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ABSTRACT

Machine learning use in hydrological modeling has intensifi ed in recent decades given the potential of these techniques 

to produce in short time satisfactory solutions to support tasks such as early fl ooding warnings. In this context, this 

work reports the development and the results of a forecasting model built from a hydrometeorological database and 

using a regression tree. This regression tree-based model is intended to forecast, with hours in advance, the level of a 

river in Nova Friburgo-RJ, which was chosen as study area due to its recent history of major natural disasters. Rainfall 

and river level data used in the modeling were collected during the years of 2013 and 2014 in four stations located in 

the study area. The regression tree allowed more fl exibility in the model design. The fi rst regression tree results yielded 

Nash indexes above 0.75 indicating the feasibility of the approach. However, in order to be used as an operational 

decision-making support tool working in real time, the model should be improved with new studies and tests carried 

out with enlarged hydrometeorological databases.

Keywords: Natural Disasters, Hydrological Modeling, Early Flooding Warning, Machine Learning, Regression Tree, 

Nova Friburgo-RJ.

RESUMO

A utilização de aprendizado de máquina em modelagem hidrológica intensifi cou-se nas últimas décadas dado o potencial 

dessas técnicas de produzir em curto tempo soluções satisfatórias para suporte em tarefas como a emissão antecipada 

de alertas de inundações.  Neste contexto, o presente trabalho relata o desenvolvimento e os resultados de um modelo 

preditivo construído com base em dados hidrometeorológicos e utilizando uma árvore de regressão. Este modelo baseado 

em árvore de regressão destina-se a predizer, com horas de antecedência, o nível de um rio em Nova Friburgo-RJ que 

foi escolhida como área de estudo pelo seu histórico recente de desastres naturais de grandes proporções. Os dados de 

chuva e nível de rio utilizados na modelagem foram coletados durante os anos de 2013 e 2014 em quatro estações de 

medição situadas na área estudada e a árvore de regressão permitiu maior fl exibilidade na concepção do modelo.  Os 
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1. INTRODUCTION

Nova Friburgo is a municipality located 
in the mountainous region of Rio de Janeiro 
State, occupying a total area of 933.41 km2. 
The estimated population in 2015, based in the 
Census of 2010, is 184.786 people (IBGE, 2015). 
The relief is very rough with altitude varying 
from 2310 (Três Picos) to 200 meters, in the 
border with Casimiro de Abreu municipality. The 
city and its urban área is completely surrounded 
by mountains of Serra dos Orgãos as Pico do 
Caledônia (in the south), Pedra do Imperador 
(in the southeast), among other, and the central 
area lies at an altitude of 846 meters (CORREIA, 
2011). 

Initially, the occupation of Nova Friburgo 
occurred along the floodplains of Bengalas 
River and of its tributaries Santo Antônio and 
Cônego Rivers. Due to population growth, 
there was an inordinate increase of housing 
construction on the slopes and on the banks of 
rivers and streams, especially by the low-income 
population. Furthermore, nowadays Bengalas 
River is channeled and/or rectifi ed in all the 
urban area of Nova Friburgo and its margins are 
occupied with urban infrastructure such as roads, 
bridges, sidewalks and buildings. The presence 
of impermeable areas contributes to the rainwater 
drainage more quickly into the river, due to 
increased runoff , and consequently the peak of 
fl ooding is anticipated. Thus, occurrences of 
natural disaster caused by fl ooding increased 
in the city, especially during the summer that 
corresponds to the rainy season. According to 
Corrêa (2008), the fi rst large fl ooding records 
occurred in the late 19th century, in an episode 
in which the rain lasted for three consecutive 
months.

From the above and the recent history of 
natural disasters in Nova Friburgo, it is clear the 
need to monitor the Bengalas River to predict in 
advance level rises exceeding its bankfull stage 
in order to issuing early fl ooding warnings. These 

warnings are important to Nova Friburgo civil 
defense that can take appropriate and immediate 
actions to evacuate the risk areas and prevent 
traffi  c in areas susceptible to fl ooding.

In this context, this work reports the 
development of a data-driven hydrological 
model based on a machine learning technique. In 
the case of this study, a regression tree (RT) was 
used. The proposed model is intended to make 
short-term forecasts of river level to improve the 
advance-accuracy tradeoff  of fl ooding warnings. 
The model was built using rainfall and river 
level data collected at four monitoring stations 
of Instituto Estadual Ambiente (INEA), three 
of which are located in the urban area of Nova 
Friburgo and the remaining outside this area. 
Observational database cover the years 2013 and 
2014. Figure 1 shows the location of the studied 
watershed in the Brazilian territory (Figure 1A), 
two maps with information about the altimetry 
(Figure 1B) and the population distribution in 
the watershed (Figure 1C). Both maps show 
Bengalas River, its two main tributaries (Santo 
Antônio and Cônego Rivers) and the four INEA 
monitoring stations.

