
Brazilian Journal of Cartography (2016), Nº 68/6, Special Issue GEOINFO 2015: 1221-1230
Brazilian Society of Cartography, Geodesy, Photgrammetry and Remote Sense
ISSN: 1808-0936

USING RATIONAL NUMBERS AND PARALLEL COMPUTING
TO EFFICIENTLY AVOID ROUND-OFF ERRORS ON MAP

SIMPLIFICATION
Usando Números Racionais e Computação Paralela para Evitar Erros de

Arredondamento em Simplifi cação de Mapas de Forma Efi ciente
Maurício Gouvêa Gruppi1, Salles Viana Gomes de Magalhães¹, ²,

Marcus Vinícius Alvim Andrade¹, W. Randolph Franklin²
& Wenli Li²

1Universidade Federal de Viçosa - UFV
Departamento de Informática

Centro de Ciências Exatas, Sala 303-B, Campus Universitário, Viçosa – MG - Brazil
{mauricio.gruppi, salles, marcus}@ufv.br

2Rensselaer Polytechnic Institute - RPI
110, 8th Street, Troy – NY- USA

mail@wrfranklin.org, liw9@rpi.edu
Received on December 17, 2015/ Accepted on February 21, 2016

Recebido em 17 de Dezembro, 2015/ Aceito em 21 de Fevereiro, 2016

ABSTRACT
This paper presents EPLSimp, an algorithm for map generalization that avoids the creation of topological inconsis-
tencies. EPLSimp is based on Visvalingam-Whyatt’s (VW) algorithm on which least “important” points are removed
fi rst. Unlike VW’s algorithm, when a point is deleted a verifi cation is performed in order to check if this deletion would
create topological inconsistencies. This was done by using arbitrary precision rational numbers to completely avoid
errors caused by fl oating-point arithmetic. EPLSimp was carefully implemented to be effi cient, although using rational
numbers adds an overhead to the computation. This effi ciency was achieved by using a uniform grid for indexing the
geometric data and parallel computing to speed up the process. As result, simplifi ed models completely free of topo-
logically inconsistent results and round-off errors due to the use of multiple precision rational numbers. In addition,
there was a considerable speedup arising from the use of parallel computing.
Keywords: Map Simplifi cation, Rational Numbers, Parallel Computing.

RESUMO
Este artigo apresenta EPLSimp, um algoritmo para generalização de mapas que evita a criação de inconsistências
topológicas. EPLSimp é baseado no algoritmo de Visvalingam-Whyatt (VW), no qual os pontos menos “importantes”
de uma linha são removidos primeiro. Diferentemente do algoritmo VW, quando um ponto é removido, realiza-se uma
verifi cação para determinar se a remoção do ponto irá causar inconsistências topológicas. Visando eliminar os erros
causados por aritmética de ponto fl utuante, esses testes foram realizados utilizando números racionais de precisão
arbitrária. EPLSimp foi cuidadosamente implementado para ser efi ciente, embora o uso de número racionais traga um
aumento no tempo de execução do algoritmo. Para obter tal efi ciência, utilizamos uma estrutura de uniform grid para

Gruppi M. G. et al.

1222 Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

indexar os elementos geométricos, também utilizamos computação paralela para acelerar o processo. Como resultado,
os modelos simplifi cados não apresentaram inconsistências topológicas decorrentes de erros de arredondamento e
houve um ganho considerável de desempenho ao utilizar computação paralela.
Palavras chaves: Simplifi cação de Mapas, Números Racionais, Computação Paralela.
1. INTRODUCTION

The map simplification process, also
known as map generalization, allows the
production of maps with different levels of
details (JIANG; LIU; JIA, 2013). It consists
of removing information that is not relevant to
the viewer, while preserving essential features
on the map. Generalization is inherent to every
geographical data since every map consists of
generalized representations of reality, and the
more generalized a map is, the more distant it
becomes from the real world (JOÃO, 1998).
The output of this process is a map with more
desirable properties than those from the input
map. An example of generalization is scaling
a map of a single town which contains detailed
information about streets and buildings. When
scaling this map to show nearby towns it may
be necessary to simplify it so that it is not
overburden by unimportant data.

