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ABSTRACT

Governmental agencies provide a large and open set of satellite imagery that can be used to track changes in geographic 

features over time. The current available analysis methods are complex and they are very demanding in terms of 

computing capabilities. Hence, scientist cannot reproduce analytic results because of lack of computing infrastructure. 

Therefore, we propose a combination of streaming and map-reduce for analysis of time series data. We tested our proposal 

by applying the break detection algorithm BFAST to MODIS imagery. Then, we evaluated computing performance and 

requirements quality attributes. Our results revealed that the combination between Hadoop and R can handle complex 

analysis of remote sensing time series.

Keywords: Big Data Streaming, Remote Sensing, Time Series, MapReduce.

RESUMO

As agências governamentais fornecem um conjunto grande e aberto de imagens de satélite que podem ser usadas para 

rastrear mudanças nas características geográfi cas ao longo do tempo. Os métodos de análise atuais disponíveis são 

complexos e muito exigentes em termos de recursos de computação. Assim, o cientista não pode reproduzir resultados 

analíticos por falta de infra-estrutura de computação. Dessa forma, propomos uma combinação de grande fl uxo de dados 

e MapReduce para análise de dados de séries temporais. Testamos nossa proposta aplicando o algoritmo de detecção 

de quebra BFAST para imagens MODIS. Então, avaliamos o desempenho da computação e os atributos de qualidade 

dos requisitos. Nossos resultados revelaram que a combinação entre Hadoop e R pode lidar com análises complexas 

de séries temporais de sensoriamento remoto.

Palavras-chave: Fluxo de Grande Quantidade de Dados, Sensoriamento Remoto, Séries Temporais, MapReduce.
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1. INTRODUCTION

Currently, there is huge amount of remote 
sensing images openly available, since many 
space agencies have adopted open access 
policies to their repositories. These large data 
sets are a good chance to broaden the scope of 
scientifi c research that uses Earth observation 
(EO) data. To support this research, scientists 
need platforms where they can run algorithms 
that analyzes big Earth observation data sets. 
Since most scientists are not data experts, they 
need data management solutions that are fl exible 
and adaptable.

To work with big EO, we need to develop 
and deploy innovative knowledge platforms. 
When users want to work with hundreds or 
thousands of images to do their analysis, it is 
not practical to work with individual fi les at their 
local disks. Innovative platforms should allow 
scientists to perform data analysis directly on 
big data servers. Scientists will be then be able 
to develop completely new algorithms that can 
seamlessly span partitions in space, time, and 
spectral dimensions. Thus, we share the vision 
for big scientifi c data computing expressed by 
the late database researcher Jim Gray: 

“Petascale data sets require a new work 
style. Today the typical scientist copies fi les to a 
local server and operates on the data sets using 
his own resources. Increasingly, the data sets 
are so large, and the application programs are 
so complex, that it is much more economical to 
move the end-user’s programs to the data and 
only communicate questions and answers rather 
than moving the source data and its applications 
to the user’s local system” (GRAY et al., 2005).

For instance, the standard for land use 
and land cover monitoring includes to select 
and download a set of images, process each one 
using visual interpretation or semi-automatic 
classifi cation methods, to delineate the areas of 
interest. This approach is ineff ective when there 
are too much data, or for example, when working 
on large extensions of land using high spatio-
temporal resolution. In contrast to analyzing 
one image at a time, time-series analysis had 
become a valuable alternative in land use/land 
cover monitoring, including early warning of 

deforestation (VERBESSELT et al, 2012b). 
However, we lack environments to validate and 
reproduce the analysis results of large remote 
sensing data (LU et al. 2016, MAUS et al., 
2016). To avoid this problem, streaming analytics 
have emerged as a solution by combining fast 
access, scalable storage and easy deployment 
for complex analysis. This approach is able to 
analyze data in near real-time with low latency 
and to point to events in regional and global 
scales without overhead.

