidas no campus da UFPE e na rede de referência do município do Recife - PE, implementados pela empresa ENGEFOTO em 2009. As trajetórias cinemáticas dos testes passaram pelo centro da cidade do Recife - PE.

Existe uma tendência para pesquisas de posicionamento pelo GNSS em tempo real, seja usando o RTK com transmissão de correções via protocolos de Internet, via UHF (Ultra High Frequency), seja RTK em rede, ou ainda para o posicionamento PPP, tanto em tempo real como ou pós-processado. Uma das opções que se busca no PPP é conseguir obter sucesso de resolução de ambiguidades em tempo real como é o caso do RTK. Grande parte dos testes realizados para se estimar a acurácia dos métodos de posicionamento foram desenvolvidos em condições favoráveis, nas quais a comunicação via Internet e a perda de sinal dos satélites por obstruções não era problema. Sabe-se que as obstruções e efeitos de multicaminhamento causadas principalmente por prédios nas grandes cidades é um dos fatores que mais prejudicam a obtenção de resultados com boa acurácia no posicionamento GNSS. Desta maneira nesta pesquisa, propõe-se aplicar os métodos de posicionamento cinemático PPP e RTK realizados em condições reais, sujeitos aos efeitos de multicaminho, perda de sinal com a Internet e obstruções diversas.

2. POSICIONAMENTO GPS EM TEMPO REAL DGPS E RTK

O DGPS foi desenvolvido para contornar a degradação da acurácia do posicionamento absoluto (Posicionamento por Ponto Simples) por causa da ativação do código ou técnica de segurança de degradação Selective Availability (SA) (em 25 de março de 1990) imposto pelo Department of Defense (DoD) dos Estados Unidos da América. É baseado no uso de dois receptores, um base e outro móvel, o receptor base é instalado numa estação (ponto) de coordenadas conhecidas e calcula-se correções das pseudodistâncias com base no conhecimento da distância geométrica ($\rho_{\rm R}^{\rm S}$) entre o receptor e os satélites num instante (t). Estas diferenças passam a ser chamadas de correções diferenciais e elas são enviadas por telemetria por meio um sistema de comunicação para a estação móvel (Figura 1) que as aplica, melhorando consideravelmente (até 97%) a precisão do posicionamento em tempo real (HOFMANN-WELLENHOF; LICHTENEGGER E COLLINS, 1994).

Fig. 1 - Conceito de DGPS. Fonte: Krueger (1996).

Um caminho para a realização do posicionamento DGPS seria calcular as correções das pseudodistâncias ($V_{PR}^{S_i}$) do receptor base (R) medidas a cada um dos satélites (Sⁱ), obtidas em uma época (t), (Equação 1), aplicar às correções da base as correspondentes pseudodistâncias observadas no receptor móvel e obter a posição por um ajustamento pelo método dos mínimos quadrados, a fim de obter as coordenadas da antena *rover* e o erro do relógio do receptor.

$$V_{PR}^{S_i}(t) = \rho_R^{S_i}(t) - PR_R^{S_i}(t)$$
(1)

Quando as correções são da fase da onda portadora, o posicionamento passa a ser denominado de *Real Time Kinematic* (RTK). Este tipo de posicionamento vem sendo muito empregado por permitir determinar a posição do receptor *rover* (antena), em tempo real e de forma acurada, sendo um dos mais avançados no posicionamento GNSS (MONICO, 2008).

O RTK se baseia no posicionamento relativo, com erro de poucos centímetros. Utiliza as correções da fase da portadora recebidas do receptor base (colocado numa estação de coordenadas conhecidas), via link de rádio em frequências normalmente UHF, em algoritmos de resolução de ambiguidades em tempo real (On The Fly – OTF) no ajustamento sequencial (ou recursivo) das observáveis. Em geral, procede-se a combinação linear da dupla diferença de fase, podendo, dependendo da estratégia de implemantação computacional, se utilizar de recursos de combinações lineares entre as portadoras. No posicionamento usando o RTK, com exceção dos desenvolvedores de algortimos e softwares, os usuários ficam limitados a solução adotada pelos fabricantes dos receptores, os quais, inserem suas soluções nos chips das coletoras ou de certos modelos de receptores, permitindo a verificação em tempo real se as ambiguidades foram resolvidas ou não Garnés (2001), (SEEBER, 2003) e (COSTA et al., 2009).

Em relação a resolução de ambiguidades GPS duas estratégias são as mais utilizadas; uma com realização de busca no espaço das coordenadas usando a função de ambuiguidade, Equação (2) (HOFMANN-WELLENHOF; LICHTENEGGER e COLLINS,1994); (GARNÉS, 2001) e outra, com busca no espaço das ambiguidades, Equação (3), (TEUNISSEN, *et al.*, 1995); (GARNÉS, 2001).

$$\mathbf{f}_{amb} = \sqrt{\left[\sum_{j=1}^{n} \cos(\varphi_{AB}^{j} - \frac{2\pi}{\lambda} \rho_{AB}^{j})\right]^{2} + \left[\sum_{j=1}^{n} sen(\varphi_{AB}^{j} - \frac{2\pi}{\lambda} \rho_{AB}^{j})\right]^{2}}$$
(2)

onde:

 $\begin{array}{l} \mathbf{f}_{amb} \text{ - função de ambiguidade a ser maximizada;} \\ \varphi^{j}_{AB} \text{ - simples diferença de fase em ciclos;} \\ \varphi^{j}_{AB} \text{ - simples diferença de distâncias entre os receptores A e B e satélite j.} \end{array}$

$$\min_{\mathbf{a}\in\mathbf{Z}'}\Omega(\mathbf{a}) = (\mathbf{a} - \hat{\mathbf{x}}_2)^{\mathrm{T}}\mathbf{Q}_{\hat{\mathbf{x}}_2}^{-1}(\mathbf{a} - \hat{\mathbf{x}}_2)$$
(3)

onde:

 $\Omega(\mathbf{a})$: função quadrática das ambiguidades a ser minimizada;

 $\hat{\mathbf{x}}_2$: vetor das ambiguidades reais;

a: vetor das ambiguidades inteiras;

 $\mathbf{Q}_{\hat{\mathbf{x}}_2}$: matriz cofatora das ambiguidades reais etimadas por Mínimos Quadrados.

Um dos métodos mais populares para resolução da ambiguidade foi proposto por Teunissen (1993) e denominado de *Least-Squares Ambigüity Decorrelation Adjustment* (LAMBDA). Os algoritmos desse método foram implementados em MATLAB© e podem ser encontrados em Strang e Borre (1997).

A resolução das ambiguidades GPS é a essência para o posicionamento preciso RTK, tendo como fator decisivo para seu sucesso a mudança da geometria dos satélites e a eliminação de erros sistemáticos nas observáveis. O RTK iniciado com aplicações usando apenas um receptor base e um móvel, foi expandido para uso em rede, aproveitando com isso, a vantagem da eliminação de alguns erros sistemáticos principalmente os provenientes das refrações troposféricas, ionosféricas e erros do estado dos relógios dos satélites em relação ao tempo GPS.

3. POSICIONAMENTO GPS POR PONTO PRECISO

Segundo Monico (2008), quando se utilizam as observáveis pseudodistância ou fase da onda portadora, ou ambas, coletadas por receptores de simples ou dupla frequência, com efemérides precisas, trata-se do PPP. Requer fundamentalmente o uso de efemérides e correções dos relógios dos satélites, ambas de precisão ou alta precisão. As efemérides precisas podem ser obtidas do *International GNSS Service* (IGS), neste serviço também são disponibilizados vários produtos de efemérides.

