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ABSTRACT
Water management and fl ood studies are some fi elds in which a map with all water bodies in a region is useful, espe-
cially in scenarios of environmental changes due to anthropogenic factors. Various detection methods of water body 
surfaces in remotely sensed images are available, from simple methods having a lower accuracy to more sophisticated 
ones. The objective of this paper is to present a simple, yet accurate method to detect water bodies in RapidEye images. 
The motivation is the availability of country wide coverage of these images, which makes feasible the generation of a 
map of all water bodies detectable at that spatial resolution. Our solution is the use the color transformation from Red-
Green-Blue to Hue-Saturation-Value and the minimum radiance from all RapidEye bands to classify water bodies in 
seven classes of water. The water classes are ranked based on the confi dence of the classifi ed pixels being water, which 
accommodates for the diff erences in illumination and scattering that are present in such a large coverage, composed 
by more than 15000 scenes. In addition, users of the generated water bodies map can reclassify based on their needs. 
The methodology was developed on two RapidEye scenes, covering the Jacareí and Foz do Iguaçu municipalities, in 
Brazil. Results indicate that the classifi cation is better than the traditional ones, with the advantage of providing seven 
classes with confi dence levels.
Keywords: RapidEye, Water Body Detection, RGB-HSV Color Transformation.

RESUMO
Gerenciamento de bacias hidrográfi cas e estudos sobre enchentes são exemplos de casos onde é útil a existência de 
um mapa contendo todos os corpos d’água de uma região, especialmente em cenários de mudanças ambientais abrup-
tas, devido a fatores antropogênicos. Existem vários métodos de detecção de superfícies de corpos d’água utilizando 
imagens de sensoriamento remoto, desde os mais simples contendo baixa acurácia até os mais sofi sticados. O objetivo 
deste trabalho é apresentar um método que combine uma taxa de acerto adequada a uma metodologia simples, para ser 
aplicado em imagens do satélite RapidEye. A motivação para a gerar este método foi a disponibilidade de uma cobertura 
completa do Brasil com imagens RapidEye. Esta base de imagens permite a descoberta de corpos d’água detectáveis 
através da resolução espacial do RapidEye. Para isso, deve-se aplicar a transformação de cores RGB (siglas em inglês 
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para vermelho, verde e azul) para o modelo de cores HSV (matiz, saturação e valor). Além disso, foram incluídos os 
valores de mínima radiância das 5 bandas do RapidEye para classifi car os corpos d’água em um ranqueamento de sete 
classes de pertencimento ao alvo de interesse (Água). Esta solução é adaptável aos diferentes tipos de iluminação e 
espalhamento presentes em uma grande cobertura de imagens, como neste caso da cobertura do Brasil com mais de 
15000 cenas RapidEye. Além disso, potenciais usuários do produto gerado por esta proposta podem reclassifi car o mapa 
conforme a necessidade, removendo classes de menor pertencimento, por exemplo. A metodologia foi desenvolvida 
a partir da análise de duas cenas RapidEye. Uma delas cobre o município de Jacareí, São Paulo, e a outra cobre Foz 
do Iguaçu, no Paraná. Os resultados obtidos indicam que a classifi cação é superior aos métodos tradicionais, com a 
vantagem de apresentar as sete classes de pertencimento.
Palavras chaves: RapidEye, Detecção de Corpos d’Água, Transformação de Cores RGB para HSV.
1. INTRODUCTION

The use of water bodies detection method 
on remote sensed images is useful in many 
diff erent applications, from water management 
and fl ood studies to changes in water availability 
due to anthropogenic factors. Water bodies are 
characterized by low refl ectance, with decrease 
of the refl ectance as the wavelength increases in 
optical multispectral images. Existing methods 
to extract the surface of the water bodies are 
based on methods from simple thresholding 
images to sophisticated classifi cation schemes 
based on spectral and shape attributes. Simple 
methods use thresholding of individual bands 
or a ratio between two bands to enhance 
the low refl ectance areas. The simplicity of 
these methods has drawbacks related to the 
confusion with other low refl ectance targets, 
such as shadows, asphalt cover and dark soils. 
Sophisticated methods which employ statistical 
and knowledge based classifi cation schemes 
can improve results with the additional cost of 
computational power and with the requirement 
for user interaction.