Besides this introduction, the article is 
organized as follow: previous works using RT 
in hydrological modeling is presented in the 
section 2; Section 3 described the database used 
to develop the model; in Section 4, the modeling 
methodology is explained; Section 5 show the 
results and discussions and in the Section 6 the 
concluding remarks are addressed.

2. RELATED WORKS

The application of machine learning 
methods in hydrological modeling dates back 
to the ‘90s and since then has increased because 
it has proven to be fast and effi  cient in building 
solutions (such as forecasting models) in this fi eld 
of study where, generally, the relationship among 
the diff erent variables (climatic, topographical, 
vegetal cover and others) is highly nonlinear. 
This potential to satisfactorily model complex 

primeiros resultados obtidos com a árvore de regressão mostraram índices Nash acima de 0,75 indicando a viabilidade 

da abordagem. Contudo, para ser utilizado como uma ferramenta operacional de suporte à decisão funcionando em 

tempo real, o modelo deverá ser aprimorado com novos estudos e testes realizados com bases de dados hidrometeo-

rológicos mais abrangentes.

Palavras chaves: Desastres Naturais, Modelagem Hidrológica, Alerta Antecipado de Inundações, Aprendizado de 

Máquina, Árvore de Regressão, Nova Friburgo-RJ.
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nonlinear functional input-output relationships 
remains even if only a reduced database is 
available, as in the case of this work. Some 
previous works using RT (and other machine 
learning techniques) in hydrological modeling 
are listed below.

To model the rainfall-runoff  relationship 
for two sub catchments in the United States, 
in order to deal with the underlying dynamic 
systems as a static ones, Iorgulescu and Beven 
(2004) took as predictors variables only linear 
combinations of input attributes observed at 
previous time steps in a ‘‘memory’’ window 
with predefi ned width and so it was possible 
to use RT as runoff  forecasting approach in the 
modeling task. 

Solomatine and Xue (2004) compared 
a M5 model tree (QUINLAN, 1992) with a 
multilayer perceptron (MLP) neural network 
in a fl ooding forecasting problem for the upper 
reach of the Huai River in China. The authors 
concluded that M5 is advantageous because 
the model is more interpretable, training is fast 
and always converges, and, in addition, M5 has 
predictive accuracy similar to MLP.

Siek and Solomatine (2007) used an 
approach for hydrological forecasting based on 
modular modeling in which each module (or 
sub-model) is an improved version of standard 
M5 algorithm and corresponds to a particular 
hydrological condition. This configuration 
allowed a better absorption of the knowledge 
of experts and also optimized the search in the 
solution space of each module. The results were 
more accurate than those obtained with overall 
global models approach.

In Londhe and Charhate (2010) some 
machine learning techniques for river flow 
forecasting are compared: artifi cial neural network 
(ANN), RT and evolutionary programming. It 
was found that the three techniques performed 
almost equally well. 

In Tsai et al., (2012) a hybrid model 
combining ANN’s (MLP and radial basis function 
(RBF)) with a CART tree (BREIMAN et al., 
1984) was used to perform river level forecasting 
under the interaction of upstream fl ows and tidal 
eff ects during typhoon attacks. CART was used 
to make a preliminary classifi cation of the river 
level as high, medium or low and then ANN 
provided an estimate of the river level value. The 
results of CART-RBF were better than CART-
MLP results. 

Sattari et al., (2013) compared M5 with 
support vector machine (SVM) in predicting, 
up to 7-day ahead, daily stream fl ow in Sohu 
River, Ankara, Turkey. The performance of 

Fig. 1 - Maps of the studied area in the Bengalas 
River watershed in Nova Friburgo-RJ. (A) the 
location of the studied watershed in the Brazilian 
territory, (B) the altimetry of the watershed and 
(C) the population distribution in the watershed. 
The four INEA monitoring stations are identifi ed 
by their numbers.  
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both approaches was similar, but to use M5 was 
considered more attractive by the possibility 
of applying a simpler linear model with lower 
computational cost. 

Galelli and Castelletti (2013) developed a 
model-free algorithm to select the most relevant 
input attributes for hydrological modeling tasks 
using a regression tree-based structure.