Quando o receptor dispõe de dupla frequência, as observáveis da combinação linear *ion-free* podem ser utilizadas, tanto para o código quanto para a fase, conforme equações (4) e (5) (MONICO, 2008):

$$P_{RIF}^{S} = \rho_{R}^{S} + c \ (dt_{R} - dt^{s}) + Trop_{R}^{S} + dtrop_{R}^{S} \ m(E)$$
(4)

$$\Phi_{RIF}^{s} = \frac{f_{1}}{c} \rho_{R}^{s} + f_{1} (dt_{R} - dt^{s}) + N_{IF} + \frac{f_{1}}{c} Trop_{R}^{s} + \frac{f_{1}}{c} dtrop_{R}^{s} m(E)$$
(5)

onde:

 ρ_{R}^{S} : distância geométrica entre as antenas do satélite e do receptor no instante t_{R} ;

c: velocidade da luz no vácuo;

 dt_{R} : estado do relógio do receptor em relação ao tempo GPS;

dt^s : estado do relógio do satélite em relação ao tempo GPS;

 $_{Trop_{R}^{S}}$: atraso troposférico estimado por algum modelo disponível;

 $dtrop_R^S m(E)$: correção residual de $Trop_R^S$;

m(E): função de mapeamento.

f₁: frequência da combinação linear *ion-free*;

 $\Phi^{s}_{R_{IF}}(t_{R})$: fase da combinação linear *ion-free* no instante t_{R} ;

 t_{R} : instante de recepção do sinal no relógio do receptor;

 N_{IF} : ambiguidades da combinação linear *ion-free*;

4. POSICIONAMENTO GPS POR PONTO PRECISO EM TEMPO REAL

No caso do PPP em tempo real as efemérides precisas e os erros dos relógios dos satélites devem estar disponibilizados com o mínimo de latência possível. Utilizando a estrutura geodésica de estações GNSS de monitoramento contínuo espalhadas pelo mundo, essa possibilidade já é realidade, sendo disponibilizados pelo IGS (*International GNSS Service*) via protocolo de transmissão pela Internet NTRIP (*Networked Transport of RTCM via Internet Protocol*) (COSTA et al, 2009). Nos trabalhos de Marques *et al* (2010), por exemplo, fica evidenciado precisões ao nível do centímetro e decímetro para experimentos no estado de São Paulo, Brasil.

Além do IGS, no Brasil, a disponibilidade para o uso deste recurso, pode contar com a infraestrutura do IBGE da RBMC-IP (Rede Brasileira de Monitoramento Contínuo). A Figura 2 ilustra os principais componentes desta rede para transmitir correções via NTRIP.

Fig. 2 - Componentes da rede RBMC-IP Fonte: COSTA *et al* (2009).

5. MATERIAIS E MÉTODOS

Os procedimentos metodológicos foram divididos em três partes: área de estudo; materiais empregados; e os métodos que foram testados.

5.1. Área de estudo

A área de estudo está inserida na cidade do Recife, estado de Pernambuco, tendo sido uma parte da pesquisa, realizada no Campus da Universidade Federal de Pernambuco (UFPE), e outra parte, em algumas das principais ruas e avenidas da cidade do Recife, como BR 101, Av. Caxangá, Av. Conde da Boa Vista, Av. Sul, Av. Eng. José Estelita, Av. Herculano Bandeira, Av. Eng. Domingos Ferreira, Av. Boa Viagem, Av. Recife, entre outras. Na Figura 3, visualiza-se o trajeto dos levantamentos realizados (linha em azul) e localização dos marcos de controle (início no ponto 1 em verde, 2, 3, 4, 5 e 6 em amarelo e finalizando no ponto 7 em vermelho), utilizando os métodos PPP em tempo real via NTRIP e RTK via NTRIP.

Foram utilizados dois marcos geodésicos materializados no Campus da UFPE da rede Planialtimétrica (V07-93992-IBGE e EPS04), que podem ser visualizados em alaranjado com círculos vermelhos na Figura 4 e Figura 5 (V07-93992-IBGE) e cinco dos treze vértices geodésicos da Rede de Referência do Município do Recife (vértices V08-ENGEFOTO, V09-ENGEFOTO, V12-ENGEFOTO, V13-93991-IBGE e V10-ENGEFOTO) visualizados na Figura 5.

Fig. 3 - Trajeto levantamento PPP cinemático. Fonte: https://www.google.com.br/maps.

Fig. 4 - Geometria da rede de referência cadastral do Campos Joaquim Amazonas da UFPE, Recife-PE. Fonte: Vila Flor (2008).

5.2. Materiais

Para a coleta dos dados, visando à determinação das coordenadas dos marcos pelos métodos PPP em tempo real utilizando o protocolo NTRIP via caster do IGS e RTK com protocolo NTRIP via RBMC-IP, foram utilizados os equipamentos que se encontram no Laboratório de Geodésia do Departamento de Engenharia Cartográfica do Centro de Tecnologia e Geociências (CTG) da Universidade Federal de Pernambuco (UFPE), sendo estes: um par de receptores *GNSS Topcon* Hiper Lite +, coletora

Fig. 5 - Rede de referência do município do Recife - PE. Fonte: http://www.recife.pe.gov. br/ESIG/. Acesso em ago 2012

de dados Topcon FC200 e demais acessórios.

Para o processamento dos dados no pósprocessamento, foram utilizados os *softwares*: Topcon Tools v.8.2 com *Hardlock* do LabGeo/ DECArt, AstGeoTop – Módulos: PPP Cinemático @ Versão 2012.12.13 e Transformação de coordenadas@ Versão 2012.12.13.

O software livre utilizado para recepção das correções no receptor móvel com a comunicação via Internet, para uso do protocolo NTRIP, foi o BKG Ntrip Client (BNC) Versão 2.6 (Figura 6) disponível em http://igs.bkg. bund.de/ntrip/download. Este software permite baixar dados de efemérides e correções dos relógios dos satélites pela Internet em tempo real, simultaneamente de diferentes estações (Figura 7), além de realizar o PPP em tempo real.

O BNC V. 2.6 disponibiliza um arquivo de log (Figura 8) com as coordenadas cartesianas dos pontos e outras informações e pode-se também gravar o arquivo RINEX. A leitura do arquivo log do BNC V. 2.6, as correções do ITRF2008 para o SIRGAS2000 foram obtidas no software AstGeoTop, módulo PPP cinemático © versão 2012.12.13 (Figura 9), e a transformação de coordenadas geodésicas do SIRGAS2000 para UTM (*Universal Transversa de Mercator*) foi feita no módulo Transformação de Coordenadas @ Versão 2012.10.10 do mesmo programa.

and the second							
Network	General	RINEX Observations	R242X Ephensenia	R24EX Esiting & QC	Broeckast Corrections	Feed Digine	Serial Output 4
Settings fi	r proxy in pr	otected networks and fo	SSL authorization, le	we baxes blank if none			
Denov here							
	8						
PTDXY DOT					1200		
Path to 55	L Certificate	s	De	faulti Ci/Users/lenovo/	config BioS		
Ignore SS	Authorizatio	an Errora 📄					
Streams	resource los	ader / mountpoint	decoder	lat long	nmex ntrip bytes		
Streams	resource los	ader / mountpoint	decoder	lirt long	nmea ntrip bytes		
9breams	resource los	ader / mountpoint	decoder	lirt long	nmea ntrip bytes		
9beams	resource los	ader / mountpoint	decoder	lat long	nmea ntrip bytes		
Streams	resource los	ader / mountpoint	decoder	lint kong	nmea noip bytes		
Streams	resource los	ader / mountpoint	decoder	lat kong	nmea ntrip bytes		
Rreams Log Th	resource los reugiquit	ader / mountpoint	decoder	lat koog	nmea ntrip bytes		
Streams Log Th	resource los resugiput	ader / mountpoint Latency PPP Plot	decoder	lat long a	nmea ntrip bytes		
Streams Log Th	resource los reugipart	ader / mountpoint Latency PPP Plot	decoder	lit king	nmea nõip bytes		
Streams Log Th	resource los resignant	ader / mountpoint Latency PPP Plat	decoder	lit kong	nmea nõip bytes		
Streams	resource los	ader / mountpoint Latency PPP Plot	decoder	list kong	nmea nõip bytes		

Fig. 6 - Tela do Software BNC Versão 2.6. Fonte: BKG Ntrip Client(BNC) Versão 2.6.