The motivation of developing a new 
method to detect water bodies surfaces is to 
create a country wide map of water bodies at a 
5 meter resolution. The source of information 
is composed by RapidEye images from the 
Brazilian Environmental Ministry Geo Catalog, 
which has made available the full coverage of 
Brazil with RapidEye multispectral imagery 
(MMA, 2016). RapidEye images are generated 
from a constellation of 5 satellites located at 
the same orbital plane, and carrying the same 
sensors (BLACKBRIDGE, 2015). Available 
RapidEye imagery are processed into level 3A, 
which corresponds to geometric, radiometric 
and sensor correction, and mosaicked into 25 

by 25 km tiles with a 5 meter pixel size, created 
from the acquisition sampled at 6.5 meters at 
the nadir. The multispectral bands are 5: blue 
(0.44 to 0.51 μm), green (0.52 to 0.59 μm), 
red (0.63 to 0.685 μm), red edge (0.69 to 0.73 
μm), and Near Infra-Red - NIR (0.76 to 0.85 
μm). Digital numbers in each RapidEye band 
are the radiance collected at the sensor in 12-
bit and converted into 16 bit integer values 
corresponding to 1/100 of radiance in W/m2 
sr μm.

A nationwide coverage using RapidEye 
tiles implies that there are more than 15000 
multispectral (5 band with 16 bit each) images 
to be processed to detect water bodies. This 
amount of data to be processed requires the 
water body detection to be fast and independent 
of expert inputs. Therefore, the choice here is 
for a method with simple band operations with 
global thresholds.
2. RELATED WORK

The analysis of water refl ectance curves 
indicates that water bodies can be separated 
from other non-water features in a simple way 
due to its lower refl ectance when compared 
to the refl ectance of other non-water targets. 
However, in real world interactions of water with 
suspended sediment type and concentration, 
in water vegetation (submerged vegetation, 
algae and macrophytes), water depth, bottom 
substrate and morphology, among other factors 
alter the refl ectance of water bodies.

Considering that clear, deep water 
refl ectance is low in optical wavelengths and 
is lower in infrared (BOWKER et al., 1985), 
the simplest method is the use of thresholding 
of the band with the lowest refl ectance. For 
Landsat 5 TM data, Frazier et al. (2000) found 
that thresholding of the band 5 (SWIR 1.55 
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to 1.75 μm) produces similar results to the 
maximum-likelihood classifi cation, with the 
later underestimating water pixels and the 
thresholding including false positive pixels. 
The band 4 (NIR) was similar to band 5, with 
a tendency to include more commission errors 
(pixels that are not water) from poor pasture, 
hill shadow and parts of urban area.

The rationing of two bands is an image 
enhancing technique that minimizes the eff ects 
due to diff erences in illumination, which could 
make the use of one band thresholding not 
reliable when using a single threshold value for 
a set of images. In addition, the use of an index 
similar to the Normalized Diff erence Vegetation 
Index (NDVI) with appropriate bands, has the 
potential to defi ne water and non-water pixels 
based on positive or negative values of the 
index.

For detection of water bodies, McFeeters 
(1996) proposed the Normalized Diff erence 
Water Index (NDWI), to enhance the refl ectance 
diff erence between a visible (red or green) band 
from the NIR band for water features when 
compared to vegetation and soils. NDWI is the 
ratio between the diff erence and the sum of the 
green band and the NIR band. Water features 
will have values greater than zero, which is the 
threshold to be used in the method, since the 
diff erence for water refl ectance is greater than 
the diff erence for soils and vegetation.

XU (2006) proposed a modifi cation to 
NDWI in order to minimize the noise from 
built-up areas, which exists because the built-
up areas have a similar refl ectance to water in 
green and NIR bands when absolute values are 
not considered. Since the refl ectance of middle 
infra-red radiation is higher in built-up areas 
when compared to the NIR radiation, XU (2006) 
modifi ed NDWI (MNDWI) to use the middle 
infra-red band instead of the infra-red one.

Another technique that overcomes the 
illumination eff ects required to specify a simple 
method to extract water bodies from multiple 
images is the use of color information. In our 
previous research, we detected water bodies 
based on the Hue component from a color 
transformation (NAMIKAWA, 2015). When 
comparing histograms using NDWI, MNDWI 
and Hue component from the Red-Green-Blue 
(RGB) composition with the middle infra-red, 

NIR and red bands from Landsat 8, we obtained 
fewer pixels in the confusion region between 
the values for water and non-water in the Hue 
component when compared to the NDWI and 
MNDWI ratios.