Sensor and location-based social networks 
are common data sources analysis of spatial data 
in near real-time. Since these network users 
generate petabytes of data, they are provided 
through streaming APIs that have several 
applications, including the analysis the occurrence 
of events (ASSIS et al. 2015, SCHNEBELE et 
al. 2014). Unlike these streaming APIs, parallel 
streaming processing plug-ins deal with I/O 
interpreters more intuitively by allowing a 
powerful and flexible way to analyze data. 
Hadoop1 and SciDB streaming are APIs that 
gather large amounts of data from a fi le system 
and multidimensional database such as Hadoop 
and SciDB respectively. Specifi cally Hadoop 
streaming has the advantage of using a standard 
processing model called MapReduce, which 
optimized for specifi c features with diff erent 
degrees of conformance to the model (URBANI 
et al., 2014, DEDE et al., 2014).

However,  most  MapReduce-based 
approaches only provide an image library 
(SWEENEY  et al., 2011) by means of 
customization, which is limiting for analysis. 
Besides only a small variety of analysis methods 
are provided at a instance and new complex 
algorithms are costly to develop and reproduce 
(ALMEER, 2012). Furthermore, most of the 
available methods extract land use and land cover 
information using region-based classifi cations, 
even though they may cause loss of information 
(GIACHETTA & FEKETE, 2015). For these 
reasons, a fl exible, generic and broad solution 
is required to reuse remote sensing time series 
analysis methods, avoiding the burden of 
development and adaptation according to the 
scientifi c needs.

1https://hadoop.apache.org/docs/r1.2.1/streaming.html
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Therefore, we propose a combination of 
distributed fi le systems and complex analysis 
environments in a MapReduce streaming 
processing analytics. It is implemented as <key, 
values> pairs, where key is an image pixel location 
and values is the time series associated to that 
given location. We evaluated this approach, using 
the BFAST algorithm that iteratively estimates the 
time and number of abrupt changes within time 
series, and characterizes change by its magnitude 
and direction (VERBESSELT et al., 2010). We 
use BFAST to detect and characterize changes 
in time series of MODIS (Moderate Resolution 
Imaging Spectroradiometer) data (RUDORFF, 
2007). Briefl y, the main contributions of this 
work are:
• To present a time series-based streaming 

processing analytics using MapReduce; 
• To discuss the learned lessons from a case 

study to evaluate our approach in terms of 
performance and quality requirements; 

The remainder of this paper is structured 
as follows. Section 2 presents a discussion about 
the time-fi rst, space-later vs space-fi rst, time-
later analysis. Section 3 describes the related 
works while Section 4 outlines our approach 
using MapReduce for remote sensing time series. 
Section 5 depicts the evaluation of our approach 
and its results. Section 6 concludes this paper 
with recommendations for future works. This 
paper is based on (ASSIS et al., 2016), previously 
presented in XVII Brazilian Symposium on 
Geoinformatics (GEOINFO 2016). 

2. TIME-FIRST, SPACE-LATER VS SPACE-
FIRST, TIME-LATER

Scientists have analyzed time series of 
remote sensing imagery to detect changes in 
three different ways: 1) process each image 
independently and compare the results for 
diff erent time instances, 2) build time series 
of each pixel and process them independently 
and 3) develop algorithms that process multiple 
pixels at multiple time instances. The fi rst type 
of analysis will be called hereinafter as space-
fi rst, time-later approach. This type of analysis 
aims to evaluate and compare the results of a 
pixel classifi cation independently in time. For 
example, if more than one method of an image 
classifi cation based on forest cover percentage 
is applied, a pixel may be classifi ed in distinct 

land cover types. The error resulted in one of 
them can lead the results to a classification 
inconsistency when analyzing the pixels of each 
scene separately. Also, this inconsistency may 
also increase with the number of scenes and 
leading to an analysis mistake depending on the 
application (see Figure 1).

Fig. 1 - Space-First, Time-Later. 

Due to this limitation, scientists have used 
an alternative approach in which the methods 
are based on what we define as time-first, 
space-later approach. The key is to consider the 
temporal auto-correlation of the data instead of 
the spatial auto-correlation (EKLUNDHA & 
JOHNSSONB, 2012), which is really important 
for remote sensing time series analysis. In this 
case, scientists analyze each pixel independently 
taking into consideration all the values of the 
pixel along the time (see Figure 2).

Fig. 2 - Time-First, Space-Later.