A challenge in generalization is to fi nd
a balance between simplifi cation and reality.
Map simplifi cation can produce inappropriate
results as it may aff ect topological relationships.
These results are said to be topologically
inconsistent and they may present relationships
that are confl icting with reality. For example,
the simplifi cation can create self-intersecting
lines, improper intersections between lines and
polygons, etc.

Another kind of topological inconsistency
is sidedness change, that is, after performing
simplifi cation, a feature can be on a diff erent
side regarding another feature on the map. For
example, after the simplifi cation of a line, a point
which was originally on the right side of this line
now can be on the left side. Thus, when designing
simplification algorithms, it is important to
guarantee topologically consistent results.
2. POLYLINE SIMPLIFICATION

An approach for performing map
simplifi cation is to reduce the complexity of its
lines. That means making simpler representation
of curves or polygon edges. Usually, lines are

represented by polygonal chains or polylines.
A polyline is a series of segments defi ned by a
sequence of n vertices (v1, v2,..., vn), where each
segment consists of two endpoints and adjacent
segments share a common endpoint. Figure 1
shows an example of two polygonal chains L1 and L2 and a control point P (gray hexagon) that
does not belong to a polyline but is considered
relevant or meaningful.

 The basic idea of line simplification
consists of removing points and representing the
original curve using approximation with fewer
vertices. Figure 2 presents an example of the
simplifi cation of the lines shown in Figure 1. Two
famous and frequently used line simplifi cation
algorithms are the Ramer-Douglas-Peucker’s
algorithm (RDP)(DOUGLAS; PEUCKER, 1973;
RAMER, 1972) and Visvalingam-Whyatt(VW)
(VISVALINGAM; WHYATT, 1993) algorithm.

Fig. 1 - Example of polylines L1 and L2 and
control point P.

Fig. 2 - Simplifi cation of L1 and L2 .
The line simplifi cation process can bring

inconsistencies to the output if some care is not
taken. Figures 3 and 4 show two examples where
removing certain points from the polylines in
Figure 1 would cause topological inconsistency:
in Figure 3, after simplifi cation, point P is on the

1223Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

Using Rational Numbers and Parallel Computing
other side of the simplifi ed line L2 ; in Figure 4,
a “nonexistent”’ intersection between lines L1 and L2 is created.

Fig. 3 - Inconsistent simplifi cation where P is on
the wrong side of line L2 .

Fig. 4 - Inconsistent simplifi cation where an
intersection between lines L1 and L2 is created.

Topological inconsistency may be created
by some simplifi cation algorithms such as the ones
based on the RDP method. But there is another
source of error that aff ects even algorithms that
attempt to avoid inconsistencies: round-off errors
resulting from fl oating point arithmetic. These
errors occur because real numbers cannot be
exactly represented in computational systems,
instead, an approximation of the real number is
used (GOLDBERG, 1991).To overcome such
problems, the best strategy is to make use of
Exact Geometric Computation (LI; PION; YAP,
2005).

In this paper is presented a method that uses
rational numbers and parallel computing to solve
the following variation of the generalization
problem: given a set of polylines and control
points, the goal is to simplify these polylines
by removing some of their vertices (except
endpoints) such that topological relationships
between pairs of polylines and between polylines
and control points are maintained. In practice,
polylines may represent boundaries of counties
or states, and control points may represent cities

within these states. The introduction of rational
numbers was used to prevent errors introduced
by rounding in fl oating point arithmetic. The
use of arbitrary precision numbers is expected
to increase the overall execution time of the
algorithm since its operations are more complex.
To compensate this performance drop, parallel
computing is used.
3. RELATED WORKS

In this section, we describe algorithms for
line simplifi cation as well as problems that arise
from fl oating-point arithmetic.
3.1 Algorithms for Line Simplifi cation

Many algorithms for line simplifi cation
have been developed so far. One of the most
famous is the Ramer-Douglas-Peucker’s
algorithm (RDP)(DOUGLAS & PEUCKER,
1973; RAMER, 1972). Its basic idea is to start
with a very rough approximation of the original
line (i.e. a straight line connecting the end
vertices) and iteratively refi ne the approximation
including, in each step, the vertex that is farthest
from the current line. The method stops when the
distance between the farthest vertex and the line
is greater than a given threshold (the smaller the
threshold the less simplifi ed the line is).