In this study, we propose the use of 
thresholding of the Hue component of the 
conversion of color system from RGB to Hue-
Saturation-Value (HSV) as a better solution when 
compared to the use of a single band thresholding 
and the use of NDWI. The RGB color model 
is based on a cube defined on a Cartesian 
coordinate system, with one of the vertices of 
the cube at the origin and three of the edges 
running along the three axes of the coordinate 
system. The axes values are associates with 
intensities of Red, Green and Blue colors. The 
HSV color model uses a cylindrical coordinate 
system, with the vertical axis (running along 
the center of the cylinder) defi ning the Value 
component, the perpendicular distance from the 
vertical axis defi ning the Saturation component, 
and the Hue component being measured as the 
angle around the vertical axis. The zero angle 
of the Hue component corresponds to red color, 
followed by yellow at 60˚, green at 120˚, cyan 
at 180˚, blue at 240˚, magenta at 300˚ and back 
to red at 360˚. More details about color models 
can be found in FOLEY et al. (1996).
3. METHODOLOGY FOR WATER BOD-
IES DETECTION

The methodology used here to defi ne the 
best method using the Hue component of the 
RGB to HSV conversion is to obtain results 
from the traditional methods, test all possible 
RGB compositions of RapidEye, select the best 
RGB and compare with the traditional methods 
results to verify if the proposed method is 
better. Testing and comparison requires a set 
of known classifi cation of water bodies and 
non-water features. Therefore, two RapidEye 
tiles were selected based on the amount of 
diff erent targets, with a substantial quantity 
or water bodies, and also on the author’s local 
knowledge. Most of the fi rst tile covers the 
Jacareí municipality in São Paulo state (tile 
from October 10, 2014 named 2328310 in the 
RapidEye reference framework) and the second 
tile covers the Foz do Iguaçu municipality in 
Paraná state (tile from August 08, 2014 named 
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2127325 in the same framework), as shown 
in Fig. 1.All fi gures in this paper presenting 
images derived from Jacareí and Foz do Iguaçu 
images are map projected to the coordinate 
system as shown in Fig. 1. 

To obtain the results presented in this 
article we used SPRING version 5.3 free open 
source software, available at http://www.spring-
gis.org/ (CAMARA et al., 1996).

The identifi cation of water bodies in both 
images by automatic classifi cation method pro-
vided the basis for the tests of the simple thresh-
olding methods. The supervised classifi cation 
option was discarded given that the amount of 
samples for the small water bodies is reduced 
when compared to large water bodies, therefore 
this could skew the classifi cation

We employed the automatic K-Means 
classifi er, which is an implementation of the 
initial arbitrary cluster centers algorithm 
(LLOYD, 1982). We used K equal to 10, run the 

algorithm for 10 iterations, on the 5 bands of the 
RapidEye images. The resultant classifi cations 
from Jacareí and from Foz do Iguaçu images 
are shown in Fig. 2.

The visual analysis of the unsupervised 
classifi cation results in Fig. 2 and the author’s 
knowledge of the areas indicate that most 
water bodies are presented in red color in the 
classifi cation results from both images. The 
yellow color represents most dark areas, such 
as shadows, asphalt, burn scars and dark soils. 
Other colors represent the remaining features, 
such as vegetation, soils, and built-up areas. The 
analysis of the areas classifi ed as water bodies 
indicate that there are commission errors where 
dark soils and shadows are misclassifi ed as 
water. The omission errors occur where water 
bodies are shallow or have a high sediment 
concentration. Some of the misclassifi cation 
was manually corrected to be used in the 
following steps.

Fig. 1 - Selected images in R3G2B1 enhanced color composition with UTM projection in Datum 
WGS-84. Left image is over Jacareí, with UTM zone 23 south and right image is over Foz do 
Iguaçu, with UTM zone 21 south.

The fi rst traditional method to be tested 
is the thresholding of an Infra-Red band. For 
RapidEye images, the band 5 (NIR, 0.76 to 0.85 
μm) has similar wavelengths to Landsat 5 band 
4 (0.76 to 0.90 μm), which is the second best 
option for Landsat 5 images (FRAZIER et al., 
2000). The water bodies in the images were used 
to fi nd the thresholding level for RapidEye band 

5 by analyzing the distribution of the refl ectance 
of pixels detected as water body in the K-Means 
classifi cation image and of pixels detected as 
from non-water features. The histograms are 
presented in Fig. 3.

The interval analysis of the distribution of 
water body pixel values in Jacareí image (Fig.3 
left) indicates that 75% of the water pixels are 
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below 2500, 90% are below 3500 and 99.9% 
are below 5000. The interval analysis of the 
distribution of non-water pixel values in the same 
image indicates that 0.05% of the non-water pixels 
are below 3000, 0.2% are below 3800 and 1% 
are below 5000. For the Foz do Iguaçu band 5 

image, 75% of the water pixels are below 1100, 
90% are below 1300 and 99.9% are below 3000. 
The interval analysis of the distribution of non-
water pixel values in the same image indicates that 
0.05% of the non-water pixels are below 2000, 
0.2% are below 2500 and 1% are below 3000.

