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ABSTRACT
This paper presents EPLSimp, an algorithm for map generalization that avoids the creation of topological inconsis-
tencies. EPLSimp is based on Visvalingam-Whyatt’s (VW) algorithm on which least “important” points are removed 
fi rst. Unlike VW’s algorithm, when a point is deleted a verifi cation is performed in order to check if this deletion would 
create topological inconsistencies. This was done by using arbitrary precision rational numbers to completely avoid 
errors caused by fl oating-point arithmetic. EPLSimp was carefully implemented to be effi  cient, although using rational 
numbers adds an overhead to the computation. This effi  ciency was achieved by using a uniform grid for indexing the 
geometric data and parallel computing to speed up the process. As result, simplifi ed models completely free of topo-
logically inconsistent results and round-off  errors due to the use of multiple precision rational numbers. In addition, 
there was a considerable speedup arising from the use of parallel computing.
Keywords: Map Simplifi cation, Rational Numbers, Parallel Computing.

RESUMO
Este artigo apresenta EPLSimp, um algoritmo para generalização de mapas que evita a criação de inconsistências 
topológicas. EPLSimp é baseado no algoritmo de Visvalingam-Whyatt (VW), no qual os pontos menos “importantes” 
de uma linha são removidos primeiro. Diferentemente do algoritmo VW, quando um ponto é removido, realiza-se uma 
verifi cação para determinar se a remoção do ponto irá causar inconsistências topológicas. Visando eliminar os erros 
causados por aritmética de ponto fl utuante, esses testes foram realizados utilizando números racionais de precisão 
arbitrária. EPLSimp foi cuidadosamente implementado para ser efi ciente, embora o uso de número racionais traga um 
aumento no tempo de execução do algoritmo. Para obter tal efi ciência, utilizamos uma estrutura de uniform grid para 
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indexar os elementos geométricos, também utilizamos computação paralela para acelerar o processo. Como resultado, 
os modelos simplifi cados não apresentaram inconsistências topológicas decorrentes de erros de arredondamento e 
houve um ganho considerável de desempenho ao utilizar computação paralela.
Palavras chaves: Simplifi cação de Mapas, Números Racionais, Computação Paralela.
1. INTRODUCTION

The map simplification process, also 
known as map generalization, allows the 
production of maps with different levels of 
details (JIANG; LIU; JIA, 2013). It consists 
of removing information that is not relevant to 
the viewer, while preserving essential features 
on the map. Generalization is inherent to every 
geographical data since every map consists of 
generalized representations of reality, and the 
more generalized a map is, the more distant it 
becomes from the real world (JOÃO, 1998). 
The output of this process is a map with more 
desirable properties than those from the input 
map. An example of generalization is scaling 
a map of a single town which contains detailed 
information about streets and buildings. When 
scaling this map to show nearby towns it may 
be necessary to simplify it so that it is not 
overburden by unimportant data.

A challenge in generalization is to fi nd 
a balance between simplifi cation and reality. 
Map simplifi cation can produce inappropriate 
results as it may aff ect topological relationships. 
These results are said to be topologically 
inconsistent and they may present relationships 
that are confl icting with reality. For example, 
the simplifi cation can create self-intersecting 
lines, improper intersections between lines and 
polygons, etc.

Another kind of topological inconsistency 
is sidedness change, that is, after performing 
simplifi cation, a feature can be on a diff erent 
side regarding another feature on the map. For 
example, after the simplifi cation of a line, a point 
which was originally on the right side of this line 
now can be on the left side. Thus, when designing 
simplification algorithms, it is important to 
guarantee topologically consistent results. 
2. POLYLINE SIMPLIFICATION

An approach for performing map 
simplifi cation is to reduce the complexity of its 
lines. That means making simpler representation 
of curves or polygon edges. Usually, lines are 

represented by polygonal chains or polylines. 
A polyline is a series of segments defi ned by a 
sequence of n vertices (v1, v2,..., vn), where each 
segment consists of two endpoints and adjacent 
segments share a common endpoint. Figure 1 
shows an example of two polygonal chains L1 and L2 and a control point P (gray hexagon) that 
does not belong to a polyline but is considered 
relevant or meaningful.