The RDP algorithm does not take topo-
logical consistency into consideration and may
generate inconsistent results. An approach
proposed by Saalfeld (SAALFELD, 1999)
attempts to avoid such inconsistencies. It uses
Douglas-Peucker’s algorithm to simplify lines
and then starts a refi ning process by adding
points to the output line so that the curve no
longer presents any inconsistency. Noteworthy
to mention that adding points to a curve may
eliminate previous inconsistencies but may
create new ones.

Another approach based on Douglas-Peucker
was proposed by Li et al. (2013). It intends to avoid
topological inconsistencies as well as cracks on
polygon shapes using a strategy based on detection-
point identification, which are points lying
within a minimum boundary rectangle (MBR)
of the bounded face formed by a sub polyline
and its corresponding simplifying segment.
These detection-points are used for consistency
verifi cation of the simplifi cation process.

Gruppi M. G. et al.

1224 Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

Visvalingam and Whyatt (VISVALINGAM;
WHYATT, 1993) proposed a method (called the
VW algorithm) for line generalization that uses
the concept of eff ective area of a point to defi ne
the priority of its removal. The eff ective area
of a point vi , for 1 < i < n, in a polygonal chain vi ,...,vn is defi ned as the area of the triangle formed
by vi and its two adjacent vertices, namely, vi-1, vi, vi+1. The VW algorithm considers that the
“importance” of the points are proportional to
their eff ective area and, therefore, it ranks the
points and simplifi es the polylines by removing
fi rst the points with smaller areas.

Even though VW’s algorithm performs
simplifi cation with good quality, it does not
avoid topological problems in the map. To
solve this problem, Gruppi et al. (GRUPPI et
al., 2015) developed TopoVW, a variation of
VW’s algorithm that avoids the creation of
topological inconsistencies. Similarly, to VW,
TopoVW processes the points in an order based
on their eff ective area but only removes a point
vi if its removal does not create inconsistencies in
topology. When a point is removed the eff ective
areas of its two neighbor points in the line are
updated, since the triangle associated with them
change. TopoVW may be confi gured to stop when
the number of points removed reaches a limit or
when the smallest eff ective area of the points is
greater than a given threshold.

Although some of the methods previously
mentioned have mechanisms to detect and
prevent topological inconsistencies created by
the simplifi cation process itself, these problems
may still happen because of round-off errors
related to the use of inexact arithmetic to process
the points’ coordinates.
3.2 Round-off Errors in Floating Point Arithmetic

The computational representation of a non-
integer number is made by adjusting this number
to a fi nite sequence of bits, this possibly causes
the number to be an approximation most of the
time. Furthermore, even if some numbers can
be exactly represented, arithmetic operations
applied to these numbers may generate a result
that is incorrect. In geometric algorithms, this is
a great issue since they may result in inconsistent
outputs.

Kettner et al. (2008) presented a study
of how rounding in fl oating point arithmetic

aff ects the planar orientation predicate and as
consequence the planar convex hull problems.
The planar orientation predicate is the problem of
fi nding whether three points p, q, r are collinear,
make a left turn, or make a right turn. This
predicate is computed by verifying the sign of a
determinant involving the points.

This determinant will be positive, negative
or zero which means that points (p, q, r) form a
left turn, right turn or are collinear, respectively.
Due to round-off errors in floating point
arithmetic the results can be classifi ed incorrectly
due to rounding to zero, perturbed zero, or sign
inversion. Respectively, it means a non-zero
result may be rounded to zero, a zero result may
be mis-classifi ed as positive or negative, and a
positive result may be misclassifi ed as negative
or vice-versa.