Fig. 2 - Unsupervised classifi cation results using K-Means for both test areas shown in Fig. 1. We 
used K = 10, and 10 iterations each execution. Water bodies are presented in red color in both results 
and yellow color represents dark areas. Other colors represent other types of features.

Fig. 3 - Histograms of RapidEye band 5 of Jacareí (left) and Foz do Iguaçu (right) images, 
highlighting pixels detected as Water (in red) versus other classes (Non-Water).

Based on the analysis of the refl ectance 
values distribution for water and non-water 
pixels, the following general thresholds were 
applied on both images: Class WATER to digital 
levels 0 to 2000, Class WATER95 to digital 
levels 2000 to 2500, Class WATER90 to digital 

levels 2500 to 3000, Class WATER80 to digital 
levels 3000 to 4000, and Class WATER70 to 
digital levels 4000 to 5000.

The visual analysis of the RapidEye band 5 
image classifi cation results indicates that for both 
images, omission errors for water pixels class are 
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not found easily, but there are many commission 
errors, as expected in dark targets, such as shadow, 
asphalt pavement and dark soils. In addition, the 
water  pixels are classifi ed in all fi ve water classes. 
Fig. 4 shows a portion of the Jacareí image where 
illumination eff ects on reservoir water produces 
four classes of water. Fig. 5 shows part of the 
Foz do Iguaçu image with the Paraná River and 
the cities of Foz do Iguaçu - Brazil and Ciudad 
del Leste - Paraguay, where built-up features are 
misclassifi ed in all fi ve classes of water.

The test of the classifi cation based only on 
the RapidEye band 5 image thresholding indicates 
that  it is not a reliable solution, given that the 
sensitivity to illumination eff ects requires the use 
of classes that will include built-up features pixels.

The second method to be tested is the 
thresholding of the Water Index, as proposed by 
(MCFEETERS, 1996) and (XU, 2006), which 
minimizes the illumination eff ects. RapidEye images 
do not have the middle infrared band, therefore the 
detection method tested here is the NDWI using the 
NIR (0.76 to 0.85 μm) band 5 and threshold equal to 
zero. The Jacareí and Foz do Iguaçu bands 2 and 5 
were used to create de NDWI images. The radiance 
of the bands were fi rst normalized based on the 
exo-atmospheric irradiance for each band and then 
the ratio of normalized bands 2 (NB2) and 5 (NB5) 
was created using (NB2 - NB5) / (NB2+NB5). The 
histograms of the NDWI images for water and non-
water pixels from the edited K-Means classifi cation 
are shown in Fig. 6.

Fig. 4 - A portion of the Jacareí image, with the R3G2B1 enhanced color composition overlaid by 
the edges of the reservoir from the K-Means classifi cation (left), and the classifi cation result from 
the band 5 thresholding (right).

Fig. 5 - A portion of the Foz do Iguaçu image, with the R3G2B1 enhanced color composition overlaid 
by the edges of the Paraná River and an urban lake from the K-Means classifi cation (left), and the 
classifi cation result from the band 5 thresholding (right).
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Fig. 6 indicates that all non-water pixel 
values are below zero and that some water pixels 
are below zero. In Foz do Iguaçu image, 99.9% 
of non-water pixels have NDWI values below 
zero and 2% of water pixels have NDWI below 
zero. For Jacareí image, 99.8% of non-water 
pixels have NDWI values below zero and 13.2% 
of water pixels have NDWI below zero. These 
results indicate that there are pixels of non-water 
misclassifi ed as water pixels and pixels of water 
that will not be correctly classifi ed with the 
NDWI zero threshold.

The threshold of zero, that is, all pixels with 
NDWI values higher than zero are water bodies, 

was applied to the NDWI images from Jacareí and 
Foz do Iguaçu. A close analysis of both results 
indicates that most water bodies are detected by 
the zero threshold on NDWI images. However, 
there are also shadows, dark pavement and high 
refl ectance urban features included in the detected 
pixels. Fig. 7 shows that some small areas with 
water pixels are missing in the classifi cation using 
the NDWI thresholding, some water pixels that 
were detected by the K-Means classifi cation were 
detected, and some pixels from built-up features 
are misclassifi ed as water pixels. Fig. 8 presents 
an example of the misclassifi cation of shadows 
as water, where the Itaipu Dam casts shadows.

Fig. 6 - Histograms of RapidEye NDWI of Jacareí (left) and Foz do Iguaçu (right) images, 
highlighting pixels detected as Water (in red) versus other classes (Non-Water).

Fig. 7 - A portion of the Jacareí image, with the R3G2B1 enhanced color composition overlaid by 
the edges of the Paraíba do Sul River and sand mining lakes from the K-Means classifi cation (left), 
and the classifi cation result from the NDWI thresholding (right).

