
Brazilian Journal of Cartography (2015), Nº 67/5 Special Issue 27th ICC: 1043-1053
Brazilian Society of Cartography, Geodesy, Photgrammetry and Remote Sense
ISSN: 1808-0936

MAPMAP.JS: A DATA-DRIVEN WEB MAPPING API FOR THEMATIC
CARTOGRAPHY

MAPMAP.JS: uma Aplicação Web Orientada a Objetos para Cartografia

Temática

Florian Ledermann & Georg Gartner

Technische Universität Wien
Department of Geodesy and Geoinformation

GuÃŸhausstr. 28-30 / E120 (FB0110), Wien, 1040
florian.ledermann@tuwien.ac.at

georg.gartner@tuwien.ac.at

Received on July 30, 2015/ Accepted on August 19, 2015
Recebido em 30 de Julho, 2015/ Aceito em 19 de Agosto, 2015

ABSTRACT

Creating interactive maps for the web is a complex task. In this paper, we present mapmap.js, our approach to de-
signing a high-level API that supports the creation of interactive thematic maps. We discuss the attributes high-level,
transparent, data-driven and horizontal with respect to mapping APIs and argue why these are desirable qualities, and
give an overview of some aspects of the design of the API. Examples implemented using mapmap.js are presented and
discussed in the concluding section.

Keywords: Web Cartography, Thematic Cartography, Mapping APIs.

RESUMO
A criação de mapas interativos para plataformas Web é uma tarefa complexa. Neste artigo, apresenta-se o sistema
“mapmap.js” como uma possível abordagem à concepção de um aplicativo de “alto-nível” que dá suporte à tarefa de
criação de mapas temáticos interativos. Discute-se conceitos como atributos de alto nível, transparência, orientação a
objetos e horizontalidade, todos relacionados ao tema de desenvolvimento de aplicativos para criação de mapas;
indica-se, também, porque essas são qualidades “desejáveis” de um projeto como este. Adicionalmente, este trabalho
provê uma visão geral sobre aspectos relacionados à construção do aplicativo apresentado neste trabalho. Apresenta-se
e discute-se alguns exemplos implementados utilizando o “mapmap.js”, no item conclusão.

Palavras chaves: Cartografia Web, Cartografia Temática, APIs de Mapeamento.

1. INTRODUCTION

In the fields of online and interactive
cartography, programming is often a major
part of the task of creating a map. Such
maps are rarely programmed “from scratch”
using only low-level functions provided by
the execution environment (e.g. operating
system or web browser); an API (application
programming interface) can provide re-usable
parts of code, exposed as a set of high-level
abstractions and methods, to the map maker.

Using an appropriate API, the configuration of
technologically complex processes can be reduced
to single lines of code, and this leverage can be used
to implement interactive maps with resources or
knowledge that would not be sufficient to create
an identical solution with low-level code. The
widespread use of APIs related to mapmaking –
like the Google Maps API, Leaflet or D3.js – shows
the appeal of such tools to mapmakers.

The abstractions and methods provided by an
API impose a certain view onto the task of creating

mailto:%EF%AC%82orian.ledermann@tuwien.ac.at
mailto:georg.gartner@tuwien.ac.at

Ledermann F. & Gartner G.

1044 Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015

a map – a mental model – and therefore shape
to a large extent the space of solutions that can
be implemented – or that are even considered
implementing – using a given technology.
Cartographers have often found themselves
on the user side of web mapping technologies,
with mental models defined by other parties

(e.g. software and service vendors, open source
developers) and potentially only partially
matching the ones of cartographers. Recently,
interest in investigating the programming tools
used in cartographic production and teaching
and how they match the requirements of
cartographers has increased.

Fig. 1 - Interactive thematic maps created with mapmap.js. (a) A map from the genderATlas project,
integrating a zoomable choropleth map with D3.js based data visualizations. (b) Detail of a thematic
map showing commuting patterns. (c) Thematic map inspired by Minard’s work, linking map and
diagram through anchors.