To observe the occurrence of issues
caused by floating-point arithmetic, Kettner
et al. developed a program to apply planar
orientation predicate orientation(p, q, r) on a
point p = (px + xu,py + yu) where u is the step
between adjacent fl oating point numbers in the
range of p and 0  x,y  255. This results in a
256  256 matrix containing either 1, -1 or 0 if
the point corresponding to the matrix position is
to the right, to the left or on the line that passes
through q and r. Figure 5 shows the geometry
of this experiment for p = (0.5, 0.5), u = 2-53,
q = (12, 12) and r = (24, 24). White cells
represent correct output. The black diagonal line
is an approximation of line (q, r). Black cells
represent incorrect output, that is, black points
above the diagonal were considered to form a
right turn with the line (q, r), which is not true,
it also applies to the points below the diagonal
which were said to form a left turn with line (q,
r). Gray cells contain points considered collinear
to (q, r). According to Kettner et al., even using
extended double arithmetic was not enough to
overcome this issue.

As shown by Kettner, these inconsistent
results in orientation(p, q, r) predicate could
make algorithms that use this predicate (such as
the Incremental Convex Hull algorithm) to fail.

A well-known technique to get around
round-off errors in fl oating point arithmetic is
the Epsilon-tweaking, that consists in comparing
numbers using a relatively small tolerance value
epsilon (). In practice, epsilon-tweaking fails

1225Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

Using Rational Numbers and Parallel Computing
in several situations (KETTNER et al., 2008).
Snap rounding is another method to approximate
arbitrary precision segments into fixed-
precision numbers (HOBBY, 1999). However,
Snap rounding can generate inconsistencies
and deform the original topology if applied
consecutively on a data set. Some variations of
this technique attempt to get around these issues
(DE BERG; HALPERIN; OVERMARS, 2007;
HERSHBERGER, 2013).

map. Given a polyline point v from a map, the
removal of v causes a topological inconsistency
if and only if there is another point (that may be
a polyline or a control point) inside the triangle
formed by v and its two adjacent vertices in its
polyline.

If the point-in-triangle test fails returning
a false positive a point that could have been
removed from the polyline will not be removed.
If this test returns a false negative, on the other
hand, topological inconsistencies may be created
on the map.

In TopoVW, the test to determine if a point
p lies inside the triangle T formed by points r, s
and t is performed by computing the barycentric
coordinates of p in T, i.e., p is expressed in terms
of three scalars a, b and c such that px =arx + bsx + ctx , py = ary + bsy + cty and a + b + c = 1. Point
p lies in T if and only if 0  a  1 and 0  b  1 and
0  c  1. A function is_inside(r, s, t, p) to perform
point in triangle tests using the barycentric
coordinates was implemented in C++. This
approach is similar to the one used by Kettner
et al. shown in Section 3.2.

In a similar manner to the orientation test
presented in the previous section, the function
is_inside(r, s, t, p) may also return incorrect results
in two situations:
• False inside: erroneously classify an outer

point as inside;
• False outside: erroneously classify an inner

point as outside.
Since is_inside(r, s, t, p) is TopoVW’s key

operation, the method may avoid simplifying
lines due to false inside occurrences. Even
more alarming, it may remove points on the
presence of false outsides, what would change
the topological relationships. Figures 6 and 7
show an example of false outside simplifi cation.
In this example, there are two non-intersecting
lines (solid and dashed) as shown in Figure 6, the
zoomed area shows explicitly that both lines do
not intersect. Point p is inside the triangle formed
by points (r, q, w) with w not shown in the fi gure
to preserve simplicity. However, due to a false
outside failure, point q is removed, creating an
intersection as seen in Figure 7.

Another instance of this problem is
shown by Figures 8 and 9, where a single line
is simplifi ed. Like the previous example, vertex
p is inside the triangle formed by (r, q, w) but it

q

r

Fig. 5 - Geometry of the planar orientation
predicate for double precision floating point
arithmetic. Black points indicate wrong output.
The diagonal line is an approximation to line (q,r).