 The basic idea of line simplification 
consists of removing points and representing the 
original curve using approximation with fewer 
vertices. Figure 2 presents an example of the 
simplifi cation of the lines shown in Figure 1. Two 
famous and frequently used line simplifi cation 
algorithms are the Ramer-Douglas-Peucker’s 
algorithm (RDP)(DOUGLAS; PEUCKER, 1973; 
RAMER, 1972) and Visvalingam-Whyatt(VW)
(VISVALINGAM; WHYATT, 1993) algorithm.

Fig. 1 - Example of polylines L1 and L2 and 
control point P.

Fig. 2 - Simplifi cation of L1 and L2 .
The line simplifi cation process can bring 

inconsistencies to the output if some care is not 
taken. Figures 3 and 4 show two examples where 
removing certain points from the polylines in 
Figure 1 would cause topological inconsistency: 
in Figure 3, after simplifi cation, point P is on the 
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other side of the simplifi ed line L2 ; in Figure 4, 
a “nonexistent”’ intersection between lines L1 and L2 is created.

Fig. 3 - Inconsistent simplifi cation where P is on 
the wrong side of line L2 . 

Fig. 4 - Inconsistent simplifi cation where an 
intersection between lines  L1 and  L2 is created.

Topological inconsistency may be created 
by some simplifi cation algorithms such as the ones 
based on the RDP method. But there is another 
source of error that aff ects even algorithms that 
attempt to avoid inconsistencies: round-off  errors 
resulting from fl oating point arithmetic. These 
errors occur because real numbers cannot be 
exactly represented in computational systems, 
instead, an approximation of the real number is 
used (GOLDBERG, 1991).To overcome such 
problems, the best strategy is to make use of 
Exact Geometric Computation (LI; PION; YAP, 
2005).

In this paper is presented a method that uses 
rational numbers and parallel computing to solve 
the following variation of the generalization 
problem: given a set of polylines and control 
points, the goal is to simplify these polylines 
by removing some of their vertices (except 
endpoints) such that topological relationships 
between pairs of polylines and between polylines 
and control points are maintained. In practice, 
polylines may represent boundaries of counties 
or states, and control points may represent cities 

within these states. The introduction of rational 
numbers was used to prevent errors introduced 
by rounding in fl oating point arithmetic. The 
use of arbitrary precision numbers is expected 
to increase the overall execution time of the 
algorithm since its operations are more complex. 
To compensate this performance drop, parallel 
computing is used.
3. RELATED WORKS

In this section, we describe algorithms for 
line simplifi cation as well as problems that arise 
from fl oating-point arithmetic.
3.1 Algorithms for Line Simplifi cation

Many algorithms for line simplifi cation 
have been developed so far. One of the most 
famous is the Ramer-Douglas-Peucker’s 
algorithm (RDP)(DOUGLAS & PEUCKER, 
1973; RAMER, 1972). Its basic idea is to start 
with a very rough approximation of the original 
line (i.e. a straight line connecting the end 
vertices) and iteratively refi ne the approximation 
including, in each step, the vertex that is farthest 
from the current line. The method stops when the 
distance between the farthest vertex and the line 
is greater than a given threshold (the smaller the 
threshold the less simplifi ed the line is).

The RDP algorithm does not take topo-
logical consistency into consideration and may 
generate inconsistent results. An approach 
proposed by Saalfeld (SAALFELD, 1999) 
attempts to avoid such inconsistencies. It uses 
Douglas-Peucker’s algorithm to simplify lines 
and then starts a refi ning process by adding 
points to the output line so that the curve no 
longer presents any inconsistency. Noteworthy 
to mention that adding points to a curve may 
eliminate previous inconsistencies but may 
create new ones.