The aspect of mental models is of special
relevance for teaching. If cartographers do
not confine themselves to a consulting role
in such technological contexts (and leave the
implementation to programmers, computer
scientists etc.), the technological foundations for
creating maps through code need to be taught in
cartography curricula. The concepts employed
by the APIs and tools we use for implementing
these maps need to be reflected in what we
teach – and in order to not let the “tail wag the
dog”, i.e. let the abstractions of the available
technology determine the abstractions we use

for reasoning about the problems of our field, it
is therefore important to align the technological
concepts with the concepts we deem important
for advancing the field of cartography.

The mapmap API is our attempt to design
an API with an appropriate mental model for
interactive thematic cartography. Mapmap
was originally developed in the context of an
interactive online atlas project, the Austrian
genderATlas¹. The project required a range of
different interactive maps and visualizations to
illustrate various topics, and a flexible solution
was desired to support experimentation and

¹http://genderatlas.at

http://genderatlas.at/
http://genderatlas.at/

MAPMAP.JS: A Data-Driven Web Mapping Api For Thematic Cartography

Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015 1045

iterative development. Initial experiments using
D3.js to create the visualizations for the atlas
were promising, but even simple interactive
maps required a lot of code that had to be
written and, eventually, maintained. After a more
structured investigation of available technologies
and literature on the topic of API design, we
decided to create mapmap.js², our version of
a contemporary cartographic API for creating
interactive maps in the browser.

In this paper, we present our approach to
a structured design process of a cartographic
API. The importance of understanding how
we interact with maps through code, and the
didactic implications of the increased relevance
of creating maps with code have been recognized
by the cartographic research community recently.
We will look at some previous contributions
towards a better understanding of these aspects in
section 2. An attempt to condense these findings
into general concepts and properties of APIs, and
mapping/cartographic APIs in particular, will be
presented in section 2.1. Section 3 will discuss
how we applied these general principles to the
design of mapmap.js, an open source library that
provides a cartographic API for creating thematic
maps. We will conclude by presenting some
examples created with mapmap.js and discussing
future plans and challenges in sections 4 and 5,
respectively.

The goal of this paper is to provide
some input to stimulate a broader discussion
of how cartography relates to computer code
used to implement interactive geographical
visualizations and maps, and how the evolving
field of interactive cartography may require new
or extended conceptual models. We hope that
by presenting our approach to the design of a
cartographic API and by making the result of this
design process available to other researchers, we
can contribute towards a better understanding
of, and provide a tool that may be of use in,
interactive cartography projects, teaching or
research.

2. RELATED WORK

Interest in discussing qualities of web
mapping APIs has increased in the cartographic
community in recent years. In a recent paper,
Peterson compares different “slippy map” APIs
(Google Maps API, Leaflet, Mapstraction and
others), applying quantitative criteria (execution
speed, length of code, cost) to example programs
(PETERSON, 2015). Although “cartographic
functionality” is listed as an evaluation criterion,
no systematic exploration of the functionality
of the different APIs and how they relate to
cartographical concepts is given. Peterson
concludes with a pragmatic position, mentioning
cost and long-term viability as possibly the most
important evaluation criteria for production
contexts – both of which are not related to the
functionality provided by the API.

Empirically-oriented researchers would
desire quantitative measures like length of
code, cost or execution speed to determine the
best technology among a number of candidate
solutions. However, like cartography itself,
programming is a complex creative task that
cannot be measured by simple metrics to gauge
the success or power of different approaches. To
illustrate the argument, imagine a hypothetical
“API” that would create a map exactly as needed
in a single line of code (Figure 2) – it is easy
to see that while it is realistic to create such an
API, the result is not something that would be
considered a good API, as it would be tailored
to a single use case. It is, however, also not
generally valid to claim that flexibility is more
important than brevity, as using the underlying
technologies directly, without the abstraction
of an API, will ultimately be the most flexible
option (i.e. the option that guarantees to allow all
technically possible solutions); There seems to
be a more complex payoff between brevity and
flexibility, and we need to look to other sources
for concepts allowing us to reason about API
quality³.

² mapmap.js is available online at https://github.com/floledermann/mapmap.js
³ A similar argument applies to other criteria such as “execution speed” – arguably a faster implementation would be
preferred over a slower one. But if the results differ in any aspect, the cartographic quality of the result may be of
greater importance than minor differences in execution speed. This payoff cannot be expressed in quantitative terms.