One of the most robust ways for eliminating
rounding errors in geometry is by using Exact
Geometric Computation (ECG). According to
Li (LI; PION; YAP, 2005) any problem handled
by other approaches can also be solved by ECG.
Additionally, ECG can do even more and the
solutions may be of higher quality. This can be
achieved by using arbitrary precision rational
numbers, which eliminates rounding errors but
considerably decreases performances as most
operations are more computationally intensive.
4. EVALUATION OF ROUND-OFF ER-
RORS ON MAP SIMPLIFICATION

Like other geometric problems, map
simplifi cation is also aff ected by round-off errors.
As mentioned in section 3, TopoVW processes
points in an order defi ned by their eff ective areas
and only removes a point if its removal does
not cause topological inconsistencies on the

Gruppi M. G. et al.

1226 Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

is a false outside. Vertex q is removed by the
simplifi cation process causing the line to self-
intersect as seen in Figure 9.

r

p

q

p

Fig. 6 - Example input on which false outside
failure occur, two lines (solid and dashed) do
not intersect.

r

p
Fig. 7 - Result of simplification with false
outside, the removal of point q creates line
intersections.

Fig. 8 - Example input of a single line and
occurrence of a false outside.

Fig. 9 - Simplifi cation with a false outside. The
removal of point q produces a self-intersecting
line.

5. THE EPLSIMP METHOD
To avoid adding topological errors to the

map in the situations described in section 3.2, we
developed EPLSimp, a simplifi cation algorithm
based on TopoVW that uses exact arithmetic
to completely avoid the round-off errors that
may happen during the point in triangle tests.
In EPLSimp, all non-integers variables are
represented using arbitrary-precision rational
numbers. Since exact arithmetic is usually
much slower than arithmetic with floating
point numbers (that usually can be performed
natively on the CPU), some optimizations were
implemented in order to reduce the performance
penalty that it introduces.

First, like TopoVW, we used a uniform grid
to index the polyline and control points from
the map. The idea is to create a regular grid,
superimpose it with the map and insert in each
cell c the control points and polyline points that
are inside c. Then, given a triangle T, only points
in the uniform grid cells intersecting T need to be
tested in order to verify if there is a point inside T.

One advantage of the uniform grid over
more complex data structures such as quadtrees is
that it is easier to be constructed and maintained.
Given a set S of points, we compute the uniform
grid by performing only one pass through the
dataset: for each point p in S, the cell c from the
grid where p should be is computed (by dividing
p’s coordinates by the dimensions of the grid
cells) and p is inserted in c.

Since the slowest step during the
construction of the grid is the computation of the
cell in which each point p is (due to the division
operations with arbitrary-precision rational
numbers), we used parallel programming to
accelerate this step. The idea is to pre-compute in
parallel the cell in which each point is and, after
that, insert the points in the cells (this insertion
step is not done in parallel to avoid the cost of
synchronizations).

After indexing the points, the next step
consists in simplifying polylines. TopoVW
sorts points based on their eff ective areas and
processes them by removing the ones whose
removal would not create topological problems
in the map. To accelerate the simplification
process used in TopoVW, we divided the
polylines into sets such that polylines from

1227Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

Using Rational Numbers and Parallel Computing
diff erent sets may be simplifi ed independently
in parallel not requiring the synchronization of
data structures accesses.

Algorithm 1 presents the simplification
algorithm and the strategy used for subdividing
the polylines into sets that can be simplified
in parallel. This subdivision is also performed
using a uniform grid (this grid may have a
resolution diff erent from the uniform grid used
for indexing the points). We create this new
uniform grid and, then, insert in each grid cell
the polylines that are completely inside this
cell. The polylines in diff erent grid cells could

be processed independently since the triangle
formed by any polyline point never contains
a point from another cell. On the other hand,
polylines intersecting more than one cell cannot
be processed in parallel without synchronization.
For example, even though the polyline containing
the vertex v in Figure 10 does not intersect the cell
containing the polygon P, before deleting v it is
necessary to access the cell containing polygon P
to verify if the deletion of v causes a topological
inconsistency. Therefore, if the two polylines in
this fi gure are simplifi ed in parallel the algorithm
would need to perform synchronizations.