The present study is part of a research line 
focused on construct data-driven hydrological 
models based on machine learning techniques 
which only recently started to be explored in 
the National Centre for Monitoring and Early 
Warning of Natural Disasters (Cemaden). So, 
it is understandable first explore modeling 
approaches simpler to handle and RT meets 
this requirement since it offers advantages 
such as: develop the algorithm based on which 
the RT is induced, it is the step that requires 
more eff ort and time, but once the induction 
algorithm is designed, the computational cost 
(i.e., the running time) of a RT is generally 
low, even when dealing with large databases; 
RT, usually, dispenses data pre-processing and 
prior knowledge on these data as, for instance, 
the underlying probability distributions; RT 
works well in solving non-linear “problems” (as 
hydrological modeling) by breaking it in minor 
“problems” which may be linearly treated; RT-
based forecasting models are easily interpretable, 
which makes its operational use in early warning 
systems more friendly even for decision makers 
not expert in this type of modeling. Moreover, 
it is worthy to note that the in related works 
above, RT performance in hydrological modeling 
is reported as compatible with other machine 
learning techniques (e.g. ANN, SVM)

Particularly in our study, RT low compu-
tational cost aff orded fl exibility in the development 
of the hydrological model in the sense that 
many assumptions on the relationship between 
observed rainfall data and observed river level 
data could be investigated. Thus, we were able to 
test various alternatives of composing the input 
tuples (e.g. varying the number of samples in 
each input tuple - remember that each sample 
stand for observed values of rainfall and river 
level from four measuring stations) in order to 
fi nd one that would produce a better fi t to the 
output variable. We also tested training sets with 

diff erent sizes (i.e., training sets corresponding 
to diff erent time windows) to induce the RT, thus 
obtaining many insights on the temporal aspect 
of the inputs-output relationship. 

At this early stage, our research aimed not 
algorithmic innovations and a basic algorithm 
was developed to induce RT. Thus, specifi cally 
from this point of view, there are no innovations 
in relation to the referenced related work. 
Nevertheless, we can quote others contributions: 
there are few studies focused on flooding 
forecasting and issuing early warnings in the 
studied area using data-driven models and 
machine learning techniques; this research 
line can improve the traditional hydrological 
modeling approaches based on calibration of 
physical models by experts interacting with them 
in a cooperative and complementary way. 

Finally, we emphasize that the proposed 
forecasting model need to be improved to meet 
the reliability requirements of an early fl ooding 
warnings system. This purpose will be achieved, 
with additional studies and tests which include 
new enlarged hydrometeorological databases and 
other study areas.

3. DATABASE

The database used to build the model to 
forecast the level of the Bengalas River in the 
central area of Nova Friburgo is composed by two 
variables: rainfall and river’s level. Values of these 
variables are given in mm and meters, respectively, 
and were collected with a temporal resolution of 
15 minutes between February 2013 and November 
2014 in four INEA measuring stations located in 
the study area (see Figure 1). Table 1 presents 
information on these four stations, including 
name, number, type, geographic coordinates and 
the river where the stations are installed.

Table 1: INEA monitoring stations in the studied 
area 

station
(number)

type coordinates
monitored

river
Suspiro
(2034)

hydro 22º16’S/42º32’W Bengala

Ypu
(2036)

hydro 22º17’S/42º31’W
Santo 

Antônio
Olaria
(2032)

hydro 22º18’S/42º32’W Cônego

Caledônia
(2033)

pluvio 22º21’S/42º34’W -
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As seen in Table 2, the pluviometric station 
2033 (study area headwaters) provides only 
rainfall data while the hydrological stations 2032, 
2034 and 2036 provide rainfall and river’s level 
data. It should be emphasized that this work uses 
river’s level data instead of fl ow data because the 
rating curves are no available to the conversion.

To induce the RT (our model to forecast 
Bengalas River’s level), data were arranged in 
tuples containing 4 attributes concern observed 
values of rainfall and other 3 attributes concern 
observed values of river’s level. Thus, each tuple 
in the database represents with its 7 attributes an 
observed rainfall-river’s level condition for a 
specifi c day and hour in the study area. 

In addition, once the regression tree is 
intended to forecast the level of Bengalas River 
at Suspiro station (study area outlet), each input 
tuple was associated to an output attribute (the 
target attribute to be forecast) corresponding 
to the level of Bengalas River measured at this 
station t-minutes later (which means that “t 
minutes” is the forecast horizon of the model). 