Ledermann F. & Gartner G.

1046 Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015

Fig. 2 - A hypothetical “perfect” mapping
API. This shows that length of code is hardly
a criterion that facilitates discussions about the
quality of mapping APIs.

In their extensive study, Roth et al. (2015)
acknowledge the need to look into API usability
issues, especially in the context of teaching
cartography and web mapping and in the face of
rapid ongoing innovation in the field.

Although JavaScript-based web mapping
APIs constitute only a small fraction of
technologies selected for their initial competitive
analysis and needs assessment surveys, all
the technologies selected for the final stage of
analysis, a qualitative diary study of students
implementing web mapping projects, are from
this category. In addition to APIs implementing
the well-known “slippy map” paradigm, the
authors include D3.js (BOSTOCK et al., 2011),
a data visualization library that has gained
popularity in recent years. These choices can
be read as indicating a rising awareness that
the “slippy map” paradigm is not sufficient as
a universal mental model for the wide range
of visualizations cartographers are expected to
produce online today. The choice of a qualitative
instrument – the diary study – to compare the
feasibility of different technologies can be read
as acknowledging that a comparison of APIs
cannot be done on quantitative factors alone.

Another contribution of Roth et al. is a
list of techniques that web mapping solutions
can be checked against. The authors group these
techniques into the domains of representation
and interaction, drawing from the literature
the basic taxonomies of such techniques
(Roth, 2013; Slocum et al., 2009). This list of
techniques – intended to be extended as our
understanding of the field evolves – can be used
as a basic framework for initial evaluation of new
technologies not included in their study.

The findings of Roth et al. aim to provide
reproducible methods for choosing suitable
candidates among a number of technologies;
they do not provide much guideline for creating
new base technologies to support interactive
cartography. For an informed approach to
designing a novel web mapping API we looked

into the general software engineering literature
for advice and guidelines.

Tulach (2012) puts the concept of “selective
cluelessness” at the center of his guidelines
for API design. For Tulach, an API is a “tool
to help us maximize cluelessness”, meaning
to hide away all implementation details and
technological necessities that the API user does
not want to deal with or does not have the desire
to control in detail. The attribute selective must
be stressed however – at any time, the user
should be able to break through the cluelessness,
and adapt or replace the built in methods if she
chooses so.

Tulach (2012) also expresses the idea that
APIs are not tailored to the needs of a computer,
but to a human user:

“APIs are verbose, documented, and, in
fact, very different from what a comput-
er needs. […] Designing APIs is different.
I hadn’t been taught to do it and I have
a feeling that other programmers haven’t
been taught to do it either.” (TULACH,
2012)
While the concept of selective cluelessness

can be an important and powerful guideline
for the task of designing an API, it doesn’t
provide a lot of analytical depth to reflect about
design decisions. In other software engineering
publications we find a more differentiated set of
concepts to help us reason about how to design
a cartographic API.

Stylos and Myers (2007) analyze the
conceptual space of API design decisions and
discuss qualities that a good API should have.
On the highest level, they define the two basic
qualities of an API as usability (“the qualities
of an API that affect its use when creating and
debugging code”) and power (referring to “limits
of the code that can be created”). They further
differentiate these two basic qualities:

Usability includes such attributes as how
easy an API is to learn; how productive
programmers are using it; how an API
prevents errors; how simple it is; how con-
sistent; and how well it matches its users’
mental models.
Power includes an API’s expressiveness (the
sorts of programs it can create); its extensi-
bility (how users can extend the API to cre-
ate convenient user-specific components);

MAPMAP.JS: A Data-Driven Web Mapping Api For Thematic Cartography

Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015 1047

its evolvability for the API designers who
will update the API and create new ver-
sions; its performance (in terms of speed,
memory and other resource consumption);
and the robustness […] of the API imple-
mentation. (STYLOS & MYERS, 2007)

It must be noted that all of the individual
qualities listed in the category of usability are
challenging to verify using scientific methods.
In our analysis we decided to focus on the aspect
of the supported mental models for usability
questions, and the aspects of expressiveness and
extensibility for aspects of power. We need to
leave detailed investigations of the other aspects
to future work.