Fig. 7 - BNC recebendo dados das efemérides. Fonte: BKG Ntrip Client (BNC) Versão 2.6.

Fig. 8 - Arquivo *log* disponibilizado pelo BNC V. 2.6

Fonte: BNC V. 2.6.

Links Servi	ças ppp - pc	55100	NUMENTO FOR FONTO	960150	A Process				14 Pa	râmetro	e da tra	ant an	raliza	da da H	San Sa
190E () (585 ()	hut, Braske Geradari St	no di Intel	- Geografie e Estatiste Reference Sustemi	2/	110000				(veri Tx (or 0.250	fique os pr) Ty (cm 0.430	or Banetros) Ta (cm) 0.460	e redum 5 (ppb) -1, 100	Re(mas) 0.14)	Ay(rus) -0.010	Ra(man) 0.060
(Star)	Arquino	Ar	quivo : _121128				Origen do	processamento C	dTx (cm/wno)	dTy (cm/wno)	dTz (crajiera)	dS (aph/a)	dR.x (miniairo)	dity (max/and	iRs) (rua)(ar
RF		-	and the second second	Format	o (sexagesinal o	u decinal)		Reductr coo	et. pera épo	ca de refe	rência do	938	0.000	0.000	0,000
TRECIES	OR)	LUE H	PERMIT		"mm" so, sosos"	0	92.0000000	CTRED	5508)(época	obs.)		OTR	(16501)	> SRGAS	2000
Ponto	11.101.00	8	H1MN:55.5	LATITL	ce.	LONGETLE	De .	ALTICLE	sLAT(r	0 at	.0NG(m)	nAL" A	Época d	e Referên	cia
206	2012-11-	29	14:07:23:0	-8903	19,65994"	-3495710	0,30790"	-76,122	0,092	0.	214	0,2:	2000.4		
207	2012-11-	28	34:07:32.0	-8*03	29,51132*	-34*57'0	0,95883"	-74,755	0,092	D,	213	0,2	11 and		
206	2012-11-	28	14/07/43.0	-8903	19,15344*	-3495710	0,10215"	-74,143	0,091	0,	212	0,2:	FITE	RANCO	
209	2012-11-	25	14:07:44.0	-8103	29,35295*	-34*57'0	0,10423*	-73,002	0,090	D,	209	0,2:	[]HRU	MN (95.95	
210	2012-11-	28	14(23)24/0	-89031	21.15136*	-3495615	5,66435"	-68,915	9,112	0,	198	9,2	FLAT	mute	
115	2012-11-	28	14:23:26.0	-8*03	21,14955*	-34*58`5	5,74977	45,914	0,112	0,	198	0,30	12 LON	GITUDE	
212	2012-11-	39	14(25)22.0	-89031	21,13819*	-3495615	6,94193"	-68,438	0.113	0,	195	0,25	2 ALT	ELPSON	1AL
213	2012-11-	25	14:25:26.0	-8*03	21,11993*	-34"56'5	6,94255*	47,812	0,112	0,	193	0,25	m.		_
214	2012-11-	29	14(25)27.0	-8903	21,11295*	-34*56*5	6,94333"	-67,329	0.111	0	191	0.15			
1															
Num. épo	Call .		Latitude micial		Longitude misi	i	Alt, els	lacini labigu		-	mer Gréfe	24	ÐE	xportar Ge	ople
1405			-8903.02/93544*		-34957.11,60	712	1,315						-		
-			Lettude final		Longitude final	15	Alt, els	pesidal final					130	montar A	Incad

Fig. 9 - AstGeoTop Módulo PPP Cinemático © 2012.12.13. Fonte: Software AstGeoTop V. 2013.12.13.

5.3 Métodos

Para a realização do levantamento PPP cinemático em tempo real, foram utilizados um receptor rover de dupla frequência marca Topcon Hiper Lite +, um *netbook*, um modem USB 3G e um cabo serial-USB. O equipamento foi montado conforme a Figura 10 e utilizada a porta de comunicação serial para a conexão entre o receptor e o netbook. O passo seguinte foi fazer a configuração no netbook do software livre BKG Ntrip Client (BNC V. 2.6) Versão 2.6 para o PPP em tempo real, que por sua vez faz a conexão com o servidor caster utilizando o protocolo NTRIP via Internet. O BNC V. 2.6 pode obter coordenadas para uma posição do rover no método do Posicionamento por Ponto Preciso (PPP). Ele usa código ou código mais fase da portadora usando combinação livre da ionosfera P3 (código) e L3 (fase).

Realizada a configuração para recepção das correções dos relógios dos satélites para a *mountpoint* (designação do BKG) CLK91 e recepção das efemérides pelo *mountpoint* RTCM3EPH disponibilizadas pelo IGS.

No levantamento RTK via NTRIP, foram utilizados os seguintes equipamentos: um receptor *rover* de dupla frequência marca Topcon Hiper Lite +, um coletor Topcon FC-200 e um celular GPRS com acesso a Internet (Figura 11). A configuração para acesso a rede RBMC-IP do IBGE pelo telefone celular foi criada seguindo as instruções constantes no manual de configuração do *software* TOPSURV© instalado na coletora.

Fig. 10 - Equipamento montado para o levantamento PPP em tempo real usando BNC V.2.6. Fonte: O Autor

Fig. 11 - Equipamentos para o levantamento RTK via NTRIP. Fonte: O Autor

6. RESULTADOS

A seguir são apresentados os resultados da pesquisa para o levantamento PPP cinemático em tempo real e levantamento cinemático em tempo real (RTK) via NTRIP.

6.1. Levantamento PPP cinemático em tempo real

A Tabela 1 apresenta as coordenadas no sistema de projeção UTM (*Universal Transversa de Mercator*) e a precisão dos vértices da Rede de Referência do município do Recife - PE, usadas na comparação dos resultados encontrados. A Tabela 2, mostra os resultados obtidos pelo método PPP em tempo real e processados pelo software livre BKG Ntrip Client V. 2.6 e na Tabela 3 obtidos pelo pós-processamento relativo através do *software* Topcon Tools V. 8.2. O erro de posicionamento planimétrico (Erropos) foi obtido pela Equação (6).