Fig. 10 - Parallel map simplifi cation algorithm.

P

v

Fig. 11 - Example where a polyline intersecting
multiple cells needs to access data in a cell it
does not intersect.

After processing all the polylines
lying completely in single cells, we repeat
the simplification process for the polylines
intersecting more than one cell. In order to
be able to do that in parallel, we reduce the

uniform grid resolution, reclassify the remaining
polylines and, then, simplify the ones that lie in
single cells in this new uniform grid. This process
is repeated until there is no more polyline to be
simplifi ed (eventually all the polylines will be
processed since when the uniform grid is reduced
to one cell all polylines that were not processed
yet will lie in this unique cell).

a
b

cp

Fig. 12 - Example where the deletion of a point
makes the deletion of other points infeasible.

Gruppi M. G. et al.

1228 Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

To avoid the necessity of synchronizations
between threads processing diff erent sets of
polylines, the simplifi cation stopping criteria
used in EPLSimp is the eff ective area of the
points. That is, the thread simplifying a set of
polylines stops the process whenever the point
with smallest eff ective area in the set has an area
greater than a given threshold. If the stopping
criteria was the number of points removed,
synchronizations would be necessary to ensure
that all threads stop simplifying lines when the
global number of removed points reaches the
target number.

It is worth to mention that we have
considered other two parallelization strategies.
First, we could pre-process the map verifying
for each point if there is another point inside the
triangle defi ned by it and its two neighbors. This
pre-processing could be performed in parallel.
After labeling the points that can safely be
removed (that is, the ones without other points
in their triangles), we could just remove the ones
with smaller eff ective areas. This strategy would
not work very well because when a point is
removed the triangle of its two neighbors change.
For example, in Figure 11, any of the points a
or b or c may be removed without changing the
topological relationship between the polyline and
the control point p. However, if a or c is removed
the triangle associated with b will contain p and,
therefore, b will not be a candidate to be removed
anymore.

Another parallel strategy would be to
perform the point inside triangle test in parallel.
That is, given a triangle T, after using the uniform
grid to select the points that are candidate to be in
T we could perform the test to verify if each point
is inside T in parallel. However, preliminary
experiments showed that, because of the uniform
grid, the average number of points that need to

be eff ectively tested in this step is usually small
and, therefore, the performance gain obtained by
processing them in parallel would not be good
if compared with the overheads associated with
the parallelism.
6. EXPERIMENTAL EVALUATION

We evaluated EPLSimp by implementing it
in C++ (the library GMPXX (GRANLUND; THE
GMP DEVELOPMENT TEAM, 2014) was used
to provide arbitrary precision arithmetic) and
performing experiments in some small datasets
artifi cially generated to contain polylines and
control points that would introduce topological
errors in the simplification performed by
TopoVW. Furthermore, experiments were
performed in 3 real-world maps in order to
evaluate the performance of EPLSimp. The
computer used has a dual E5-2687 8-core/16-
thread Intel Xeon CPU and 128 GB of RAM.

In the fi rst set of experiments, we used
artificially generated maps which contained
points in positions where the point-in-triangle
tests would give a false negative answer
(similar to the examples presented in section
3.2) and, therefore, methods such as TopoVW
would create topological errors during the map
simplifi cation. As expected, because of the use of
exact arithmetic, EPLSimp was able to simplify
these maps without creating any topological
inconsistency.

Next, we performed experiments in three
datasets to verify the overhead added using
arbitrary precision rational numbers in EPLSimp.
Dataset 1 was the largest dataset used in the ACM
GISCUP competition 2014. It contains 30000
polyline points and 1607 control points. Dataset 2
represents the Brazilian county subdivision map
available in the IBGE (the Brazilian geography
agency) website and it contains 300000 polyline

Table 1: Times (in ms) for the main steps of map simplifi cation algorithms. Rows Max represent the time for removing
the maximum amount of points from the map while rows Half represent the time to remove half the points