2.1 Mapping the space of mapmaking APIs

In contrast to evaluating individual
algorithms and visualization methods, where
objective metrics can be devised that different
algorithms or implementations can be evaluated
against, we already argued above why such an
approach is not available for the question of
how code is structuring the overall map creation
task. We therefore cannot derive good code – or
a good API design – from empiric results alone.
Therefore, for initial investigation, we have to
turn towards rational argumentation to develop
some hypotheses which can later be tested in
experimental settings.

Stylos and Myers (2007) point out the
importance of the mental model supported by an
API. For the core mental model of the popular
Google Maps API – show a map of an area, add
markers and content to the map – it could be
argued that this view does not reflect the mental
model of a cartographer, but rather of a map
user. For a cartographer, the granularity of the
exposed mental model – even if we take into
account recently added support for styling the
base map through the API – will be frustratingly
coarse, and the map at its core has been created
by a third party, not by the API user.

So if we label the Google Maps API and
other “slippy map” APIs as a map use API, what
would a cartographic API look like? Without
claiming to be able to come up with a single
unified mental model of cartography, we believe
that a cartographic API should represent and
give users detailed control over the complete

map creation process – accessing raw data and
geometry, processing that data and geometry,
creating visual representations of geometry and
assigning visual variables, and defining methods
for users to interact with the map.

In contrast to slippy map APIs, which
impose a certain model of what a map is and how
it is created, the D3 library allows for detailed
control of all steps in the process. One appeal of
the D3 is its use of a data-driven programming
paradigm (Raymond, 2003). Data is not just
auxiliary input to a process, but fundamentally
affects and drives the logic of the program.
This is a concept that aligns well with our
understanding of digital cartography.

While some aspectsof D3 canbe considered
to support cartographic mental models (e.g.

its built-in support for a wide range of map
projections and its data-driven programming
paradigm), creating interactive maps with D3

requires detailed knowledge of web technologies
in order to accomplish the envisioned result.

Tulach’s principle of selective cluelessness is not
realized in D3 with respect to cartography – all
the details of how the map is represented in the
browser’s document object model (DOM) need
to be taken care of by the author, and some of

D3’s core concepts are not related to cartography
but rather to the technological platform of
the web browser. A concept that expresses a

technology’s support for selective cluelessness
is its level of abstraction. The Google Maps API

would be a map-use API with a high level of
abstraction; D3 can be considered a low-level

API with partial support for cartographic tasks.
Can selective cluelessness be achieved,

requiring a high level of abstraction, while at
the same time allowing detailed control over all
aspects of the mapmaking process if demanded?

This apparent contradiction can be resolved
by introducing the concept of transparency.
A transparent API allows for detailed control

over the inner workings of its methods, if
required. There are several techniques to

support transparency in code – e.g. configuration
objects, method parameters, callback functions,
inheritance – but all allow us to work on a high
level of abstraction by default and override the
built-in behavior on demand.

A transparent API supporting selective
cluelessness would need to provide sensible

Ledermann F. & Gartner G.

1048 Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015

defaults - even if the user remains clueless, the
API should produce a good map with respect to
the state of the art in cartography, as far as the
information provided allows it. If these default
behaviors go beyond simple attributes, but
encompass complex behavior, sometimes the
term “magic” is used in software engineering
contexts4, bearing the negative connotation of
users not knowing what is going on behind the
scenes.

Another aspect to categorize an API is its
scope in the context of a given process. We say
an API is horizontal if it covers a wide range of
aspects of the overall process (like, for example,
the steps of an envisioned cartographic process
mentioned above), or vertical if it is concerned
with the details of only a single aspect (like data
loading and transformation).

3. DESIGNING THE MAPMAP.JS API

From the related literature in web mapping
and software engineering, we took away some

important building blocks to inform the design
of our cartographic API: The attractiveness of

a data-driven approach from D3.js, a list of
cartographic features for representation and
interaction from Roth et al., the importance
of selective cluelessness and, as a corollary,

separation of concerns and sensible defaults from
Tulach,(2012) and a conceptually structured
view on the API design process and possible

design decisions from Stylos and Myers’ work.
Using the terminology developed in section

2.1, we distilled a list of desirable characteristics
of an envisioned API:

Its mental model should represent a
cartographic process (it should be a cartographic
API)

It should be high level to support “selective
cluelessness” and the easy creation of simple
maps. Technological details of the platform that
are of peripheral relevance to the cartographic
design (e.g. asynchronous resource loading,
event callbacks, DOM manipulation etc.) should
be taken care of by the API internally, even if
some “magic” is involved.