For example, given a set S = {s
1
, s

2
, ..., s

n
} 

of remote sensing satellite imagery that depicts 
the same region at n-consecutive times, we can 
defi ne them as a 3-D-dimensional array in space-
time. For each digital image s

i 
S, millions of 

pixels are associated with their respective spatial 
location (latitude, longitude), which corresponds 
to the (x, y, z) position in a 3D matrix. The 
z-component of the matrix corresponds to the 
time axis in the satellite imagery. Each pixel 
location (x, y, z) contains a set A = {a

1
, a

2
, ...a

m
} 

of attributes values, represented by spectral 
bands of the set of images. These attributes can 
provide land-use and land-cover information as 
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each kind of target (forest, water, soil, among 
others) on the ground has a diff erent spectral 
refl ectance signatures based on the wavelength.

Time-fi rst, space-later approach is more 
suitable, for example, to detect deforestation or 
forest degradation from time series of remote 
sensing imagery. Supposing that we are working 
with images that have an spectral attribute 
associated to forest cover. We can think of a 
situation in which an area was a pristine forest 
until 2000, it was cut out in 2001 and started 
to regenerate in 2010. If we follow the value 
of a along time using the time-series complex 
analytics, we can monitor this dynamics. If we 
consider large databases of imagery, with high 
spatial and temporal resolutions and covering 
large extensions we will need the best and robust 
methods to deal with big EO data. The streaming 
processing analytics approach presented in this 
paper, is a contribution to fulfi ll this demand.

3. RELATED WORKS

Due to the increasing interest on EO 
applications, a set of additional mechanisms 
has emerged to load, process and analyze 
remote sensing imagery. These mechanisms 
aim to convert the images into diff erent data 
formats since storage components sometimes 
only accept a specifi c representation. Analytic 
algorithms have been built to enrich existing 
storage components with more statistical and 
mathematical operations, but they still lag far 
behind statistical software packages such as 
those presented in the CRAN repository. In order 
to reduce data movement and communication 
overhead between storage and analysis, 
integrating these storage components and R 
by letting each do what they do best is still 
a better approach. This combination aims 
to scale for analytic methods over massive 
datasets by exploiting the parallelism of storage 
components in an analyst-friendly environment 
(INTEGRATING R, 2011). The problem 
about this integration is that a sophisticated 
understanding of their particular characteristics 
is mandatory and functionalities need to be re-
implemented. For these reasons, data should be 
acquired, processed and analyzed continuously 
in an easily and fl exible manner in near real-time.

For this, location-based social networks 
streams analytics have emerged as the most 

common approach provided by means of APIs 
in the literature. Most of the existing studies 
that use this streaming aim to provide location-
based eventful visualization, statistical analysis 
and graphing capabilities (SCHNEBELE, 
et al. 2014). They also aim to explore the 
spatial information involved in social networks 
messages. For example, social network messages 
can be used to detect events in near real-time 
such as fl oods and elections (ASSIS et al. 2015; 
SONG & KIM 2013). The challenge here is in 
the combination of diff erent data fl ows and data 
formats to support the analysis of high value 
social network messages in near real-time. In 
distributed parallel processing, streaming APIs 
have been mainly used to perform an arbitrary 
set of independent tasks that can be broken into 
parts, and run separately in another environment 
with a reusable code. It takes into consideration 
input/reading and output/writing commands by 
using stdin and stdout.

Hadoop Streaming is an exemplary API 
that has an advantage of using MapReduce, a 
standard processing model, to process in near 
real-time by customizing how input and output 
are split into key/value pairs. One of the most 
important features of this open implementation 
is that Hadoop is fault-tolerant. Its main goal 
is to support the execution of tasks using a 
scalable cluster of computing nodes (RUSU 
& CHENG, 2013). Hadoop-GIS, MD-HBase 
and SpatialHadoop are exemplary GIS tools 
that require an extra overhead for more fl exible 
functions (AJI et al. 2013; NISHIMURA et al. 
2013; ELDAWY & MOKBEL, 2015). Unlike 
dedicated proprietary services such as Google 
Earth Engine that off er minimal standards for 
scientifi c collaboration, alternative interfaces 
of Hadoop can abstract highly technical details 
for image processing from the point of view of 
computer vision (SWEENEY et al. 2011).