Tabela 1: 0	Coordenadas	da rede de ref	erência do				
município	do Recife (Pl	E)					
Estação	ENGEFOTO						
Estação	E (m)	N (m)	h (m)				
03002	285364,810	9108945,778	3,12				
93992	s= 0,004	s = 0,004	s = 0,030				
V09	290227,239	9108756,154	-2,698				
v 08	s =0,005	s =0,007	s = 0,012				
V09	202709 409	0100246 004	2 2 2 1				
Marco	293/98,408	9108246,994	-2,231				
Zero	5 -0,007	5 -0,009	5 - 0,015				
V12	291946,791	9103236,979	-1,433				
v 12	s =0,007	s = 0,010	s = 0,016				
93991	288819,654	9100175,344	2,69				
Aeroporto	s = 0,004	s = 0,003	s = 0,028				
V10	287313,191	9104877,523	3,551				
V 10	s = 0,006	s =0,008	s = 0,013				
EPS04	284742,576	9109481,118	4,892				
LI 504	s =0,001	s =0,001	s = 0,008				

 $Erropos = \sqrt{\Delta E^2 + \Delta N^2}$

(6)

Tabela 2: Levantamento PPP em tempo real utilizando o BKG Ntrip Client V. 2.6

Estação	Horas	E (m)	N (m)	h (m)
1/00	14:50:42	290236,812 s= 0,574	9108743,820 s= 0,405	125,853 s= 0,603
V08	Discrep.	ΔE 9,573	ΔN -12,334	128,551
	Erropos	15,	613	
	15:32:50	293803,772 s= 0,332	9108246,980 s= 0,235	2,382 s= 0,391
V09	Discrep.	ΔE 5,364	ΔN -0,014	4,613
	Erropos	5,3		
	15:59:59	291948,824 s= 0,301	9103249,661 s= 0,135	-60,382 s= 0,337
V12	Discrep.	ΔE 2,033	ΔN 12,682	-58,949
	Erropos	12,		
	13:53:46	284742,676 s= 0,376	9109481,08 s= 0,204	7,271 s= 0,412
EPS04	Discrep.	ΔE 0,100	ΔN -0,037	2,379
	Erropos	0,		

Observa-se, na Tabela 2, que o maior erro encontrado no posicionamento planimétrico utilizando o processamento pelo BNC V. 2.6 foi de 15,613 m para a estação V08 da rede de referência do município do Recife e o menor erro foi de 0,107 m para a estação EPS04 da rede do campus Joaquim Amazonas da UFPE.

Nota-se, na Tabela 2 que não comparecem valores para os vértices 93991, 93992 e V10, para o processamento entre as épocas 14:07:43 e 14:23:24 (vértice 93992), 16:20:01 e 16:32:36 (vértice 93991) e entre as épocas 16:40:34 e 16:50:57 (vértice V10), podendo ser verificado no arquivo de log disponibilizado pelo software BNC V. 2.6, indicado pela detecção de erros (*outlier phase*) e perda de conexão com *mountpoint* RTCM3EPH (Figura 12).

	bncl
12-11-28 14:08:49 Precise Point Positioning of Epoch 14:08:00.0	12-1
Outlier Phase G20.0.082	
Outlier Phase G10 0.043	bncl
Outlier Phase G20 0.084	
	12-1
12-11-28 14:08:50 RTCM3EPH: Failure threshold exceeded,	16:3
outage since 12-11-28 13:51:19	12-1
12-11-28 14:08:50 RTCM3EPH: Data timeout, reconnecting	10:4
12-11-28 14:09:03 Precise Point Positioning of Epoch 14:08:01.0	Outl
12-11-28 16:20:46 Precise Point Positioning of Epoch	Outl
16:19:59.0	Outl
	Outl
Outlier Phase G23 0.808	
Outlier Phase G04 0.513	
Outher Phase G23 0.816	Outl
12-11-28 16:20:47 Precise Point Positioning of Enoch	Neg
16:20:01.0	16:5
	16:5
Outlier Phase G23 0.852	16:5
Outlier Phase G04 0.521	16:5
Outlier Phase G23 0.887	16:5
	16:5
12-11-28 16:20:48 Precise Point Positioning of Epoch 16:20:02.0	16:5 Fig.
	Fon
Outlier Phase G23 0.854	
Outlier Phase G04 0.531	
Outlier Phase G23 0.892	logo
16:32:23.0	próx
	proc
Outlier Phase G07 0.561	BNO
bncModel::cmpBancroft: not enough data	phas
	(G0)
12-11-28 16:33:24 Precise Point Positioning of Epoch 16:32:36.0	para obse
12-11-28 16:40:34 DECART PPP 16:39:41.0 8 5177412.703	o qu
+- 0.436 -3615748.942 +- 0.219 -892276.231 +- 0.094	de e
12-11-28 16:40:34 Precise Point Positioning of Epoch 16:39:46.0	espe coor

Outlier Phase G26 0.356 Outlier Phase G08 0.287 Outlier Phase G26 0.429 12-11-28 16:40:34 Precise Point Positioning of Epoch 16:39:47.0 _____ Outlier Phase G10 0.228 Model::cmpBancroft: not enough data 11-28 16:40:34 Precise Point Positioning of Epoch 39:48.0Model::cmpBancroft: not enough data 11-28 16:40:35 Precise Point Positioning of Epoch 39:49.0 11-28 16:50:54 Precise Point Positioning of Epoch 9:54.0 lier Phase G05 1.080 lier Phase G07 0.653 lier Phase G10 0.991 lier Phase G07 0.850 11-28 16:50:54 Precise Point Positioning of Epoch 50:05.0 lier Phase G08 1.080 lected PRNs: G08 0:05.0 RES G05 P3 0.2506 50:05.0 RES G07 P3 -0.0170 50:05.0 RES G10 P3 -0.2914 50:05.0 RES G13 P3 0.0722 0:05.0 RES G17 P3 0.0685 50:05.0 RES G05 L3 -0.0145 50:05.0 RES G07 L3 0.0080 12 - Arquivo de log do BNC V.2.6.

Fonte: BNC V. 2.6.

Em uma análise detalhada dos arquivos de log do BNC V. 2.6, verifica-se na Figura 13, que próximo da época 16:45:13, não há coordenadas processadas pelo BNC V. 2.6. Além disto, o BNC V. 2.6 indica detecção de erros (*outlier phase*) na medida de fase para alguns satélites (G08 e G10). Quando ocorre detecção de erros para algum satélite, o BNC V. 2.6 elimina as observações deste satélite no processamento, o que pode provocar singularidade no sistema de equações para o ajustamento numa época específica, levando assim à não obtenção das coordenadas naquela época.

Ao analisar o arquivo RINEX armazenado

pelo BNC V. 2.6, verificou-se que foram coletados dados de nove satélites na época 16:45:13, a qual foi utilizada para obtenção de coordenadas do vértice V10. Essa quantidade de satélites é suficiente para aplicação do ajustamento no PPP em tempo real, até mesmo porque foi perdida apenas uma observação de fase na L_2 do G08, as demais observações C_1 , L_1 , P2 e L_2 estão presentes para todos os nove satélites.

Arquivo Log do BNC

12-11-28 16:44:59 Precise Point Positioning of Epoch 16:44:10.0
Outlier Phase G08 2.688
Outlier Phase G10 1.476
Outlier Phase G08 2.904
12-11-28 16:45:09 Precise Point Positioning of Epoch 16:44:14.0
Outlier Phase G08 2.684
Outlier Phase G10 1.478
Outlier Phase G08 2.901
12-11-28 16:45:47 Precise Point Positioning of Epoch 16:44:20.0
Outlier Phase G08 2.672
Outlier Phase G10 1.485
Outlier Phase G08 2.893
12-11-28 16:45:48 Precise Point Positioning of Epoch 16:45:02.0
Outlier Phase G08 2.603
Outlier Phase G10 1.483
Outlier Phase G08 2.828

Fig. 13 - Arquivo de *log* do BNC V. 2.6 apresentando falhas. Fonte: BNC V. 2.6.