Another approach based on Douglas-Peucker 
was proposed by Li et al. (2013). It intends to avoid 
topological inconsistencies as well as cracks on 
polygon shapes using a strategy based on detection-
point identification, which are points lying 
within a minimum boundary rectangle (MBR) 
of the bounded face formed by a sub polyline 
and its corresponding simplifying segment. 
These detection-points are used for consistency 
verifi cation of the simplifi cation process.
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Visvalingam and Whyatt (VISVALINGAM; 
WHYATT, 1993) proposed a method (called the 
VW algorithm) for line generalization that uses 
the concept of eff ective area of a point to defi ne 
the priority of its removal. The eff ective area 
of a point vi , for 1 < i < n, in a polygonal chain vi ,...,vn is defi ned as the area of the triangle formed 
by vi and its two adjacent vertices, namely, vi-1, vi, vi+1. The VW algorithm considers that the 
“importance” of the points are proportional to 
their eff ective area and, therefore, it ranks the 
points and simplifi es the polylines by removing 
fi rst the points with smaller areas.

Even though VW’s algorithm performs 
simplifi cation with good quality, it does not 
avoid topological problems in the map. To 
solve this problem, Gruppi et al. (GRUPPI et 
al., 2015) developed TopoVW, a variation of 
VW’s algorithm that avoids the creation of 
topological inconsistencies. Similarly, to VW, 
TopoVW processes the points in an order based 
on their eff ective area but only removes a point 
vi if its removal does not create inconsistencies in 
topology. When a point is removed the eff ective 
areas of its two neighbor points in the line are 
updated, since the triangle associated with them 
change. TopoVW may be confi gured to stop when 
the number of points removed reaches a limit or 
when the smallest eff ective area of the points is 
greater than a given threshold.

Although some of the methods previously 
mentioned have mechanisms to detect and 
prevent topological inconsistencies created by 
the simplifi cation process itself, these problems 
may still happen because of round-off  errors 
related to the use of inexact arithmetic to process 
the points’ coordinates.
3.2 Round-off  Errors in Floating Point Arithmetic

The computational representation of a non-
integer number is made by adjusting this number 
to a fi nite sequence of bits, this possibly causes 
the number to be an approximation most of the 
time. Furthermore, even if some numbers can 
be exactly represented, arithmetic operations 
applied to these numbers may generate a result 
that is incorrect. In geometric algorithms, this is 
a great issue since they may result in inconsistent 
outputs.

Kettner et al. (2008) presented a study 
of how rounding in fl oating point arithmetic 

aff ects the planar orientation predicate and as 
consequence the planar convex hull problems. 
The planar orientation predicate is the problem of 
fi nding whether three points p, q, r are collinear, 
make a left turn, or make a right turn. This 
predicate is computed by verifying the sign of a 
determinant involving the points.

This determinant will be positive, negative 
or zero which means that points (p, q, r) form a 
left turn, right turn or are collinear, respectively. 
Due to round-off errors in floating point 
arithmetic the results can be classifi ed incorrectly 
due to rounding to zero, perturbed zero, or sign 
inversion. Respectively, it means a non-zero 
result may be rounded to zero, a zero result may 
be mis-classifi ed as positive or negative, and a 
positive result may be misclassifi ed as negative 
or vice-versa.

To observe the occurrence of issues 
caused by floating-point arithmetic, Kettner 
et al. developed a program to apply planar 
orientation predicate orientation(p, q, r) on a 
point p = (px + xu,py + yu) where u is the step 
between adjacent fl oating point numbers in the 
range of p and 0  x,y  255. This results in a 
256  256 matrix containing either 1, -1 or 0 if 
the point corresponding to the matrix position is 
to the right, to the left or on the line that passes 
through q and r. Figure 5 shows the geometry 
of this experiment for p = (0.5, 0.5), u = 2-53, 
q = (12, 12) and r = (24, 24). White cells 
represent correct output. The black diagonal line 
is an approximation of line (q, r). Black cells 
represent incorrect output, that is, black points 
above the diagonal were considered to form a 
right turn with the line (q, r), which is not true, 
it also applies to the points below the diagonal 
which were said to form a left turn with line (q, 
r). Gray cells contain points considered collinear 
to (q, r). According to Kettner et al., even using 
extended double arithmetic was not enough to 
overcome this issue.

As shown by Kettner, these inconsistent 
results in orientation(p, q, r) predicate could 
make algorithms that use this predicate (such as 
the Incremental Convex Hull algorithm) to fail.