Finally, to defi ne and compare the proposed 
method based on the Hue component from a 
color transformation, the Hue components of 
the transformation from Red-Green-Blue (RGB) 

color model to the Hue-Saturation-Value (HSV) 
color model were calculated from correspondent 
band combinations of the RapidEye 5 bands 
using a program written in LEGAL language, 
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available in SPRING software. The LEGAL 
program is based on the algorithm described by 
(FOLEY et al., 1996). The algorithm requires 
the RGB information to be in the 0 to 1 range; 
therefore, all RapidEye 5 bands were converted 
to their normalized radiance values using the exo-
atmospheric irradiance for each band, presented in 
the image specifi cation (BLACKBRIDGE, 2015).

The RapidEye 5 bands used to create the 
RGB combination were (Color-Band number): 
R1G2B3; R1G2B4; R1G2B5; R1G3B4; 
R1G3B5; R1G4B5; R2G3B5; R2G3B5; 
R2G4B5; and R3G4B5. Other combinations of 

diff erent bands would create Hue components 
similar to one of the previous (the diff erences 
would be in the inversion and translation of the 
initial values), therefore we did not test them.

To select the best Hue component to 
separate water from non-water targets, the area 
from Fig. 9 was selected in the Foz do Iguaçu 
image, given that it contains a comparable 
quantity of water bodies, urban areas and 
vegetation targets, providing a good sample set 
for the statistical analysis. The Hue components 
are presented in Fig. 10 by the histograms from 
water only pixels and non-water features pixels.

Fig. 8 - A portion of the Foz do Iguaçu image, with the R3G2B1 enhanced color composition 
overlaid by the edges of the Paraná River and the Itaipu reservoir from the K-Means classifi cation 
(left), and the classifi cation result from the NDWI thresholding (right).

Fig. 9 - Region of of the Foz do Iguaçu image used to collect the sample set for the statistical analysis.
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A visual analysis of the Hue components 
in Fig. 10 can be executed to define if there is 
confusion between the water and non-water 
classes and be based on the separation being 
possible if the intersection of the histograms 
is empty or near empty. The analysis indicates 
that Hue component from color compositions  
R1G2B3, R1G2B4, R1G3B4 and R2G3B4 do 
not separate water from non-water features 
and the other 6 compositions do separate 
them.

To classify the remaining Hue components 
which are candidates for the best one to 
separate water features from non-water targets, 
a percentile analysis based on 90, 95 and 98 

percents was executed. From the histograms, 
the range of Hue values associated to the fi rst 
90%, 95% and 98% of water pixels was defi ned 
for each Hue component. Likewise, the range 
of Hue values associated to the fi rst 90%, 95% 
and 98% of non-water pixels was also defi ned. 
This range of Hue values is presented in Table 1. 
Note that Hue values are circular, from 0 degrees 
to 360 degrees, with 0˚ (and 360˚) representing 
red, 120˚ green and 240˚ blue colors.

Next, the number of pixels of non-water 
inside each one of the percentiles for water 
pixels was counted and, in a similar way, the 
number of pixels of water inside each one of 
the percentiles for non-water pixels was also 

a) H123 - Hue from R1G2B3 b) H124 - Hue from R1G2B4 c) H125 - Hue from R1G2B5

d) H134 - Hue from R1G3B4 e) H135 - Hue from R1G3B5 f) H145 - Hue from R1G4B5

g) H234 - Hue from R2G3B4 h) H235 - Hue from R2G3B5 i) H245 - Hue from R2G4B5

j) H345 - Hue from R3G4B5
Fig. 10 - Comparison between Hue components obtained by diff erent combinations of RapidEye 
bands. Red color indicates the histogram of pixels classifi ed as Water in the K-Means classifi cation 
and black color represents the histogram of pixels classifi ed as Non-Water.
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counted. The misclassifi ed pixels were converted 
into percentage of the total pixels of their classes, 
that is, for example what percentage of water 
pixels fall inside the Hue values range 90, 95 

and 98% of non-water pixels. Table 2 shows 
the number of pixels and the percentage inside 
parenthesis from the total number of pixels in 
the class.