At the same time the API should be
transparent, allowing for control of every detail
in the process if so desired by the author.

The process to create the map should
be data driven and the API should be able to
work with real-world data. It should not be
necessary to convert data into a special format
or representation.

It should be a horizontalAPI, encompassing
the complete process of rendering an interactive
map from raw data, which comes with sensible
defaults and “batteries included”.

Overall, code using the API should meet
the criteria expressed in a quote attributed to Alan
Kay: “Simple things should be simple, complex
things should be possible”.

3.1 General Principles

Mapmap.js assumes a mental model of
the overall cartographic process as a sequence
of inputs and transformations. At the core of
the process is the transformation of geographic
features, which can be loaded from a data
file or generated algorithmically, into visual
representations. Features may be augmented
with auxiliary data, such as data loaded from
a CSV file. Metadata can be added to specify
the properties of the data. Visual variables are
derived from the geometry, data and metadata,
and the visual representations (SVG elements) of
features are created. Finally, interaction methods
can be added to representation elements.

The smallest units of code in mapmap.js are
functions. With its powerful and concise syntax
for function literals and closures, JavaScript
affords a functional programming style in which
functions are not only used as procedures and
methods, but also as parameter values for other
functions. Cartographic tasks often follow a
model of output deduced from a set of input data
and parameters, making a function a suitable
abstraction to serve as basic building block for
map composition. As it is not always feasible
to construct inline functions for trivial tasks,
e.g. property lookup, most parameters support
polymorphism in a standardized way across
the API: a parameter can either be a string (to
access a field of the given name), an Array (to
perform the operation for multiple properties)
or a function (for completely customizable
lookups, calculations and conversions). In
addition, mapmap.js offers a library of helper

4See http://en.wikipedia.org/wiki/Magic_(programming)

http://en.wikipedia.org/wiki/Magic_(programming)

MAPMAP.JS: A Data-Driven Web Mapping Api For Thematic Cartography

Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015 1049

functions for convenient access to frequently
used functionality.

3.2 Geometry, Data and Metadata

Data to render digital maps is usually
available in one of various geodata formats
(e.g. GeoJSON or TopoJSON), or as auxiliary
data (e.g. CSV files or Excel sheets) that can
be linked to geodata entities5. The fundamental
method of the mapmap API to add geodata is
.geometry(source, options). Auxiliary data can
be associated with the geometry with subsequent
calls to .data(source, options). Both methods
accept a source URL or an array of data as
their first parameter, and an optional parameter
specifying the options for processing and joining
the data.

A powerful paradigm for data processing
is the MapReduce programming model (DEAN
& GHEMAWAT, 2008). Mapmap.js supports
applying MapReduce-based transformations
to the data or geometry as an option. We
found the MapReduce model to be a powerful
paradigm allowing for various transformation
and aggregation tasks necessary for working
with real-world datasets.

To support rendering the data using
appropriate symbology, or to create legends or
interactive explanations on the map, we need
information about the data fields associated with
features, or metadata. Metadata is specified using
.meta(spec), passing an associative array to map
field names to metadata descriptors. To assign
identical metadata to multiple fields, wildcards
can be used to match field names.

Metadata is used by symbolizers (see
section 3.3) to assign visual variables – for
example, the domain and colors metadata
properties are used by the choropleth symbolizer
to assign color values to geometries. Other
fields in the metadata descriptor like label or
numberFormat are used whenever human-
readable representations of the data need to be
displayed.

3.3 Representing Map Objects: Visual
Variables, Symbolization and Selections

The task of visualizing data and geometry
is modeled as a two-step process in mapmap:

assign visual attributes using geometry, data and
metadata, and create a visual representation using
the geometry and visual attributes. This two step
process allows for the simple representation of
simple tasks (e.g. assign a fill color attribute from
a data value to create a choropleth map using the
default symbolizer) as well as the implementation
of more complex tasks that involve modifying
the geometry, like generalization or the creation
of abstract visualizations.