Dataset 1 2 3
Method TopoVW EPLSimp TopoVW EPLSimp TopoVW EPLSimp

Máx
Initialize 4 22 28 190 1828 5353
Simplify 39 60 626 445 46069 57095

Total 43 82 654 635 47897 62448
Min

Initialize 4 22 28 186 1847 5447
Simplify 25 41 357 331 23021 48090

Total 29 63 384 517 24868 53537

1229Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

Using Rational Numbers and Parallel Computing
points and 10000 control points (the control
points were positioned randomly in the map).
Dataset 3 represents the United States county
subdivision map available in the United States
Census website and it has 4 million polyline
points and 10 million control points (that were
also positioned randomly in the map).

The choice of the dimensions of the uniform
grid used by TopoVW and EPLSimp to index the
points aff ects the performance of both methods
and it can be performed using several strategies.
For example, TopoVW automatically defi nes
the grid size by computing the total number of
polylines/control points in the map and chooses
the grid dimension estimating the average
number of points per cell close to a constant (this
constant was determined experimentally). Since
the best grid size for TopoVW may not be the
best grid size for EPLSimp and since we want to
compare the performance of these two methods,
we chose experimentally, for each method and
dataset, a confi guration that presents the best
performance (for example, in dataset 2, TopoVW
and EPLSimp used grids with, respectively, 5122
and 20482 cells).

The uniform grid that EPLSimp uses
to classify the polylines that are processed in
parallel was confi gured to have initially 256²
cells and to iteratively reduce the resolution
to half after completely processing each set of
polylines that can be processed in parallel. As
mentioned in section 5, this process is repeated
until all polylines have been simplifi ed, what
happens, in the worst case, when the grid has
only one cell.

Table 1 presents the wall-clock time
(in milliseconds) of the two methods in two
situations: in the fi rst one they were confi gured to
remove the maximum amount of points that they
can remove without creating topological errors.
In the second one, they were confi gured to remove

50% of the points. Row initialize contains the
time for initializing the algorithm and includes
the time for creating the data structures (such as
the uniform grids). Row simplify contains the
time spent in the simplifi cation process. In all
tests EPLSimp was tested using 16 threads.

EPLSimp was, on average, less than twice
slower than TopoVW, even though we store and
process all points coordinates using arbitrary
precision rational numbers, that are much more
computationally expensive to process than
fl oating point numbers. This happens because
EPLSimp was carefully implemented using
techniques such as parallel computing and the
uniform grid to accelerate the simplifi cation
process. It is worth mentioning that one of
the advantages of the uniform grid over other
indexing techniques (such as Quadtrees) is that
it is easily parallelizable and can be created
by performing a single pass over the data (this
is particularly important for effi ciency since
the indexing is performed using coordinates
represented by rational numbers).

Table 2 evaluates the scalability of
EPLSimp considering 5 different number of
threads. In these datasets, EPLSimp had a
speedup of 2x when two threads were used and
this speedup increased slowly for larger amounts
of threads. For example, the running-time using
16 threads was not much diff erent from the time
using 8 threads. Some reasons for this behavior
are: fi rst, due to Amdahl’s law, sequential parts
of the algorithm limit its scalability; furthermore,
some polylines sets may take more time to
be simplified than others, what causes load
imbalance in the threads; fi nally, when several
threads run in parallel the memory accesses may
saturate the memory bus. Anyway, it is worth
mentioning that typical computers nowadays
have 2 or 4 cores and, therefore, EPLSimp is able
to present a good scalability in those computers.

Table 2: Times (in ms) for initializing and simplifying maps from the 3 datasets considering diff erent
amount of threads. The Simplifi cation was confi gured to remove the maximum amount of points

Dataset 1 2 3

Thr
ead

s 1 247 2229 277070
2 243 1718 146793
4 153 1111 92494
8 95 723 68641
16 82 635 62448

Gruppi M. G. et al.