However, when a large amount of analytics 
algorithms are necessary, these approaches 
burden developers and scientists since there is 
a clearly limitation of available operations and 
functions, mainly regarding remote sensing time 
series analysis. Furthermore, existing studies 
address this approach with a more spatial focus 
in image classifi cation algorithms (ALMEER, 
2012; GIACHETTA & FEKETE, 2015), which 
result in more loss of information. For these 
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reasons, the high technical complexities involved 
in developing new applications should be hidden 
from them, and consequently, a more fl exible and 
generic approach is required.

4. STREAMING PROCESSING ANALYTICS 
USING MAPREDUCE

Since remote sensing time series analytics 
require dealing with a large amount of satellite 
imagery of the same place at diff erent instancies 
of time, it is necessary to build an approach that 
provides a fast access, a scalable storage and more 
fl exible complex analysis methods. This makes 
easier for other scientists to reproduce and to 
validate scientifi c research on this topic. With this 
in mind, we propose an approach that combines 
a streaming processing mechanism based on 
MapReduce with a complex statistical analysis 
environment. These choices were made based on 
the fl exibility off ered by the existing streaming 
processing that allows the implementation of 
algorithms in diff erent languages, as well the 
several analysis components provided by these 
environments with specifi c purpose. At fi rst, we 
stored all the images in a distributed fi le system 
so that they are processed by means of two 
methods (Mapper and Reducer) aiming to build 

the timeline values and analyze them calling a 
complex algorithm.

The main advantage of using a standard 
processing model such as MapReduce is in the 
fact that both methods receive and transmit data 
as <key, values> pairs, giving scientists more 
interoperability and clear capacity of processing 
data. In our approach, the Mapper input is a 
<key, values> pair, in which the key is an image 
identifi er and the values are all of the desired 
pixel locations (x,y), that is, the image content 
itself. The Mapper is responsible for extracting 
the features from the images for each desired 
pixel, transforming them into a time series data 
and emit them to the Reducer. The Mapper output 
is a <key, values> pair, in which the key is a 
pixel location (x,y) and the values are time series 
data (e.g., x = 10, y = 45, values = ‘’0.5 0.7 0.4 
0.6’’ are represented as a <(10, 45), (0.5 0.7 0.4 
0.6)> pair). As the Mapper output is the Reducer 
input, the Reducer receives the combination of 
pixel and time series values, and analyzes them 
by means of a complex method. The result in 
this case is stored in the distributed fi le system. 
A high level architecture of this time series-
based streaming processing analytics for remote 
sensing data can be seen in Figure 3.

Fig. 3 - MapReduce Streaming Analytics Processing.
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4.1 Data Model and Storage

As a distributed fi le system is able to store 
any data type and format without any restriction, 
its schema-on-read approach offers a more 
adequate design for our case. Unlike schema-on-
write approaches such as database management 
systems that require a predefi ned schema to store 
and query the data, schema-on-read approaches 
lead to load raw and unprocessed data with 
a structure based on a versatile processing 
according to the applications requirements. 
As a result, data not previously accessible are 
interpreted as it is read, that is, scientists learn the 
data over time in near real-time. The distributed 
fi le system enables the storage of binary fi les 
such as raster and shapefi les. Additional tools 
can help scientists to organize data defi ning a 
structure or not around their data. In our case, 
images gathered by satellites are stored by a 
sequence in years processed by the provider so 
that it makes easier to build the time series.

4.2 MapReduce Programming Model

The MapReduce programming model 
consists of two methods responsible for extracting 
the features from the images and processing the 
complex algorithms for remote sensing time 
series applications in a independently and 
reusable manner. Both Mapper and Reducer 
methods receive their input and output by 
means of standard input (stdin) and standard 
output stdout as <key, values> pairs. Unlike 
other approaches, the <key, values> pairs are 
line oriented and processed as it arrives, since 
Mapper and Reducer controls the processing. 
In this work, the Mapper performs fi ltering and 
sorting of both pixel and attributes values into 
lines, while Reducer performs the complex 
analysis and stores the result.