As informações de correções das órbitas e relógios transmitidos pelos satélites (Mensagem 1060), são armazenadas nos arquivos CLK.log e para a época do vértice V10 encontram-se na Figura 14. Verifica-se ainda na Figura 14 que o tempo é dado em semana GPS e segundos da correspondente e no caso do levantamento realizado, trata-se da semana GPS 1716. A Figura 14 indica que as correções (taxa de recebimento de 5 segundos) para as órbitas transmitidas, bem como as correções para os relógios transmitidos dos satélites GPS próximo da época 16:45:13, foram recebidas via Internet pelo BNC V. 2.6 através do protocolo NTRIP e do mountpoint CLK91. Desta maneira, não se pode dizer que o problema é consequência do não recebimento das correções em tempo real. Como confirmado pela Figura 15, o problema realmente ocorreu no processamento com o BNC V. 2.6.

Para o caso do vértice 93991-Aeroporto, ocorreram os mesmos problemas do vértice V10. Novamente, verificando no arquivo RINEX, dados de onze satélites estavam disponíveis para o processamento PPP em tempo real. As correções de órbitas e relógios também foram recebidas, indicando que não havia problemas de conexão com a Internet ou de recebimento destas correções. Contudo ao analisar o arquivo de log do BNC V. 2.6, novamente observou-se a detecção de *outliers* para alguns satélites e não foram encontradas as coordenadas processadas.

! Orbits/Clocks: 28 GPS 0 G	lonas	ss			
1060 0 1716 319510.0 G01	30	-34.608	0.585	-1.059	-0.824
1060 0 1716 319510.0 G03	85	-38.793	1.987	-1.132	0.738
1060 0 1716 319510.0 G04	40	-34.725	1.451	1.066	0.212
1060 0 1716 319510.0 G05	48	-34.812	0.785	0.242	0.106
1060 0 1716 319510.0 G06	68	-35.729	2.189	0.725	0.124
1060 0 1716 319510.0 G07	42	-35.283	0.724	1.738	-0.566
! Orbits/Clocks: 28 GPS 0 G	lonas	ss			
1060 0 1716 319515.0 G01	30	-34.914	0.586	-1.059	-0.824
1060 0 1716 319515.0 G03	85	-39.109	1.988	-1.132	0.739
1060 0 1716 319515.0 G04	40	-35.031	1.451	1.066	0.213
1060 0 1716 319515.0 G05	48	-35.130	0.785	0.243	0.107
1060 0 1716 319515.0 G06	68	-36.039	2.188	0.724	0.124
1060 0 1716 319515.0 G07	42	-35.596	0.725	1.738	-0.566
	T 7	1 1	DNG	2 (

Fig. 14 - Arquivo CLK.log do BNC 2.6. Fonte: BNC V. 2.6

No caso do vértice 93992, ocorreu o mesmo problema encontrado no vértice V10 (*outlier*) (Figura 15) e também houve perda de conexão com o mountpoint RTCM3EPH que disponibiliza as efemérides transmitidas, indicado no ponto 1 na Figura 16.

12-11-28 14:20:09 RTCM3EPH: Data timeout, reconnecting 12-11-28 14:20:34 Precise Point Positioning of Epoch 14:19:12.0 Outlier Phase G10 3.971 Outlier Phase G07 2.157 Outlier Phase G10 3.087 12-11-28 14:20:38 Precise Point Positioning of Epoch 14:19:50.0

Outlier Phase G10 3.949 Outlier Phase G07 2.173 Outlier Phase G10 3.094

Fig. 15 - Arquivo log do BNC V. 2.6 apresentando falhas. Fonte: BNC V. 2.6

Fig. 16 - Evidência de falha no processamento no vértice 93992. Fonte: Google Earth.

Tabela 3: Levantamento PPP em tempo real utilizando pós-processamento com o software Topcon Ttools 8.2

Estação	Horas	E (m)	N (m)	h (m)
	14:20:19	285364,819 σ= 0,024	9108945,763 σ= 0,140	1,003 σ= 0,025
93992	Discrep.	ΔE 0,009	ΔN -0,015	-2,117
	Erropos	0,	017	
	14:50:42	290227,427 σ= 0,023	9108756,310 σ= 0,028	-3,917 σ= 0,020
V08	Discrep.	ΔE 0,188	ΔN 0,156	-1,219
	Erropos	0,		
	15:32:50	293797,616 σ= 0,024	9108247,189 σ= 0,019	-2,044 σ= 0,026
V09	Discrep.	ΔE -0,792	ΔN 0,195	0,187
	Erropos	0,		
	15:59:59	291946,712 σ= 0,027	9103236,983 σ= 0,017	-1,571 σ= 0,030
V12	Discrep.	ΔE -0,079	ΔN 0,004	-0,138
	Erropos	0,		
93991	16:23:27	288819,666 σ= 0,035	9100175,354 σ= 0,022	2,68 σ= 0,033
Aero-	Discrep.	ΔE 0,012	ΔN 0,010	-0,01
porto	Erropos	0,		

V10	16:45:13	287313,192 9104877,52 σ= 0,031 σ= 0,024		3,586 σ= 0,028
	Discrep.	ΔE 0,001	ΔN 0,002	0,035
	Erropos	0,		
	13:53:46	284742,571 σ= 0,024	9109481,106 σ= 0,011	2,915 σ= 0,021
EPS04	Discrep.	ΔΕ -0,005 ΔΝ -0,012		-1,977
	Erropos	0,		

Tabe	ela 4:	Resultado	s do	o tipo	de	solução	para	0
pós-	proce	essamento	rela	tivo				

PPP TEMPO REAL POS-PROCESSADO						
Estação	Solução	Distância da Base				
Lstaçao	Solução	em metros				
93992	fixed	747,799				
V08	partial	5.356,251				
V09	partial	8.962,489				
V12	partial	9.441,166				
93991	fixed	10.153,678				
V10	fixed	5.249,040				
EPS04	fixed	202,402				

Na Tabela 3 pode-se observar os resultados obtidos no pós-processamento utilizando o software Topcon Tools V. 8.2 com o arquivo RINEX gerado pelo BNC 2.6. Neste caso, foi encontrado o menor erro planimétrico de 0,002 m no vértice V10 e o maior erro planimétrico de 0,816 m encontrado no vértice V09. Nota-se que os vértices que não aparecem no processamento pelo BNC V. 2.6 (93992 e V10), agora estão presentes no pós-processamento utilizando o Topcon Tools V. 8.2.

A Tabela 4 apresenta as soluções para o pós-processamento relativo utilizando o arquivo RINEX gerado pelo BNC V. 2.6. Em relação as soluções das ambiguidades, conforme Garnés (2001), as fixas indicam que as ambiguidades inteiras foram resolvidas e validadas por teste estatístico de hipótese, enquanto as soluções parciais, dizem respeito a apenas parte das equações de observações terem suas ambiguidades resolvidas aos inteiros, e outra parte ter ficado com soluções flutuantes (solução de ambiguidades sobre os números reais).