Table 1: Hue values of RapidEye bands combinations for each percentile range
Hue from color

composition
Water Non-Water

90% 95% 98% 90% 95% 98%
R1G2B5 32˚ - 52˚ 10˚ - 52˚ 308˚ - 53˚ 238˚ - 283˚ 228˚ - 319˚ 218˚ - 4˚
R1G3B5 9˚ - 28˚ 345˚ - 29˚ 306˚ - 30˚ 199˚ - 284˚ 180˚ - 323˚ 161˚ - 12˚
R1G4B5 0˚ - 12˚ 345˚ - 13˚ 310˚ - 14˚ 218˚ - 283˚ 211˚ - 313˚ 205˚ - 340˚
R2G3B5 16˚ - 35˚ 324˚ - 36˚ 308˚ - 37˚ 197˚ - 251˚ 178˚ - 260˚ 160˚ - 33˚
R2G4B5 0˚ - 15˚ 323˚ - 16˚ 249˚ - 17˚ 215˚ - 246˚ 211˚ - 263˚ 205˚ - 309˚
R3G4B5 357˚ - 28˚ 228˚ - 30˚ 215˚ - 33˚ 220˚ - 267˚ 218˚ - 298˚ 214˚ - 330˚

Table 2: Misclassifi ed number of pixels and percentage (inside parenthesis) from total for hue 
components of RapidEye bands combinations for each percentile range

Hue from color 
composition

Non-Water Pixels in Water Percentile Range Water Pixels in Non-Water Percentile Range
90% 95% 98% 90% 95% 98%

R1G2B5 992
(0.37%)

3773
(1.41%)

16145
(6.02%)

199
(0.44%)

527
(1.17%)

1012
(2.24%)

R1G3B5 1446
(0.54%)

4460
(1.66%)

14540
(5.42%)

92
(0.20%)

691
(1.53%)

2497
(5.53%)

R1G4B5 862
(0.32%)

3861
(1.44%)

15288
(5.70%)

198
(0.44%)

509
(1.12%)

920
(2.04%)

R2G3B5 511
(0.19%)

1900
(0.71%)

2633
(0.98%)

52
(0.12%)

345
(0.76%)

33658
(74.52%)

R2G4B5 238
(0.20%)

3547
(1.32%)

23313
(8.69%)

437
(0.97%)

685
(1.52%)

992
(2.20%)

R3G4B5 886
(0.33%)

127582
(47.55%)

265274
(98.86%)

722
(1.60%)

971
(2.15%)

1367
(3.72%)

Considering that the 98 percentile has a 
large range of percentage values, from 0.98% 
to 98.86%, the 90 and 95 percentiles were 
arbitrarily selected to defi ne an index, which 
is the sum of the percentages of misclassifi ed 
pixels for each Hue component. Table 3 presents 
the percentages and the calculated index to used 
to select the best Hue component to separate 
water from non-water features is the one from 
the R2G3B5 color composition. 

The defi nition of the threshold of water 
features was also based on the percentile 
analysis. To be able to execute further analysis, 

four diff erent classes were created with three 
thresholds. The fi rst class is named WATER 
and its Hue thresholds are taken from the 90 
percentile for water pixels. The second class 
is WATER95, with thresholds from the 95 
percentile Hue values range for water pixels, 
excluding the already used 90 percentile. The 
third class is WATER90, using the 98 percentile 
Hue values for water pixels, excluding the Hue 
values already associated to the other classes. 
Finally, the forth class WATER80 thresholds 
are from non-water 98 percentile, using the Hue 
values that represent the 2% of non-water values. 
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Table 4 shows the range of Hue values for each 
one of the classes, including the range values for 
compositions which are not the best (R2G3B5 
color composition).

The thresholds were applied to the res-
pective Hue components using a program written 
in LEGAL language from SPRING software. A 
visual analysis of the resulting classifi cations 
indicates that the Hue component from the 

R2G3B5 color composition is better than the 
other ones, confi rming the rank defi ned by the 
Index in Table 3. Fig. 11 shows the comparison of 
the classifi cation using the MNDWI and the other 
one using the Hue component from the R2G3B5 
color composition for an area in Jacareí image, 
indicating that the classifi cations are similar. Fig. 
12 presents the same the comparison for a portion 
of Foz do Iguaçu Jacareí image.

Table 3: Percentage from total of misclassifi ed number of pixels for hue components of RapidEye 
bands combinations and the ranking index

Hue from color
composition

Non-Water in Water Water in Non-Water Index90% 95% 90% 95%
R1G2B5 0,37% 1,41% 0,44% 1,17% 3.39
R1G3B5 0,54% 1,66% 0,20% 1,53% 3.93
R1G4B5 0,32% 1,44% 0,44% 1,12% 3.32
R2G3B5 0,19% 0,71% 0,12% 0,76% 1.78
R2G4B5 0,20% 1,32% 0,97% 1,52% 4.01
R3G4B5 0,33% 47,55% 1,60% 2,15% 51.68