To illustrate, Figure 2 shows an example of 
input tuple and its output value recorded in Nova 
Friburgo at midnight and at 2 a.m., respectively, 
of July 15, 2013 with high rainfall values. 

Fig. 2 – Tuple of rainfall and river’s level values 
recorded in Nova Friburgo; the inputs were 
measured at midnight while the output was 
measured at 2 a.m., of July 15, 2013.

Approximately 62000 tuples with rainfall 
and river’s level data (as exemplifi ed in Figure 
2) were used to inducing the RT, according to the 
methodology described in the Section 4.

4. METHODOLOGY

Standard nonlinear regression technique 
models the behavior of a dependent variable 
Y (output attribute) as a function of multiple 
independent variables X (X

1, 
... X

i
, ... X

n
), (input 

variables) using a single relation, as given by Eq. 

         åbaaY TT
i0  XXX          (1)

where
a

i
 are the coeffi  cients (or weights) assigned to 

individual infl uence of each variable X
i
 on the 

Y behavior,
b are coeffi  cients (or weights) attributed to the 
infl uence of the correlations among  independent 
variables X on Y, and 
 is the error of the model.

RT’s (BREIMAN et al., 1984) are also 
a kind of nonlinear prediction approach, but 
instead use an unique general model (like Eq.1) 
for linking Y with the entire input attribute space 
defi ned by X, RT apply the called recursive 
partitioning to the attribute space and, for each 
resulting terminal subdivision, use simpler 
models to relate Y with X. The underlying idea 
is that within these subdivisions the relationship 
between Y and X is more manageable and it can 
be treated as linear. Therefore, the induction of 
a regression tree is made in two stages: (1) the 
recursive partitioning and (2) attaching a model 
to the terminal subdivisions.

In this work a binary RT is induced, that 
is, the original attribute space is successively 
divided into 2, 4, 2i, ..., 2n smaller regions and 
this process ends when a previously established 
stopping criteria  is met. A tree of nodes can 
represent this recursive partitioning. The 
original attribute space is associated with the 
so-called root node of the tree and, similarly, 
the internal nodes of the tree are associated with 
the successive subdivisions. Figure 3 shows 
a simplifi ed representation of the binary tree 
structure with its nodes as well as the resulting 
partitioning of the original attribute space.

In order to clarify the understanding of the 
tree representation in Figure 3A, we provide the 
meaning of the literal symbols in the fi gure: the 
X

i
’s represent any of the input variables, with i 

= 1, ... , n, (for example, in our database i = 1, ... 
, 7); the v

j
’s (v

1,
 … , v

6
) are the so-called cutoff  

values (split values in the RT terminology); and 
the m

k
’s (m

1,
 … , m

8
) are values that the RT 

can estimates for the output variable Y. Also, 
remember that each point in the feature space 
in Figure 3B is a tuple with its input and output 
values.
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In the tree induction process, the divisions 
applied to the attribute space are chosen to reduce 
the prediction error of the two sets of output 
attributes resulting from this division compared 
to the prediction error of the previous set of 
output attributes. This variation in the prediction 
error is calculated as a function of the sample 
variance as given by Eq. 2:

     


R

k k

L

j j

N

i
i RRLL yyyyyyE

111

222 )()()(   (2)

where ∆E is the variation of the prediction error,  
the fi rst summation represents the variance of the 
primitive set of output attributes (with N values) 
before division and the other two summations 
represents the variances of the two sets of output 
attributes derived  by the division (with L and R 
elements, respectively).

For a set of data (tuples of input attributes 
and its respective output attributes) that reach 
a node of the tree, Eq. 2 is applied in order to 
assess which division of the output attribute 
(in two new sets) yields greater ∆E. The best 
division is determined by a specifi c value of a 
specifi c input variable. So, the binary test (if X

i
 

≥ v
j
 or if X

i
‹v

j
, as illustrated in Figure 3A) made 

in this node is associated with this variable (X
i
) 

and the value (v
j
). 