For operations that should affect only
parts of the map, mapmap.js provides two ways
to express selections: either as a filter function
returning a Boolean result for each feature,
indicating whether the object should be selected
or not, or as a string, that is used as input to a
global identify function, selecting objects based
on matching field values. The selection of objects
to operate on can be defined globally or in the
options of each method call.

Additional methods are available for
adjusting the maps position and size in relation
to the viewport (the area on screen containing
the map) and adding user interaction methods
to elements of the map.

3.4 Connecting the Perimap: Legends &
Anchors

Maps do not exist in isolation – they
are embedded in the perimap, the information
surrounding & accompanying the map, like
legends and supplementary diagrams (WOOD et
al., 2009). The creation of individual elements of
the perimap is outside the scope of the mapmap
API; however, it would be desirable for a
cartographic API to provide means to express
a map’s relation to perimap elements where
necessary.

Two standard elements of the perimap are
legends and annotations. Legends can take many
shape and forms, and detailed approaches exist to
render legends or legend components from map
data (DYKES et al., 2010; JENNY et al., 2009).
It would be therefore out of scope for a mapping
API to fully support creating all possible kinds
of legends. However, as the legend relates to the
map and its underlying data, it would be desirable
to be able to express this relationship and extract
the information necessary for rendering map

5 Note that in applications dealing with geometry as first-class data, such auxiliary data is sometimes called “metadata”.
In mapmap.js, the term metadata is used for data describing auxiliary data.

Ledermann F. & Gartner G.

1050 Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015

legends through the API, and to keep map and
legend in sync in case the map changes.

In mapmap.js, legends are conceptualized
as visualizations of the map’s metadata. Alegend
or part of a legend for a given data field is defined
as a function, taking the field’s metadata as its
main argument. The metadata object provides
methods to access statistical data (such as
minimum and maximum values, or a histogram
of the value distribution). Two built-in legend
generation functions are provided for rendering
simple legends in HTML or SVG – for rendering
application specific and more advanced legends,
a user-created function can be supplied.

Annotation overlays and links to external
diagrams are supported through the concept
of anchors. Anchors are functions mapping
arbitrary data objects to pixel locations on the
map. The default anchoring function provided by
mapmap takes a key value as input and returns
the centroid of the visual representation of the
feature matching the key, if present. Again, this
can be changed to a user-supplied anchoring
function, potentially performing more complex
geometry calculations or application dependent
anchoring of data objects. A built-in method that
makes use of anchors is .hoverInfo(), that sets up
the dynamic display of object information in a
“popup” box at the anchor location upon mouse
interaction.

4. RESULTS

Stylos and Myers (2007) sketch out
a general framework of evaluating APIs
establishing two main qualities of APIs, usability
and power. Regarding the usability aspects, we
have sketched out the mental model the API
supports and argued why it is a mental model
suitable for cartographers. Regarding the APIs
power, its expressiveness and extensibility is
demonstrated by selected examples of interactive
maps that have been created with mapmap.js6.

In the genderATlas project, we successfully
used mapmap.js to implement a range of different
customized interactive statistical maps of Austria,
using only a few lines of code to specify the basic
map setup and interaction for each thematic

map used in the atlas. Depending on the story,
specific functionality had to be implemented for
visualization or interaction; this code is related
to the individual map, and mapmap.js provides a
framework for how special-purpose functionality
is integrated in a modular fashion into the
overall map implementation, avoiding “spaghetti
code”. Also, some of the built-in functionalities
have helped to write code on a higher level of
semantics – for example, to zoom in to one of
Austria’s counties, the name of the county can
be specified instead of an id code, making the
code more readable to outsiders.