A well-known technique to get around 
round-off  errors in fl oating point arithmetic is 
the Epsilon-tweaking, that consists in comparing 
numbers using a relatively small tolerance value 
epsilon (). In practice, epsilon-tweaking fails 
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in several situations (KETTNER et al., 2008). 
Snap rounding is another method to approximate 
arbitrary precision segments into fixed-
precision numbers (HOBBY, 1999). However, 
Snap rounding can generate inconsistencies 
and deform the original topology if applied 
consecutively on a data set. Some variations of 
this technique attempt to get around these issues 
(DE BERG; HALPERIN; OVERMARS, 2007; 
HERSHBERGER, 2013).

map. Given a polyline point v from a map, the 
removal of v causes a topological inconsistency 
if and only if there is another point (that may be 
a polyline or a control point) inside the triangle 
formed by v and its two adjacent vertices in its 
polyline.

If the point-in-triangle test fails returning 
a false positive a point that could have been 
removed from the polyline will not be removed. 
If this test returns a false negative, on the other 
hand, topological inconsistencies may be created 
on the map.

In TopoVW, the test to determine if a point 
p lies inside the triangle T formed by points r, s 
and t is performed by computing the barycentric 
coordinates of p in T, i.e., p is expressed in terms 
of three scalars a, b and c such that px =arx + bsx + ctx , py = ary + bsy + cty and a + b + c = 1. Point 
p lies in T if and only if 0  a  1 and 0  b  1 and 
0  c  1. A function is_inside(r, s, t, p) to perform 
point in triangle tests using the barycentric 
coordinates was implemented in C++. This 
approach is similar to the one used by Kettner 
et al. shown in Section 3.2.

In a similar manner to the orientation test 
presented in the previous section, the function 
is_inside(r, s, t, p) may also return incorrect results 
in two situations:
• False inside: erroneously classify an outer 

point as inside;
• False outside: erroneously classify an inner 

point as outside.
Since is_inside(r, s, t, p) is TopoVW’s key 

operation, the method may avoid simplifying 
lines due to false inside occurrences. Even 
more alarming, it may remove points on the 
presence of false outsides, what would change 
the topological relationships. Figures 6 and 7 
show an example of false outside simplifi cation. 
In this example, there are two non-intersecting 
lines (solid and dashed) as shown in Figure 6, the 
zoomed area shows explicitly that both lines do 
not intersect. Point p is inside the triangle formed 
by points (r, q, w) with w not shown in the fi gure 
to preserve simplicity. However, due to a false 
outside failure, point q is removed, creating an 
intersection as seen in Figure 7.

Another instance of this problem is 
shown by Figures 8 and 9, where a single line 
is simplifi ed. Like the previous example, vertex 
p is inside the triangle formed by (r, q, w) but it 

q

r

Fig. 5 - Geometry of the planar orientation 
predicate for double precision floating point 
arithmetic. Black points indicate wrong output. 
The diagonal line is an approximation to line (q,r).

One of the most robust ways for eliminating 
rounding errors in geometry is by using Exact 
Geometric Computation (ECG). According to 
Li (LI; PION; YAP, 2005) any problem handled 
by other approaches can also be solved by ECG. 
Additionally, ECG can do even more and the 
solutions may be of higher quality. This can be 
achieved by using arbitrary precision rational 
numbers, which eliminates rounding errors but 
considerably decreases performances as most 
operations are more computationally intensive.
4. EVALUATION OF ROUND-OFF ER-
RORS ON MAP SIMPLIFICATION

Like other geometric problems, map 
simplifi cation is also aff ected by round-off  errors. 
As mentioned in section 3, TopoVW processes 
points in an order defi ned by their eff ective areas 
and only removes a point if its removal does 
not cause topological inconsistencies on the 
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is a false outside. Vertex q is removed by the 
simplifi cation process causing the line to self-
intersect as seen in Figure 9.

r

p

q

p

Fig. 6 - Example input on which false outside 
failure occur, two lines (solid and dashed) do 
not intersect.

r

p
Fig. 7 - Result of simplification with false 
outside, the removal of point q creates line 
intersections.