1230 Brazilian Journal of Cartography, Rio de Janeiro, Nº 68/6 p. 1221-1230, Jun/2016

7. CONCLUSION AND FUTURE WORKS
This paper presented EPLSimp, an algorithm

for map simplification that does not produce
topological inconsistencies. It uses arbitrary
precision numbers to avoid round-off errors caused
by fl oating-point arithmetic, which could lead
to topological inconsistencies even in methods
designed to avoid these problems, such as TopoVW.

EPLSimp was implemented to be effi cient
even though it uses arbitrary precision numbers,
which are much slower to be processed
than floating-point numbers. This efficiency
improvement was achieved by using a uniform
grid to index the geometric objects and, also,
high performance computing. As a result, using
16 threads EPLSimp was, on average, less than
twice slower than TopoVW, even though the latter
performs all computation using inexact fl oating-
point numbers (that are natively supported by
the CPU) and then can generate “wrong” (or
inconsistent) results.

For future work, we intend to develop
other GIS algorithms using arbitrary precision
arithmetic. Furthermore, adapting EPLSimp to
simplify vector drawings and 3D objects is also
an interesting future research topic.
ACKNOWLEDGEMENTS

This research was partially supported by
CNPq, CAPES (Ciência sem Fronteiras grant
9085/13-0), FAPEMIG and NSF grant IIS-
1117277.
REFERENCES
DE BERG, M.; HALPERIN, D.; OVERMARS,
M. An intersection-sensitive algorithm for snap
rounding. Computational Geometry, v. 36, n.
3, p. 159–165, 2007.
DOUGLAS, D. H.; PEUCKER, T. K. Algorithms
for the reduction of the number of points
required to represent a digitized line or its
caricature. Cartographica: The International
Journal for Geographic Information and
Geovisualization, v. 10, n. 2, p. 112–122, 1973.
GOLDBERG, D. What every computer scientist
should know about fl oating-point aritmetic. ACM
Computing Surveys, v. 23, n. 1, p. 5–48, 1991.
GRANLUND, T.; THE GMP DEVELOPMENT
TEAM. The GNU Multiple Precision

Arithmetic Library, 2014. Disponível em:
<http://gmplib.org/>. Acesso em: 7 ago. 2015
GRUPPI, M. G. et al. An Efficient and
Topologically Correct Map Generalization
Heuristic. Proceedings of the 17th International
Conference on Enterprise Information Systems
(ICEIS). Anais...2015
HERSHBERGER, J. Stable snap rounding.
Computational Geometry, v. 46, n. 4, p.
403–416, 2013.
HOBBY, J. D. Practical segment intersection
with fi nite precision output. Computational
Geometry, v. 13, n. 4, p. 199–214, 1999.
JIANG, B.; LIU, X.; JIA, T. Scaling of geographic
space as a universal rule for map generalization.
Annals of the Association of American
Geographers, v. 103, n. 4, p. 844–855, 2013.
JOÃO, E. Causes and Consequences of map
generalization. [s.l.] CRC Press, London, p.
54-59, 1998.
KETTNER, L; MEHLHORN, K.; PION, S.;
SCHIRRA, S.; YAP, C. Classroom examples of
rebustness problems in geometric computations.
ACM Computing Surveys, v. 40, n. 1, p. 61–78,
2008.
LI, C.; PION, S.; YAP, C.-K. Recent progress
in exact geometric computation. The Journal
of Logic and Algebraic Programming, v. 64,
n. 1, p. 85–111, 2005.
LI, L; WANG, Q.; ZHANG, X.; WANG, Z.
An Algorithm for Fast Topological Consistent
Simplification of Face Features. Journal of
Computational Information Systems, v. 9, n.
2, p. 791–803, 2013.
RAMER, U. An iterative procedure for the
polygonal approximation of plane curves.
Computer Graphics and Image Processing,
v. 1, n. 3, p. 244–256, 1972.
SAALFELD, A. Topologically consistent
line simplifi cation with the Douglas-Peucker
algorithm. Cartography and Geographic
Information Science, v. 26, n. 1, p. 7–18, 1999.
VISVALINGAM, M.; WHYATT, J. D. Line
generalisation by repeated elimination of points.
The Cartographic Journal, v. 30, n. 1, p. 46–51,
1993.