Table 4: Range of hue values for each class
Hue from color

composition WATER WATER95 WATER90 WATER80
R1G2B5 32˚ - 52˚ 10˚ - 32˚ 308˚ - 10˚ and 52˚ - 53˚ 53˚ - 218˚
R1G3B5 9˚ - 28˚ 28˚ - 29˚ and 345˚ - 9˚ 29˚ - 30˚ and 306˚ - 345˚ 30˚ - 161˚
R1G4B5 0˚ - 12˚ 12˚ to 13˚ and 345˚ - 0˚ 13˚ - 14˚ and 310˚ - 345˚ 14˚ - 205˚
R2G3B5 16˚ - 35˚ 35˚ - 36˚ and 324˚ - 16˚ 36˚ - 37˚ and 308˚ - 324˚ 37˚ - 160˚
R2G4B5 0˚ - 15˚ 15˚ - 16˚ and 323˚ - 0˚ 16˚ - 17˚ and 249˚ - 323˚ 17˚ - 205˚
R3G4B5 357˚ - 28˚ 28˚ - 30˚ and 228˚ - 357˚ 30˚ - 33˚ and 215˚ - 228˚ 33˚ - 214˚

Fig. 11 - Comparison between classifi cation using MNDWI (left) and using Hue component from 
the R2G3B5 color composition (right) for an area in Jacareí image.
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In the classification using the Hue 
component from both images, in high refl ectance 
urban features, the method has commission 
errors, which is a characteristic of NDWI (XU, 
2006). If one considers the hypothesis that 
these high refl ectance built-up areas have a 
minimum refl ectance in all bands that are has 
a very low probability, due to the relatively few 
such features in the image, then the method can 
be improved by rejecting the areas detected 
as water bodies but which have a minimum 
reflectance that is above a value defined 
according to a statistical analysis as being with 
very low probability. Assuming a cumulative 
distribution of minimum refl ectance in all bands, 
one can accept the 99.5% of the pixels and reject 
the 0.5% pixels with the highest refl ectance. 
Applying this assumption, all pixels that were 
previously detected as water will be rechecked 
and should have a minimum refl ectance not 
greater than the value which defi nes the upper 
0.5% of pixels in the cumulative distribution to 
be classifi ed as water pixel.

In addition, the cumulative distribution of 
minimum refl ectance in all bands can also be 
used to create diff erent classes bases on other 
percentiles to allow fi ner analysis of the extracted 
water features. The fi rst 3 classes are the same as 
defi ned based on the Hue component 90%, 95% 
and 98% percentiles with the restriction based 
on minimum refl ectance added. The other three 
classes were based arbitrarily on the 90%, 95% 

and 99% percentiles, and on the Hue component 
cumulative distribution of non-water features, 
which was defi ned as WATER80.

The class WATER80 is now defined 
as with the pixels which were not classifi ed 
in WATER, WATER95 and WATER90, with 
Hue thresholds taken from the 98% percentile 
of non-water pixels, and with a minimum 
refl ectance lower than the 90% percentile of the 
cumulative distribution of minimum refl ectance 
in all bands. Class WATER70 will be associated 
to pixels not yet classifi ed, with the same Hue 
thresholds as WATER80 and belonging to the 
95% percentile of the cumulative distribution. 
Class WATER60 will have the pixels with the 
same restriction for Hue value as WATER70 
and WATER80, not classifi ed yet, and with 
minimum refl ectance values lower than the 
99% percentile of the cumulative distribution. 
Finally, the class WATER50 will have the 
pixels with the same restriction for Hue value 
as WATER60, not yet classified and with 
minimum refl ectance values lower than the 
99.5% percentile of the cumulative distribution.

The omission errors that are present when 
the previous threshold defi ned by the cumulative 
distribution of the minimum refl ectance is used 
are from water with suspended sediment in 
high quantity. Although a typical refl ectance 
of turbid water is below 10% (BOWKER et. 
al, 1985), high concentrations of sediment can 
increase water refl ectance by a positive high 

Fig. 12 - Comparison between classifi cation using MNDWI (left) and using Hue component from 
the R2G3B5 color composition (right) for a region in Foz do Iguaçu image.
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correlation with the sediment concentration 
(NOVO et al., 1989).

Since the thresholds extracted from the 
cumulative distribution are used to classify 
water features in classes defi ned by statistical 
analysis, it is considered that these classes 
have arbitrary bounds and the classes must be 
carefully analyzed by the user of the information 
in accordance to the intended application of the 
water bodies map. Therefore, in this method the 
cumulative distribution of minimum refl ectance 
in all bands the pixels from non-water targets 
in the Foz do Iguaçu image (accordingly to the 

edited K-Means classifi cation) was used. 
For Foz do Iguaçu image, the radiance of 

all bands were normalized based on the exo-
atmospheric irradiance for each band and the 
lowest value for each pixel was defi ned as the 
minimum normalized radiance (MNR). The 
statistical analysis of the MNR for the Non-
Water features indicate that 99.5% of pixels 
have MNR below 0.425, 99% of pixels MNR 
values are below 0.375, 95% 0.335, and 90% 
of 0.320. Table 5 presents these values and 
the classes defi nition based on Hue and MNR 
thresholds.