To reinforce the idea of this partitioning 
scheme using Figure 3, consider the original 
attribute space in Figure 3B and the root node 

of the tree in Figure 3A. In this node, after all 
the possible divisions being tested, it was found 
that the division of the database which produced 
the two sets of output attributes with less sample 
variance (what implies the greater ∆E of Eq. 2) 
was one set composed of all tuples whose value 
X

i
 is greater than or equal to v

0
 and other set 

composed of all tuples whose value of X
i
 is less 

than v
0
. In the same way, in the sequence each of 

these sets will be analyzed separately and will be 
also split. Still based on Figure 3A, the fi rst will 
be split in two news sets considering the value 
v

1 
of X

i
 as cutoff  while the second will be split 

in two news sets considering the value v
2 
of X

i
 

as cutoff  (just remember that X
i
 can be any of 

the input variables).
When a set of data reaches a node, this 

data is not split into two sets in two cases: (1) 
if ∆E provided by the best division represent 
a percentage decrease below a pre-defined 
threshold, and/or (2) if the number of data 
instances reaching the node is smaller than or 
equal to a pre-defi ned threshold. In these cases, 
the node is called a leaf (a terminal node of the 
tree). In the tests conducted with RT (the results of 
which are shown in section 4), the two thresholds 
above mentioned have been set, respectively, as 
5% and 2.

If all nodes at a certain level of RT are leaves 
(or terminal nodes), the recursive partitioning 
stage ends and begins the phase of assigning a 
model to every leaf of the tree. In this work, we 

Fig. 3 – Representations of (A) a binary regression tree and (B) successive partitioning of the 
attribute space.
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simplifi ed and the sample mean of the output 
attributes that reached each leaf was adopted as 
the “forecasting model” for that leaf. In Figure 3A 
this corresponds to the values m

k
 assigned to the 

output variable Y (Y=m
1
, Y=m

2
, Y=m

3
, Y=m

4
).

Thus, to obtain a forecast for a test tuple 
(i.e, a tuple not used in the tree induction 
process), this tuple makes a path that starts at 
the root node, goes through some internal nodes 
(these are determined by the attributes of the test 
tuple and the binary tests on the nodes of the 
induced tree) and ending on a leaf.  The value 
(m

k
) associated with the leaf, is the forecast for 

the test tuple.

5. RESULTS

A RT induced according to the algorithm 
described in section 3 was tested to forecast 
the level of the Bengalas River with 2 hours in 
advance. Our RT has been also tested for shorter 
forecast horizons. But in this section emphasis 
was placed on the 2 hours forecast results 
considering that, in a real-world situation, the 
greater the warning in advance, the better is the 
mitigation of the damages for Nova Friburgo 
Civil Defense. The experiment carried out is 
detailed below.

Let Ti to be a given tuple of the database 
used as test tuple. A RT was then induced using 
as “training inputs” all the tuples measured 4 
hours immediately before Ti. Whereas the tuples 
in the database were collected every 15 minutes, 
this 4-hours time window corresponded to a 
training set with 16 tuples.

To the fi rst 9 training tuples (measured in 
the fi rst two hours of the 4-hours window), are 
associated, as output attributes, the level of the 
Bengalas River measured in the station 2034 
two hours later. However, for the remaining 
7 training input tuples (measured in the fi nal 
hour and forty-five minutes of the 4-hours 
window), there are no output values yet, since 
the experiment must simulate a real situation. 
To clarify this point, suppose, for example, 
that Ti (our test tuple) has just been measured 
at 12:00. Therefore, the 4-hours time window 
goes from 08:00 to 11:45. The last value of 
Bengalas River’s level, measured at 12:00, is 
se  t as output attribute for the training tuple 

measured at 10:00. For the training tuples 
measured after 10:00, between 10:15 and 11:45, 
the output attributes are not measured yet.  To 
circumvent this problem, the solution was to use 
the own input attributes of these 7 tuples related 
to the Bengalas River’s level (input attribute: 
level/2034) as proxy for its output attributes. 
For the above example, the training tuples set 
is as illustrated in Figure  4. 

Fig. 4 – Set of training tuples used to induce RT 
to make a forecast for a test tuple (Ti) measured 
at 12:00. Note that for the fi rst 9 tuples the 
measurement times of inputs and outputs are 
delayed by 2 hours, while for the last 7 tuples 
the value of the input attribute (level/2034) was 
repeated as output attribute.