6.2 Levantamento cinemático em tempo real (RTK)

Os resultados para o levantamento RTK via NTRIP são apresentados na Tabela 5. A estação base utilizada foi a RECF da RBMC-

IP do IBGE localizada no Campus da UFPE. Nota-se que o menor erro planimétrico foi encontrado no vértice EPS04 com valor de 0.006 m e o maior erro planimétrico foi observado no vértice V12 com valor de 4,675 m. Observa-se na Tabela 6 que somente os vértices 93992 e EPS04 obtiveram solução fixed (ambiguidades resolvidas) e com uma linha de base menor que 3 km, os demais vértices obtiveram a solução float para distâncias acima de 3 km. Conforme Garnés (2001), o comprimento da linha de base é um dos fatores que influencia na velocidade de resolução de ambiguidades GPS pelos algoritmos dos programas de processamento GNSS. As constantes perdas de sinais durante o percurso com recomeço da resolução das ambiguidades, associada a latência das correções de fase pelo NTRIP da RBMC-IP (não indicada pela coletora), foi a causa da degradação da acurácia do método além dos 3km.

A Tabela 7 apresenta os resultados obtidos no pós-processamento utilizando o software Topcon Tools V. 8.2 utilizando o arquivo RINEX gravado no receptor Hiper Lite + e a Tabela 8 as soluções para o pós-processamento relativo.

Tabela 5: Resultados para o levantamento RTK via NTRIP

Estação	Horas	E (m)	N (m)	h (m)		
	12.52.55	285364,826 9108945,769		0,951		
02002	12:32:33	σ= 0,017	σ= 0,011	σ= 0,025		
93992	Discrep.	ΔΕ 0,016	ΔN -0,009	-2,169		
	Erropos	0,	0,018			
	10.17.00	290226,489	9108759,271	0,545		
	13:47:20	σ= 1,087	σ= 1,078	σ= 3,925		
V08	Discrep.	ΔE -0,750	ΔN 3,117	3,243		
	Erropos	3,	206			
		293797,816	9108250,064	1,454		
1/00		σ= 1,128	σ= 1,119	σ= 3,498		
V09	Discrep.	ΔΕ -0,592	ΔN 3,070	3,685		
	Erropos	3,				
	_	291943,395	9103240,192	-3,89		
V10		σ= 1,470	σ= 1,449	σ= 4,026		
V12	Discrep.	ΔΕ -3,396	ΔN 3,213	-2,46		
	Erropos	4,				
93991		288817,552	9100176,792	5,757		
Aaro		σ=1,222	σ= 1,203	σ= 3,272		
Acto-	Discrep.	ΔΕ -2,102	ΔN 1,448	3,067		
porto	Erropos	2,	552			
		287311,503	9104879,926	5,065		
V10		σ= 1,206	σ= 1,203	σ= 3,458		
¥ 10	Discrep.	ΔE -1,688	ΔN 2,403	1,514		
	Erropos	2,	937			
	16.23.10	284742,574	9109481,112	2,799		
EPS04	10.25.10	σ= 0,025	σ= 0,007	σ= 0,034		
LIGUT	Discrep.	ΔΕ -0,002	ΔN -0,006	-2,093		
	Erropos	0,	006			

Tabela 6: Resultados d	o tipo	de	solução	para	0
levantamento RTK/NT	RIP				

	RTK NTRIP								
Estação	Solução	Distância da Base em metros							
93992	Fixed	747,798							
V08	Float	5.354,882							
V09	Float	8.962,268							
V12	Float	9.436,554							
93991	Float	10.151,540							
V10	Float	5.246,134							
EPS04	Fixed	202,397							

Tabela 7: Resultados para o RTK/NTRIP utilizando pós-processamento relativo com o software Topcon Tools V. 8.2

Estação	Horas	E (m)	N (m)	h (m)
3	12:52:55			
93992	Discrep.	ΔE 0.009	ΔΝ -0.015	-2.117
	Erropos	0,0	029	<i>,</i>
	13:47:20			
V08	Discrep.	ΔE 0,188	ΔN 0,156	-1,219
	Erropos	0,0	026	,
	14:39:19			
V09	Discrep.	ΔΕ -0,792	ΔN 0,195	0,187
	Erropos	0.	,	
	15:09:19	, í		
V12	Discrep.	ΔΕ -0.079	ΔΝ 0.004	-0.138
	Erropos	0,	246	<i>,</i>
93991	15:38:18			
Aaro	Discrep.	ΔE 0.012	ΔΝ 0.010	-0.01
Aero-	Erropos	0,0	013	, í
porto	-			
1	16:07:36			
V10	Discrep.	ΔE 0,001	<u>AN 0,002</u>	0,035
	Erropos	0,0	020	
	16:23:10			
EPS04	Discrep.	ΔΕ -0,005	<u>AN -0,012</u>	-1,977
	Erropos	0,	011	

Tabela 8: Resultados do tipo de solução para o pós-processamento relativo

CINEMÁTICO PÓS-PROCESSADO								
Estação	Solução	Dist Base						
93992	partial	747,798						
V08	partial	5.354,882						
V09	partial	8.962,268						
V12	partial	9.436,554						
93991	partial	10.151,540						
V10	fixed	5.246,134						
EPS04	partial	202,397						

6.3 Precisão e acurácia dos métodos do posicionamento GNSS testados

A precisão do posicionamento GNSS é importante, mas só permite uma análise interna da distribuição de frequências do posicionamento em si, assim, num contexto mais realístico é preciso fazer a análise da acurácia do posicionamento. Uma das formas de medir essa acurácia é por meio do Erro Médio Quadrático (EMQ), que segundo Mikail e Ackerman (1976), foi proposta por Gauss, como sendo a esperança matemática da diferença quadrática da estimativa do parâmetro pelo parâmetro verdadeiro, ou seja, a esperança do erro verdadeiro ao quadrado, Equação (7):

$$EMQ = m^2 = E[(\hat{p} - E(\hat{p}))^2] = E[\varepsilon^2]$$
 (7)

Em termos práticos, para uma população de *n* elementos da variável aleatória e, a esperança matemática $E[(\times)]$ pode ser calculada por (GEMAEL, 1994):

$$m^{2} = E[\varepsilon^{2}] = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}$$
(8)

Pela suposição de que E[e]=0, ou seja, a esperança matemática do estimador cuja estimativa é \hat{p} tenha erros verdadeiros nulos, segue da Equação (8) e (7) a seguinte relação:

$$m^2 = \sigma_{\hat{n}}^2 + \beta^2 \tag{9}$$

onde:

b : erro sistemático (bias);

 $\sigma_{\hat{p}}^2$: a variância populacional da variável *p*.

Um longa discussão da interpretação da Equação (9) como indicador de acurácia nas Ciências Geodésicas pode ser encontrada em MONICO *et al.* (2009).

Com base nas Equações (8) e (9) foram usados como indicadores da acurácia horizontal do posicionamento GNSS nesse trabalho, as interpretações formuladas em (10) até (13) :

$$EMQ_{1} = \sqrt{\sigma_{(horiz)i}^{2} + \Delta_{(horiz)i}^{2}}$$
(10)

onde:

 $\sigma(horiz)i$: desvio padrão do posicionamento horizontal do i-ésimo vértice fornecido pelo processamento GNSS;

 $\Delta(horiz)i$: discrepância do posicionamento horizontal do i-ésimo vértice, corresponde ao Erropos definido na Equação (6); *EMQ*₁: Erro Médio Quadrático usando a precisão e a discrepância de cada vértice;

$$EMQ_{1M} = \frac{EMQ_1}{n} \tag{11}$$

onde:

 EMQ_{1M} : média aritmética do EMQ_1 ;

$$EMQ_2 = \sqrt{\overline{\sigma}_{horiz}^2 + \overline{\Delta}_{horiz}^2}$$
(12)

onde:

 EMQ_2 : Erro Médio Quadrático usando a precisão média e a discrepância média de todos os vértices;

 $\overline{\sigma}_{horiz}^2$: média dos desvios padrão da posicionamento horizontal ao quadrado;

 $\overline{\Delta}^2_{horiz}$: média das discrepâncias horizontais ao quadrado.