An informal high-level description of 
Mapper can be seen in the Algorithm 1. At 
fi rst, the Mapper get the dataset names for 
standardized stored images before creating 
raster layer objects for them according to the 
spectral band id chosen by the scientists. The 
input is a <IMG, (x

1
,y

1
), (x

1
,y

2
), ..., (x

n
,y

n
}> 

pair, where IMG is an identifi er for each image 
and the latter is a list of pixel coordinates to be 
analyzed. At second, the Mapper builds the time 

series by getting the values for each pixel. In 
this part, the scientist defi nes the pixel interval 
and gets the values for each pixel of them. 
For example, for an entire image, the scientist 
would defi ne the interval from 1 to 23040000 
(4800x4800 - MODIS data resolution). At 
third, the Mapper calculate the pixel by ceiling 
the number of the pixel divided by the image 
resolution for the row and getting the remainder 
for the col. Lastly, the Mapper emit the time 
series built to the Reducer.

5. EVALUATION AND RESULTS

In this section, there is an examination of 
the experimental setup, the presentation of the 
application case study and a quality architecture 
requirements evaluation

5.1 Experimental Setup

The experimental setup consists of a 
description of the runtime environment and the 
dataset. 

5.1.1 Runtime Environment

The experiments were run on a single-node 
computer with Intel(R) Core(TM) i7-5500U 
CPU @ 2.40GHz and 16GiB GB RAM memory 
running Ubuntu 14.04.4 LTS (64 bit).

5.1.2 Dataset 

The MODIS scientific instruments 
launched in the Earth’s orbit by NASA in 1999 
were used in our experiments since they are 
able to capture 36 spectral bands ranging in 
wavelength from 0.4 μ m to 14.4 μ m. They are 
designed to provide measures describing land, 
oceans and atmosphere that can be used for 
studies of processes local to global scales. In our 
case, we considered the MOD13Q1 Normalized 
Diff erence Vegetation Index (NDVI) due to the 
large amount of remote sensing studies that have 
focused on time series analysis using this index 
(VERBESSELT et al., 2010, GROGAN et al., 
2016). Since MODIS data are provided every 
16 days at 250-meter spatial resolution in the 
Sinusoidal projection and has more than 18,000 
satellite images covering Brazil from 2000 to 
2016, we built a time series only using only a 
fraction of these data regarding time and space 
(92 images with 21 Giga Bytes in total).
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5.2 Application Case Study: Deforestation 
Detection

For handling remote sensing imagery as 
MODIS time series, at first we organized the 
MODIS data into years. This organization enables 
us to build an infrastructure able to extract, 
transform and load all the images by converting 
them into standard input for the desired methods. 
In this work, we considered a method, that is part 
of an R package called BFAST, that aims to detect 
iteratively breaks in seasonal and trend components 
of a time series (VERBESSELT et al., 2011]. 
This package is not only helpful for deforestation 
and phenological change detection, but also for 
forest health monitoring (VERBESSELT et al., 
2012). After running BFAST for a specifi c pixel 
(latitude=-10.408, longitude=-53.495), we obtained 
a breakpoint in 01-17-2011 (see Figure 4). As this 
processing can be performed for a large amount 
of other pixels, we are not considering here to 
check the accuracy of such algorithm. Our focus 
in this work is on presenting how these kind of 
analysis can be validate by using a high variety of 
systems. For example, the deforestation detection 
in this pixel situated in the state of Mato Grosso 
in Brazil (see Figure 5) can be seen in DETER, 
a system for deforestation detection in near real-
time. The problem here is in the distinct date of 
breakpoint found when using both sources (BFAST 
and DETER).

Fig. 4 - BFAST for a NDVI time series (lati-
tude=-10.408, longitude=-53.495)

Fig. 5 - Deforested Area in the state of Mato Grosso 
in Brazil (latitude=-10.408, longitude=-53.495).

Fig. 6 - Processing Time to apply several other 
R packages aiming to detect breaks using 23 
images.

In our approach, we decided to integrate 
Hadoop and R since we were able to take the best 
of massively scalable capabilities and research-
friendly programming environment of complex 
analytics. For evaluating this integration, we 
performed a set of experiments using BFAST 
and other R packages to see how this integration 
behaves in terms of processing time and scalability 
(varying the amount of pixel and images). Our tests 
also allowed us to see how the overhead of these 
tools aff ected this kind of processing. The results 
are shown in Figure 6 for four diff erent number 
of images consisting of one, two, three and four 
year MODIS time series data. As we can see, the 
integration between Hadoop and R has a stable, 
adequate and linear performance even when the 
amount of information increases with the time. 