Fig. 8 - Example input of a single line and 
occurrence of a false outside.

Fig. 9 - Simplifi cation with a false outside. The 
removal of point q produces a self-intersecting 
line.

5. THE EPLSIMP METHOD
To avoid adding topological errors to the 

map in the situations described in section 3.2, we 
developed EPLSimp, a simplifi cation algorithm 
based on TopoVW that uses exact arithmetic 
to completely avoid the round-off  errors that 
may happen during the point in triangle tests. 
In EPLSimp, all non-integers variables are 
represented using arbitrary-precision rational 
numbers. Since exact arithmetic is usually 
much slower than arithmetic with floating 
point numbers (that usually can be performed 
natively on the CPU), some optimizations were 
implemented in order to reduce the performance 
penalty that it introduces.

First, like TopoVW, we used a uniform grid 
to index the polyline and control points from 
the map. The idea is to create a regular grid, 
superimpose it with the map and insert in each 
cell c the control points and polyline points that 
are inside c. Then, given a triangle T, only points 
in the uniform grid cells intersecting T need to be 
tested in order to verify if there is a point inside T.

One advantage of the uniform grid over 
more complex data structures such as quadtrees is 
that it is easier to be constructed and maintained. 
Given a set S of points, we compute the uniform 
grid by performing only one pass through the 
dataset: for each point p in S, the cell c from the 
grid where p should be is computed (by dividing 
p’s coordinates by the dimensions of the grid 
cells) and p is inserted in c.

Since the slowest step during the 
construction of the grid is the computation of the 
cell in which each point p is (due to the division 
operations with arbitrary-precision rational 
numbers), we used parallel programming to 
accelerate this step. The idea is to pre-compute in 
parallel the cell in which each point is and, after 
that, insert the points in the cells (this insertion 
step is not done in parallel to avoid the cost of 
synchronizations).

After indexing the points, the next step 
consists in simplifying polylines. TopoVW 
sorts points based on their eff ective areas and 
processes them by removing the ones whose 
removal would not create topological problems 
in the map. To accelerate the simplification 
process used in TopoVW, we divided the 
polylines into sets such that polylines from 
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diff erent sets may be simplifi ed independently 
in parallel not requiring the synchronization of 
data structures accesses.

Algorithm 1 presents the simplification 
algorithm and the strategy used for subdividing 
the polylines into sets that can be simplified 
in parallel. This subdivision is also performed 
using a uniform grid (this grid may have a 
resolution diff erent from the uniform grid used 
for indexing the points). We create this new 
uniform grid and, then, insert in each grid cell 
the polylines that are completely inside this 
cell. The polylines in diff erent grid cells could 

be processed independently since the triangle 
formed by any polyline point never contains 
a point from another cell. On the other hand, 
polylines intersecting more than one cell cannot 
be processed in parallel without synchronization. 
For example, even though the polyline containing 
the vertex v in Figure 10 does not intersect the cell 
containing the polygon P, before deleting v it is 
necessary to access the cell containing polygon P 
to verify if the deletion of v causes a topological 
inconsistency. Therefore, if the two polylines in 
this fi gure are simplifi ed in parallel the algorithm 
would need to perform synchronizations.

Fig. 10 - Parallel map simplifi cation algorithm.

P

v

Fig. 11 - Example where a polyline intersecting 
multiple cells needs to access data in a cell it 
does not intersect.

After processing all the polylines 
lying completely in single cells, we repeat 
the simplification process for the polylines 
intersecting more than one cell. In order to 
be able to do that in parallel, we reduce the 

uniform grid resolution, reclassify the remaining 
polylines and, then, simplify the ones that lie in 
single cells in this new uniform grid. This process 
is repeated until there is no more polyline to be 
simplifi ed (eventually all the polylines will be 
processed since when the uniform grid is reduced 
to one cell all polylines that were not processed 
yet will lie in this unique cell).

a
b

cp

Fig. 12 - Example where the deletion of a point 
makes the deletion of other points infeasible.
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To avoid the necessity of synchronizations 
between threads processing diff erent sets of 
polylines, the simplifi cation stopping criteria 
used in EPLSimp is the eff ective area of the 
points. That is, the thread simplifying a set of 
polylines stops the process whenever the point 
with smallest eff ective area in the set has an area 
greater than a given threshold. If the stopping 
criteria was the number of points removed, 
synchronizations would be necessary to ensure 
that all threads stop simplifying lines when the 
global number of removed points reaches the 
target number.