Besides the visualizations developed
for the genderATlas project, we are currently
looking at “canonical” thematic maps and
geovisualizations and try to recreate them using
mapmap.js to verify its power to express the
state of the art in interactive cartography. One
classic – historic – example is Minard’s map
of Napoleon’s Russian campaign, a widely
known thematic map that has been extensively
analyzed in the cartographic literature (For a
recent overview, see Kraak (2014)). Interactive
and non-interactive versions of Minard’s map
have been implemented by various authors
using different programming languages and
APIs, making it a de-facto benchmark for
verifying and comparing mapmaking APIs
(FRIENDLY, 2002). We created a simple version
of Minard’s map (see Figure 1.c) in 20 lines of
code, excluding the temperature diagram which
has been implemented using D3.js using 43
lines of code. A key part of our implementation
is the connection between the map and the
diagram through an anchoring function mapping
longitude values of the temperature data to pixel
coordinates on the map, which adds another 10
lines of code.

As argued in section 2, counting line
numbers cannot be a valid quality metrics
by itself – however, the mental model of the
mapmap API allows authors to express the
necessary structure of a map in a concise way,
while at the same time allowing them to improve
each individual aspect of the map incrementally
by exploiting the transparency of the API.

6You can find live examples linked online at https://github.com/floledermann/mapmap.js

MAPMAP.JS: A Data-Driven Web Mapping Api For Thematic Cartography

Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015 1051

Fig. 3 - Two simple maps with their full source code using the mapmap API. Both maps use the
same geometry and data files; the bottom map is configured to show only districts within the county
of “Burgenland” (ISO codes starting with “1”).

5. CONCLUSIONS

In this paper, we have presented a structured
approach to designing and analyzing mapmaking
APIs. Through the concepts of mental models,
level of abstraction, transparency and horizontal
vs. vertical APIs we hope to have offered some
terminology that can help researchers structure
the space of mapmaking APIs, and we have
presented our design of mapmap.js, our attempt
to create a high-level, transparent, horizontal
cartographic API.

On a pragmatic level, we hope that by
releasing mapmap.js as an open source API we
can provide a tool that may be helpful to other
map makers, and that can serve as a technological
artifact stimulating further discussion about the
implementation of cartographical concepts in
code.

5.1 Future work

The work on mapmap.js has spurred ideas

for further investigations on different levels. On
the level of cartographic theory, we believe there
is potential for improving our understanding of
how program code relates to theoretical concepts
of cartography, and how implementations of such
concepts as mental models can potentially help

to deepen our understanding of cartography.
For example, the issue of how elements of the
perimap are anchored to and by the map would
need further investigation both in theory and in
the practices of mapmaking and programming.

On a more pragmatic level, we are
currently working on a more formal evaluation
of the mapmap API, both in terms of comparing
it to other technological approaches and in terms
of objective measures for issues of API power
and API usability. Performing such evaluations
is methodologically challenging, since, as argued

in section 2, we cannot rely on quantitative
measures to judge the quality of code. We are

currently investigating methods to verify some

Ledermann F. & Gartner G.

1052 Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015

of the aspects of API usability (ease of learning,
programmer productiveness, error prevention,
simplicity, consistency), and hope to be able to
gain insights by using mapmap.js in teaching
interactive cartography courses, comparing it
with other APIs in a controlled process informed
by Roth et al.

On the engineering level, there are many
ideas for improving the mapmap API and
its implementation, including features like
“pluggable” rendering engines, to separate the
technology used for representing the map output
(currently SVG) from the API and to be able
to support different output technologies (e.g.
canvas-based rendering or 3D maps through
WebGL). Other plans include improved viewport
management and map layout, the integration of
tile-based raster backgrounds or an improved
model for modular interaction.

ACKNOWLEDGEMENTS

Parts of this research were funded within
the framework of FEMtech research projects of
Austrian Ministry for Transport, Innovation and
Technology (BMVIT).

REFERENCES

BOSTOCK, M., OGIEVETSKY, V., HEER,
J. D3 : Data- Driven Documents. IEEE
Transactions on Visualization and Computer
Graphics 17, 2301–2309pp. 2011. doi:10.1109/
TVCG.2011.185

DEAN, J.; GHEMAWAT, S., 2008. MapReduce:
Simplified Data Processing on Large Clusters.
Commun. ACM 51 , 107– 113 pp. 2008.
doi:10.1145/1327452.1327492

DUBOCHET, G. Computer Code as a Medium
for Human Communication: Are Programming
Languages Improving? Proceedings of the
21st Working Conference on the Psychology
of Programmers Interest Group. 174–187pp
2009.