Table 5: Range of hue values and minimum normalized radiance for each class
.WATER. WATER95 WATER90 WATER80 ..WATER70.. ..WATER60.. ..WATER50..

Hue from 
R2G3B5 

composition
16˚ - 35˚ 35˚ - 36˚ /

324˚ - 16˚
36˚ - 37˚ /
308˚ - 324˚ 37˚ - 160˚ 37˚ - 160˚ 37˚ - 160˚ 37˚ - 160˚

MNR 0 - 0.475 0 - 0.475 0 - 0.475 0 - 0.320 0.320 - 0.335 0.335 - 0.375 0.375 - 0.475

The 0.425 value is within the expected 
maximum range for water refl ectance (would 
be equivalent to 42.5%), even if the true 
refl ectance was calculated taking into account 
the solar incidence angle and the scattering 
eff ects. It must be noted that misclassifi cation 
will occur if there are strong eff ects from sun 
glare and haze, which will scatter energy and 
add to the refl ected radiance.

The application of the MNR threshold 
values on the classifi cation of the Hue component 
from the R2G3B5 color composition was 
applied using a program written in LEGAL 
language from SPRING software. Fig. 13 shows 
a comparison with the classifi cation considering 
the MNR threshold in the Jacareí image and Fig. 
14 presents the same comparison for the Foz do 
Iguaçu image. In both images the commission 
errors are reduced, with some left at built-up 
areas, mostly due to shadows.
4. CONCLUDING REMARKS AND FU-
TURE DIRECTIONS

The technique presented in this paper 
fulfi lls the requirement defi ned to detect all 
water bodies surfaces from the country wide 

coverage of RapidEye images using a simple 
method that does not require user intervention 
and with little computational power. The method 
consists in three steps: 1) transformation from 
the RGB to HSV color model; 2) comparison to 
fi nd the minimum normalized radiance (MNR) 
from all bands; 3) thresholding that combines 
values from the Hue component of the color 
model transformation and the values from the 
MNR, delivering seven classes of confi dence 
in being a water body.

The analysis of the classifi cation using 
the technique for the two images (Jacareí and 
Foz do Iguaçu) indicate that the water bodies 
detection method using the Hue component 
from the R2G3B5 color composition and 
the MNR is similar to the traditional NDWI 
method. In addition, the thresholding in 
different confidence classes provided the 
user with fl exibility to reclassify and edit the 
resulting map to remove errors due to noise 
and confusion with shadows and built-up areas. 
The seven confi dence classes accommodate the 
diff erences that occur when using a common 
threshold for the huge amount of images present 
in country wide coverages.
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In this implementation, the LEGAL language 
was used to program the three steps in the SPRING 
software. Although, the implementation is 
executed in a reasonable time, to process the whole 
set of RapidEye images, a C++ language program 
is being created using the TerraLib Version 5 
open source GIS software library (available 
from: http://www.dpi.inpe.br/ terralib5/). The new 
implementation will also generate a vector based 
map of the water bodies. The methodology on how 
to make available the classifi ed raster and vector 
based data will be presented in another study.

The generation of a vector data implies 
that all noisy pixels must be eliminated and a 
contextual reclassifi cation of the seven classes. 
One proposal for noisy pixels is to remove all 

isolated or clustered pixels and surrounded by 
non-water pixels only, if they do not meet a 
minimum size requirement. This proposal has 
the disadvantage of eliminating sections of small 
rivers with width just larger than the image 
sensor spatial resolution. For the contextual 
reclassifi cation, the proposal is to reclassify a 
lower confi dence class to a higher confi dence 
one if the proportion of the shared edges is larger 
than a threshold. For example, if clustered pixels 
are from WATER50 class and share 30% of the 
edges with pixels classifi ed as WATER60, and the 
proportion threshold is set to 30%, then they will 
be reclassifi ed to WATER60. This reclassifi cation 
process would be carried out from the lowest to 
the highest confi dence class. 

Fig. 13 - Comparison between classifi cation using Hue component from the R2G3B5 color 
composition only (left) and adding MNR threshold values for a region in Jacareí image (right).

Fig. 14 - Comparison between classifi cation using Hue component from the R2G3B5 color 
composition only (left) and adding MNR threshold values for a region in Foz do Iguaçu image (right).
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