It is worth to mention that we have 
considered other two parallelization strategies. 
First, we could pre-process the map verifying 
for each point if there is another point inside the 
triangle defi ned by it and its two neighbors. This 
pre-processing could be performed in parallel. 
After labeling the points that can safely be 
removed (that is, the ones without other points 
in their triangles), we could just remove the ones 
with smaller eff ective areas. This strategy would 
not work very well because when a point is 
removed the triangle of its two neighbors change. 
For example, in Figure 11, any of the points a 
or b or c may be removed without changing the 
topological relationship between the polyline and 
the control point p. However, if a or c is removed 
the triangle associated with b will contain p and, 
therefore, b will not be a candidate to be removed 
anymore.

Another parallel strategy would be to 
perform the point inside triangle test in parallel. 
That is, given a triangle T, after using the uniform 
grid to select the points that are candidate to be in 
T we could perform the test to verify if each point 
is inside T in parallel. However, preliminary 
experiments showed that, because of the uniform 
grid, the average number of points that need to 

be eff ectively tested in this step is usually small 
and, therefore, the performance gain obtained by 
processing them in parallel would not be good 
if compared with the overheads associated with 
the parallelism.
6. EXPERIMENTAL EVALUATION

We evaluated EPLSimp by implementing it 
in C++ (the library GMPXX (GRANLUND; THE 
GMP DEVELOPMENT TEAM, 2014) was used 
to provide arbitrary precision arithmetic) and 
performing experiments in some small datasets 
artifi cially generated to contain polylines and 
control points that would introduce topological 
errors in the simplification performed by 
TopoVW. Furthermore, experiments were 
performed in 3 real-world maps in order to 
evaluate the performance of EPLSimp. The 
computer used has a dual E5-2687 8-core/16-
thread Intel Xeon CPU and 128 GB of RAM.

In the fi rst set of experiments, we used 
artificially generated maps which contained 
points in positions where the point-in-triangle 
tests would give a false negative answer 
(similar to the examples presented in section 
3.2) and, therefore, methods such as TopoVW 
would create topological errors during the map 
simplifi cation. As expected, because of the use of 
exact arithmetic, EPLSimp was able to simplify 
these maps without creating any topological 
inconsistency.

Next, we performed experiments in three 
datasets to verify the overhead added using 
arbitrary precision rational numbers in EPLSimp. 
Dataset 1 was the largest dataset used in the ACM 
GISCUP competition 2014. It contains 30000 
polyline points and 1607 control points. Dataset 2 
represents the Brazilian county subdivision map 
available in the IBGE (the Brazilian geography 
agency) website and it contains 300000 polyline 

Table 1: Times (in ms) for the main steps of map simplifi cation algorithms. Rows Max represent the time for removing 
the maximum amount of points from the map while rows Half represent the time to remove half the points

Dataset 1 2 3
Method TopoVW EPLSimp TopoVW EPLSimp TopoVW EPLSimp

Máx
Initialize 4 22 28 190 1828 5353
Simplify 39 60 626 445 46069 57095

Total 43 82 654 635 47897 62448
Min

Initialize 4 22 28 186 1847 5447
Simplify 25 41 357 331 23021 48090

Total 29 63 384 517 24868 53537
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points and 10000 control points (the control 
points were positioned randomly in the map). 
Dataset 3 represents the United States county 
subdivision map available in the United States 
Census website and it has 4 million polyline 
points and 10 million control points (that were 
also positioned randomly in the map).