This experiment was repeated considering 
each tuple T

i
 in the database as a test tuple 

(obviously our first test tuple T
i
 was the 

seventeenth since this is the fi rst tuple for which 
it is possible to form a 4-hours time window). The 
results obtained with our RT in these experiments 
are shown in fi gures 5 and 6. Besides, Table 2 
presents two descriptive metrics, the mean error 
(ME) and the Nash index (NASH), calculated 
for the same experiment performed considering 
several forecast horizons. ME measures the 
systematic error of the forecasting model while 
NASH indicate the accuracy. NASH index 
(NASH & SUTCLIFFE, 1970) is widely used in 
hydrological modeling. Still regarding metrics 
to evaluate the results of the RT 120-minutes, 
the mean absolute error (for all tested tuple) was 
0.1043 m and the absolute error was less than 
0.25 m in more than 98% of the cases.
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Table 2: Descriptive metrics used to evaluate 
the model

Forecast 
horizon (min)

Descriptive metric

ME (m) NASH

15 -0.0005 0.9919

30 -0.0002 0.9362

60 0.0002 0.8697

120 0.0004 0.7630

5.1 Discussions

The first issue to be addressed is the 
choice of the short time window of training 
data used to induce the RT. It was based on a 
heuristic assumption that recently observed 
rainfall and river level data is the most 
relevant and reliable to perform short-term 
forecasts of the river level dynamic behavior. 
Considering this assumption, time windows 
of various sizes (as mentioned in section 2), 
ranging from 2 to 8 hours, were tested and the 
4-hour window has provided the best results.

RT results were very good in some cases, 
such as the level peaks shown in panels A, B 

and C of Fig. 6 but also results only reasonable 
such as in the other level peaks shown in 
Figure 6 (panels D, E and F). In the latter 
case, the curve of the RT forecasts seems to 
have a delay relative to the observed curve 
(approximately equal to the forecast horizon 
of 2 two hours). 

Once the RT was used to make forecasts 
with two hours in advance, the two types 
of results (good and not so good) can be 
understood considering two scenarios: (1º) 
it occurred no rainfall or only low intensity 
rainfall in the watershed or (2º) it occurred 
rainfall of medium or high intensity in the 
watershed within two hours.

In the first scenario, the river level 
dynamic behavior remained the same during 
the next two hours due to the lack of a 
disturbing factor (rainfall) in the watershed. 
Thus, the training set (even using surrogates 
for the output attribute of the last 7 tuples, as 
we did in this study) was adequate to provide 
the induced RT with sufficient information 
to make a good forecast with two hours in 
advance. 

Fig. 5 – Comparison between observed level of Bengalas River and forecasts made by a RT two 
hours in advance. Peaks indicated as (A, B, C, D, E, F) are shown highlighted in Figure 6.
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Fig. 6 – Zoom in on some parts of the curves in Figure 5 where occurred level peaks.

On the other hand, in the second scenario 
the information about disturbing factors that 
will occur within two hours in the watershed 
cannot be incorporated into the induced 
RT using only past data. That is, the values 
assumed as observed values for the outputs 
attributes of the last 7 training tuples do not 
represent the information about what it really 
occurred in terms of rainfall intensity in the 
watershed and this explains that the regression 
tree fails to make a good forecast in these 
cases. In this regard, it is noteworthy that as 
the forecast horizon increases, the quality 
of the   results yielded by RT decreases, as 
demonstrated by the NASH indexes in Table 
2 for results obtained with RT considering 
different forecast horizons. Still with reference 
to Table 2, the ME indexes seemed indicate 
that the model has a systematic error that 
overestimates the level for smaller forecast 
horizons while underestimates for larger ones.

An alternative to improve the RT forecasts, 

even for larger forecast horizons, is to use, in addition 
to the historical series of hydrometeorological 
data, rainfall estimates provided by radar, small 
or medium scale numerical weather models and 
satellite. Thus, instead of compose the training 
sets of the RT as illustrated in the Figure 3, the 
rainfall estimates (from radar, numerical models 
and satellite) could be used as a proxy for the output 
attributes of the last 7 tuples of the training set. 
So, despite the occurrence of a few “not so good“ 
results, the hydrological modeling approach based 
on RT looks promising and could be improved with 
new data and tests including other study areas.

6. CONCLUDING REMARKS 

This work presented the development 
of a hydrological forecasting data-driven 
model based on a RT. The model is intended to 
improve the accuracy of the fl ooding warnings 
in the city Nova Friburgo-RJ for river level 
forecasts made two hours in advance. 

Rainfall and river’s level data, collected 
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between February-2013 and November 2014 
in four INEA monitoring stations located in 
Nova Friburgo, were used to build the model. 
More than 98% of the model’s forecasts agreed 
closely with the observed values of Bengalas 
River’s level. However, in a few cases the 
model was unable to make good forecasts due, 
probably, to the occurrence of rainfall in the 2 
hours forecast horizon.

To further improve the results, more 
historical rainfall and river’s level data and 
also rainfall estimates from radar, numerical 
models and satellite can be included in the 
future versions of the model. In addition, the 
model may be tested also for other study areas.
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