Por fim, assumindo que a discrepância do posicionamento horizontal num vértice, coincida com o erro verdadeiro neste vértice, tendo como base a posição previamente estabelecida por métodos mais precisos (hipótese da Equação (8)), tem-se:

$$EMQ_3 = \sqrt{\frac{\sum_{i=1}^{n} \Delta_{(horiz)i}^2}{n}}$$
(13)

onde:

 EMQ_3 : Erro Médio Quadrático considerando a discrepância como erro verdadeiro; e $\Delta(horiz)i$: Discrepância horizontal assumido como erro horizontal verdadeiro do i-ésimo vértice.

A Tabela 9 apresenta os resultados do método de processamento PPP em tempo real usando o software BNC V. 2.6; a Tabela 10 apresenta os resultados do pós-processamento relativo usando o software Topcon Tools V. 8.2, com o arquivo RINEX gerado pelo software BNC V. 2.6; a Tabela 11 - apresenta os resultados do método de levantamento cinemático em tempo real (RTK/NTRIP); a Tabela 12 - apresenta os resultados do método RTK/NTRIP, utilizando os dados gravados no receptor do Hiper Lite + e pós-processado com o software Topcon Tools V. 8.2, utilizando o arquivo RINEX.

Na Tabela 13, visualiza-se o Erro Médio

Avaliação do Posicionamento GNSS Obtido Pelos Métodos Cinemático RTK/NTRIP e PPP

Quadrático do posicionamento planimétrico dos Figura 17, a precisão média. métodos testados; na Tabela 14 e no gráfico na

Tabela 9:	Precisão e acurácia do	levantamento	PPP cinemático	em tempo real pel	o software	BNC
V. 2.6 do	BKG					

	Precis	Precisão Horizontal (m)			Discrepâncias - bias (m)			EMQ_1
Estação	s E (m)	sN (m)	shoriz (m)		ΔΕ	ΔN	∆horiz	Horiz.
93992								
V08	0,574	0,405	0,702		9,573	-12,33	15,613	15,629
V09	0,332	0,235	0,407		5,364	-0,014	5,364	5,379
V12	0,301	0,135	0,330		2,033	12,682	12,844	12,848
93991								
V10								
EPS04	0,376	0,204	0,428		0,100	-0,037	0,107	0,441
Média=	0,396	0,245	0,465	Média=	4,268	0,074	8,482	
							$EMQ_{1M} =$	8,574
							$EMQ_2 =$	8,495
							EMQ ₃ =	10,458

Tabela 10: Precisão e acurácia do levantamento PPP com RINEX gerado pelo BNC V. 2.6 pósprocessado com o software Topcon Tools 8.2

	Precis	são Horiz	zontal (m)	Discrepâncias - bias (m)				EMQ ₁
Estação	sE (m)	sN (m)	shoriz (m)		ΔE	ΔN	Δhoriz	(m)
93992	0,024	0,140	0,142		0,009	-0,015	0,017	0,143
V08	0,023	0,028	0,036		0,188	0,156	0,244	0,247
V09	0,024	0,019	0,031		-0,792	0,195	0,816	0,816
V12	0,027	0,017	0,032		-0,079	0,004	0,079	0,085
93991	0,035	0,022	0,041		0,012	0,010	0,016	0,044
V10	0,031	0,024	0,039		0,001	0,002	0,002	0,039
EPS04	0,024	0,011	0,026		-0,005	-0,012	0,013	0,029
Média=	0,027	0,037	0,046	Média=	-0,095	0,049	0,170	
							$EMQ_{1M} =$	0,201
							EMQ ₂ =	0,176
							EMQ ₃ =	0,323

Tabela 11	: Precisão	e acurácia do	levantamento	cinemático	em tem	po real	(RTK/NTRIP)
-----------	------------	---------------	--------------	------------	--------	---------	-------------

	-							
	Precisão Horizontal (m)				Discre	EMQ_1		
Estação	sE (m)	sN(m)	shoriz (m)		ΔΕ	ΔN	Δhoriz	Horiz.
93992	0,017	0,011	0,020		0,016	-0,009	0,018	0,027
V08	1,087	1,078	1,531		-0,750	3,117	3,206	3,553
V09	1,128	1,119	1,589		-0,592	3,070	3,127	3,507
V12	1,470	1,449	2,064		-3,396	3,213	4,675	5,110
93991	1,222	1,203	1,715		-2,102	1,448	2,552	3,075

V10	1,206	1,203	1,703		-1,688	2,403	2,937	3,395
EPS04	0,025	0,007	0,026		-0,002	-0,006	0,006	0,027
Média=	0,879	0,867	1,235	Média=	-1,216	1,891	2,360	
							$EMQ_{1M} =$	2,671
							EMQ ₂ =	2,664
							EMQ ₃ =	2,855

Tabela 12: Precisão e acurácia do levantamento cinemático em tempo real (RTK/NTRIP) pósprocessado

	Precis	Precisão Horizontal (m)			Discrepâncias - bias (m)			EMQ_1
Estação	sE (m)	sN (m)	shoriz (m)		ΔΕ	ΔN	Δhoriz	Horiz.
93992	0,024	0,012	0,027		0,020	-0,021	0,029	0,040
V08	0,029	0,015	0,033		-0,022	-0,014	0,026	0,042
V09	0,028	0,021	0,035		-0,135	-0,096	0,166	0,169
V12	0,030	0,019	0,036		-0,096	-0,227	0,246	0,249
93991	0,038	0,020	0,043		0,009	0,009	0,013	0,045
V10	0,028	0,014	0,031		-0,018	-0,009	0,020	0,037
EPS04	0,020	0,010	0,022		0,010	0,004	0,011	0,025
Média=	0,028	0,016	0,032	Média=	-0,033	-0,051	0,060	
							EMQ _{1M} =	0,087
							$EMQ_2 =$	0,069
							EMQ ₃ =	0,114

Tabela 13: Erro médio quadrático do posicionamento planimétrico dos métodos testados

N° campanha	Levantamento	EMQ _{1M} (<i>m</i>)	EMQ ₂ (<i>m</i>)	EMQ ₃ (<i>m</i>)
18	PPP em tempo real BKG	8,574	8,495	10,458
1	Pós- Processamento Relativo	0,201	0,176	0,323
Ja	RTK/NTRIP	2,671	2,664	2,855
<i>L</i>	Pós- Processamento Relativo	0,087	0,069	0,114

Tabela 14: Erro médio quadrático do posicionamento planimétrico dos métodos testados e precisão média

	Pós-processamento Relativo (m)	PPP em tempo real BKG (m)	RTK/ NTRIP(m)
Precisão média	0,039	0,465	1,235
EMQ _{1M} médio	0,140	8,574	2,671
EMQ ₂ médio	0,123	8,495	2,664
EMQ ₃ médio	0,207	10,458	2,855

Fig. 17 - Gráfico das precisões e dos Erros Médios Quadráticos (EQM) médios dos métodos de posicionamento GNSS.