The choice of the dimensions of the uniform 
grid used by TopoVW and EPLSimp to index the 
points aff ects the performance of both methods 
and it can be performed using several strategies. 
For example, TopoVW automatically defi nes 
the grid size by computing the total number of 
polylines/control points in the map and chooses 
the grid dimension estimating the average 
number of points per cell close to a constant (this 
constant was determined experimentally). Since 
the best grid size for TopoVW may not be the 
best grid size for EPLSimp and since we want to 
compare the performance of these two methods, 
we chose experimentally, for each method and 
dataset, a confi guration that presents the best 
performance (for example, in dataset 2, TopoVW 
and EPLSimp used grids with, respectively, 5122 
and 20482 cells).

The uniform grid that EPLSimp uses 
to classify the polylines that are processed in 
parallel was confi gured to have initially 256² 
cells and to iteratively reduce the resolution 
to half after completely processing each set of 
polylines that can be processed in parallel. As 
mentioned in section 5, this process is repeated 
until all polylines have been simplifi ed, what 
happens, in the worst case, when the grid has 
only one cell.

Table 1 presents the wall-clock time 
(in milliseconds) of the two methods in two 
situations: in the fi rst one they were confi gured to 
remove the maximum amount of points that they 
can remove without creating topological errors. 
In the second one, they were confi gured to remove 

50% of the points. Row initialize contains the 
time for initializing the algorithm and includes 
the time for creating the data structures (such as 
the uniform grids). Row simplify contains the 
time spent in the simplifi cation process. In all 
tests EPLSimp was tested using 16 threads.

EPLSimp was, on average, less than twice 
slower than TopoVW, even though we store and 
process all points coordinates using arbitrary 
precision rational numbers, that are much more 
computationally expensive to process than 
fl oating point numbers. This happens because 
EPLSimp was carefully implemented using 
techniques such as parallel computing and the 
uniform grid to accelerate the simplifi cation 
process. It is worth mentioning that one of 
the advantages of the uniform grid over other 
indexing techniques (such as Quadtrees) is that 
it is easily parallelizable and can be created 
by performing a single pass over the data (this 
is particularly important for effi  ciency since 
the indexing is performed using coordinates 
represented by rational numbers).

Table 2 evaluates the scalability of 
EPLSimp considering 5 different number of 
threads. In these datasets, EPLSimp had a 
speedup of 2x when two threads were used and 
this speedup increased slowly for larger amounts 
of threads. For example, the running-time using 
16 threads was not much diff erent from the time 
using 8 threads. Some reasons for this behavior 
are: fi rst, due to Amdahl’s law, sequential parts 
of the algorithm limit its scalability; furthermore, 
some polylines sets may take more time to 
be simplified than others, what causes load 
imbalance in the threads; fi nally, when several 
threads run in parallel the memory accesses may 
saturate the memory bus. Anyway, it is worth 
mentioning that typical computers nowadays 
have 2 or 4 cores and, therefore, EPLSimp is able 
to present a good scalability in those computers.

Table 2: Times (in ms) for initializing and simplifying maps from the 3 datasets considering diff erent 
amount of threads. The Simplifi cation was confi gured to remove the maximum amount of points

Dataset 1 2 3

Thr
ead

s 1 247 2229 277070
2 243 1718 146793
4 153 1111 92494
8 95 723 68641
16 82 635 62448
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7. CONCLUSION AND FUTURE WORKS
This paper presented EPLSimp, an algorithm 

for map simplification that does not produce 
topological inconsistencies. It uses arbitrary 
precision numbers to avoid round-off  errors caused 
by fl oating-point arithmetic, which could lead 
to topological inconsistencies even in methods 
designed to avoid these problems, such as TopoVW.

EPLSimp was implemented to be effi  cient 
even though it uses arbitrary precision numbers, 
which are much slower to be processed 
than floating-point numbers. This efficiency 
improvement was achieved by using a uniform 
grid to index the geometric objects and, also, 
high performance computing. As a result, using 
16 threads EPLSimp was, on average, less than 
twice slower than TopoVW, even though the latter 
performs all computation using inexact fl oating-
point numbers (that are natively supported by 
the CPU) and then can generate “wrong” (or 
inconsistent) results.

For future work, we intend to develop 
other GIS algorithms using arbitrary precision 
arithmetic. Furthermore, adapting EPLSimp to 
simplify vector drawings and 3D objects is also 
an interesting future research topic.
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