DYKES, J., WOOD, J., SLINGSBY, A.
Rethinking Map Legends with Visualization.
IEEE Transactions on Visualization and
Computer Graphics 16, 890–899pp. 2010
doi:10.1109/TVCG.2010.191

FRIENDLY, M. Visions and Re-Visions of
Charles Joseph Minard. Journal of Educational

and Behavioral Statistics 27, 31–51p. 2002.

JENNY, B., HUTZLER, E., HURNI, L. Self-
Adjusting Legends for Proportional Symbol
Maps. Cartographica: The International
Journal for Geographic Information and
Geovisualization 44, 301–304pp. 2009.
doi:10.3138/carto.44.4.301

KRAAK, M.-J., 2014. Mapping Time:
Illustrated by Minard’s Map of Napoleon’s
Russian Campaign of 1812, Redlands: 1
edition. ed. Esri Press. 2014.

PETERSON, M.P. Evaluating Mapping APIs, in:
BRUS, J.; VONDRAKOVA, A.; VOZENILEK,
V. (Eds.), Modern Trends in Cartography,
Lecture Notes in Geoinformation and
Cartography. Springer International Publishing.
2015. pp. 183–197.

RAYMOND, E. S. The Art of UNIX
Programming. Boston: Addison-Wesley. 2013.
560p.

REEVES, J.W. What is software design. C++
Journal 2, 14–12pp. 1992.

ROTH, R.E. An empirically-derived taxonomy
of interaction primitives for interactive
cartography and geovisualization. IEEE
Transactions on Visualization and Computer
Graphics 19, 2356–2365pp. 2013. doi:10.1109/
TVCG.2013.130

ROTH, R.E.; DONOHUE, R.G.; SACK, C.M.;
WALLACE, T.R.; BUCKINGHAM, T.M.A.
A Process for Keeping Pace with Evolving
Web Mapping Technologies. Cartographic
Perspectives, 78. 25-52pp. 2015. doi:10.14714/
CP78.1273

SAMPLE, J.T.; IOUP, E. Tile-Based Geospatial
Information Systems. New york: Springer US.
2010. 237p.

SLOCUM, T.A.; MCMASTER, R.B.; KESSLER,
F.C.; HOWARD, H.H., 2009. Thematic
Cartography and Geovisualization. New
Jersey: Prentice Hall. 2009. 576p.

STYLOS, J.; MYERS, B. Mapping the Space of
API Design Decisions, in: IEEE Symposium
on Visual Languages and Human-Centric
Computing, 2007. VL/HCC 2007. Presented
at the IEEE Symposium on Visual Languages

MAPMAP.JS: A Data-Driven Web Mapping Api For Thematic Cartography

Brazilian Journal of Cartography, Rio de Janeiro, Nº 67/5 p. 1043-1053, Aug/2015 1053

and Human-Centric Computing, 2007. VL/HCC
2007, pp. 50–60. doi:10.1109/VLHCC.2007.44

TULACH, J. PracticalAPI Design: Confessions
of a Java Framework Architect. New York: ed.
Apress, New York. 2012. 416p.

WOOD, D., FELS, J., PICKLES, J. The Natures

of Maps: Cartographic Constructions of the
Natural World. First Edition edition. Chicago:
ed. University Of Chicago Press. 2009. 231p.

WOOD, J., DYKES, J. Spatially Ordered
Treemaps. IEEE Transactions on Visualization
and Computer Graphics 14, 1348–1355pp.
2008. doi:10.1109/TVCG.2008.165

	Technische Universität Wien
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Mapping the space of mapmaking APIs
	3. DESIGNING THE MAPMAP.JS API
	3.1 General Principles
	3.2 Geometry, Data and Metadata
	3.3 Representing Map Objects: Visual Variables, Symbolization and Selections
	3.4 Connecting the Perimap: Legends & Anchors
	4. RESULTS
	5. CONCLUSIONS
	5.1 Future work
	ACKNOWLEDGEMENTS
	REFERENCES