Com base nos dados e nos processamentos realizados, em termos de precisão e acurácia planimétrica, em condições não favoráveis durante o trajeto cinemático passando pelas ruas e avenidas do Recife, utilizando o receptor Hiper Lite +, os softwares e os serviços descritos anteriormente com suas respectivas versões, os métodos ficam classificados em termos de melhores resultados na seguinte ordem:

Precisão (desvio padrão horizontal médio dos métodos entre as campanhas):

1) Pós-processamento relativo:

 $\sigma_{hor} = 0,039 \text{ m}$

2) PPP tempo real BKG:

 $\sigma_{hor} = 0,465 \text{ m}$

3) RTK/NTRIP:

 $\sigma_{hor} = 1,235 \text{ m}$

A precisão dada pelo desvio padrão é um indicativo da consistência interna dos processamentos das observáveis GNSS e dos dados com base no algoritmo (incluindo os filtros de *outliers*) que o desenvolvedor implementa. Os resultados podem ou não refletir a dispersão da verdadeira posição. Todavia a inclusão da tendência (*bias*) dada pela discrepância na posição de pontos obtidos com métodos sabidamente mais acurados, como foi o caso dos pontos da Rede de Referência do município do Recife (ENGEFOTO, 2009), realizados com a tecnologia GNSS por método estático, rastreio simultâneo nas estações e ajustamento de rede geodésica. A Inclusão da tendência foi incorporada pelo EMQ de três formas de interpretar, Equações (11) a (13), com resultados equivalentes em termos classificatórios entre os EMQ_{1M}, EMQ₂ e EMQ₃. Assim, conforme a Figura 17 a acurácia dos métodos ficam classificados na seguinte ordem:

1) Pós-processamento relativo:

 $EMQ_3 = 0,207 m$

2) RTK/NTRIP:

 $EMQ_3 = 2,855 m$

3) PPP tempo real BKG:

 $EMQ_3 = 10,458 \text{ m}$

7. CONCLUSÕES

Este trabalho consistiu em investigar e comparar a precisão e acurácia dos métodos de posicionamento cinemático: PPP em tempo real; RTK via NTRIP e cinemático relativo pós-processado, em situação desfavorável em ambiente com obstáculos que evidencia a degradação da geometria e perda de sinais dos satélites.

Conforme metodologia adotada e levando em consideração as análises feitas para os resultados e condições da área de levantamento, pode-se concluir que: 1 - No levantamento PPP cinemático em tempo real utilizando o software BNC V. 2.6, ocorreram vários problemas culminando na degradação da acurácia do método; os identificados foram a perda de conexão com o *mountpoint* RTCM3EPH com não recebimento das correções de fase; e também pela eliminação de observações de alguns satélites pelo filtro de detecção de *outliers* do software. A precisão do método ficou em torno de 50 cm e a acurácia em torno dos 10 m.

2 - Para o levantamento RTK via NTRIP houve problemas na solução das ambiguidades por ocasião do reinicio das resoluções sempre que o sinal dos satélites eram perdidos, a fixação das ambiguidades só foi conseguida para os dois pontos de referência que ficavam com distâncias menores que 3 km da base. Como o resultado foi pior que o pós-processamento relativo, fica evidente que além das perdas dos sinais, a latência das correções enviadas pelo protocolo NTRIP da RBMC-IP teve consequência no desempenho do método, cuja precisão ficou em torno de 1,20 m e a acurácia em torno de 2,8 m.

3 - O pós-processamento relativo foi o método que mostrou maior precisão e acurácia, a precisão ficou em torno de 5 cm e a acurácia em torno de 20 cm.

AGRADECIMENTOS

Este trabalho contou com apoio do Laboratório de Geodésia do Programa de Pós-graduação em Ciências Geodésicas e Tecnologias da Geoinformação, do Departamento de Engenharia Cartográfica da Universidade Federal de Pernambuco. Também, com o apoio do CNPQ, através do projeto "Detalhamento dos modelos da realidade espacial da região metropolitana de recife pelo refinamento dos elementos geodésicos: desvio da vertical, geoide local, velocidade de placa Tectônica e modelo digital de terreno", processo 487489/2012-8.

REFERÊNCIAS BIBLIOGRÁFICAS

COSTA, S. M. A.; LIMA, M. A. A.; JÚNIOR, N. J. M.; ABREU, M. A.; SILVA, A. L.; FORTES, L. P. S. **RBMC em tempo real via NTRIP e seus benefícios nos levantamentos RTK e DGPS**. Asociación Argentina de Geofísicos y Geodestas,

Buenos Aires, p. 135-141, 2009.

ENGEFOTO. Relatório Conclusivo. Prefeitura Municipal de Recife, julho 2009. 100 p.

GARNÉS, S. J. A. **Resolução das ambiguidades GPS para linhas de base curta : análise dos algoritmos de otimização**. Tese de Doutorado, Curso de Pós-Graduação em Ciências Geodésicas, Setor de Ciências da Terra da Universidade Federal do Paraná. Curitiba, 2001. 204 p.

GEMAEL, C. **Introdução ao Ajustamento de Observações: aplicações geodésicas.** Curitiba: Ed. UFPR, 1994. 319 p.

H O F M A N N - W E L L E N H O F, B.; LICHTENEGGER, H.; COLLINS, J. **Global positioning system: theory and practice**. 3. ed. New York: Spring-Verlag Wien, 1994. 355 p.

KRUEGER, C. P. Investigações sobre aplicações de alta precisão do GPS no âmbito marinho. Curitiba, 1996. 267 f. Tese (Doutorado em Geodésia) - Setor de Ciências da Terra, Universidade Federal do Paraná, 1996. 267 p.

MARQUES, H. A.; MONICO, J. F. G.; SHIMABUKURO, M. H.; AQUINO, M. PPP em tempo real com estimativa do erro do relógio do satélite no contexto de rede GNSS. III Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife, **Anais**, ISBN 978-85-63978-00-4, p.1-3, 2010.

MIKHAIL, E. M.; ACKERMAN, F. **Observations and Least Squares**, Thomas V. Crowell Company Inc. Boston. 1976. 497 p.

MONICO, J. F. G. **Posicionamento pelo GNSS:** descrição, fundamentos e aplicações. 2^a Edição, São Paulo: UNESP, 2008. 476 p.

MONICO, J.F.G.; DAL PÓZ, A. P.; GALO, M.; SANTOS, M. C. dos; OLIVERIA, L. C. de. Acurácia e precisão: revendo os conceitos de forma acurada. **Bol. Ciências Geodésicas**, Curitiba, v.15, n°3, p.469-483, jul-set, 2009.

SEEBER, G. **Satellite geodesy: foundations, methods, and applications**. 2 ed. Berlin: Walter de Gruyter GmbH & Co. KG, 2003. 589 p.

STRANG, G.; BORRE, K. Linear algebra, geodesy, and GPS. Wellesley: Cambridge Press,

Avaliação do Posicionamento GNSS Obtido Pelos Métodos Cinemático RTK/NTRIP e PPP

1997. 624 p.

TEUNISSEN, P. J. G.; JONGE, P. J. de; TIBERIUS, C. C. J. M. A new way to fix carrier-phase ambiguities. **GPS WORLD**, v. 6, n. 4, p. 58-61, abr. 1995.

VILA FLOR, C. D. R. Rede geodésica

cadastral do campus Recife da UFPE: Fase I– **planejamento e implantação da rede principal.** Trabalho final de graduação. Relatório parcial. Departamento de Engenharia Cartográfica, Universidade Federal de Pernambuco, Recife, 2008. 55 p.