The limitation of the performance is upon 
hardware infrastructure, that is, an extension of 
the hardware capabilities would provide a better 
performance in terms of storage and computation 
power. By comparison, for each thousand of 
pixels, 6000 seconds are necessary to analyze 
using a complex algorithm such as BFAST. The 
fl exibility of running complex algorithms using 
the familiarity of an R script overcomes the high 
cost related to the learning curve of Hadoop. The 
reason is that in R it is easy to install and load 
new packages and a high variety of complex 
algorithms can be easily deployed.

We also calculated the output size fi les in 
bytes produced by BFAST in the MapReduce 
programming model (see Table 1). As we can 
see, the variation on the number of images 
changes a little the size of the output using an 
algorithm such as BFAST. On the other hand, as 
the number of pixels increases the size of the 
output increases proportionally. The output fi les 
contain the timestamps when the break of the 
time series was detected for each pixel.
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Table 1: Size Files in Bytes of MapReduce output 
to apply BFAST

23 
images

46 
images

69 
images

92 
images

10 
pixels

171 171 171 171

100 
pixels

1792 1792 1783 1750

1000 
pixels

18881 18868 18820 18862

2000 
pixels

38863 38859 38771 38290

3000 
pixels

58849 58844 58722 58107

4000 
pixels

78827 78819 78675 77694

In addition, we deployed similar packages in 
R aiming to detect breaks in time series since they 
can also be applied to remote sensing time series 
applications. We considered R packages that help 
to perform behavioral change point analysis (bcpa), 
change point detection methods (changepoint), 
structural changes detection in regression models 
(strucchange) and behavioral change detection in 
several other applications (BreakoutDetection). 
The processing time spent for each algorithm is 
almost the same and can be seen in Figure 7. In 
this experiment, we vary the number of pixels to a 
smaller scale compared to the previous one.

5.3 Quality Architectural Requirements

According to Pressman (2005), external 
quality architectural requirements correspond to 
the attributes of the systems that can be recognized 
by users and are important to design evaluation, 
which includes performance, flexibility, 
portability, reusability, interoperability, etc. In 
this work, we aim to use a qualitative evaluation 

of these attributes with the main purpose of 
generating results that can respond whether 
the designed system meets the architecture 
quality requirements of domain specialists. For 
example, to decide whether the performance 
of the software fails or not to compromise the 
previously planned information processing time.

The chosen method is an adaptation of the 
most used scenario-based evaluation by industry, 
also known as Architecture Trade-off  Analysis 
Method (ATAM). ATAM considers how the goals 
interact with each other in an achieved balance 
between desirable and compatible features aiming 
to provide an adequate detail about architectural 
documents (NORD et al., 2003). This method 
guides all the stakeholders to search for confl icts in 
the architecture, and consequently, solve them. In 
Table 2 we list the quality attributes found in each 
architectural decisions. In Figure 8 is depicted the 
quality attributes in terms of ISO/IEC 25010. We 
also aim to highlight how hard is to implement 
each of them and how important they are to the 
application domain (H: high; M: medium; L: low).

Fig. 7 - Processing Time to apply several other 
R packages aiming to detect breaks using 23 
images.

Table 2:  List of architectural decisions

Id
Architectural 

Decision
Quality 

Attributes
Description

D1
Distributed File 

System

Performance
Fault-Tolerance

Reusability

The fi le system provide fast access to unstructured data in 
a properly, continuously and reusable operating manner

D2
MapReduce 

processing model
Modifi ability
Adaptability

The programming model is easily modifi able for diff erent 
purposes

D3
Multilayered 
Architectural

Modularity
The storage, processing and analysis occur in several 

layers by means of decoupling

D4
Complex Analysis 

Environment
Learnability The complex analysis environment should be easy to learn
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6. CONCLUSIONS

Complying with the memory limitations of 
the R, data scientists often have to restrict their 
analysis only to a subset of the data. Integrating 
technologies such as Hadoop with R language 
off er not only a strategy to overcome its memory 
challenges of large data sets, but also provides 
a more flexibility programming of complex 
analysis in storage components. This paper 
presents an approach for analyzing big remote 
sensing time series in near real-time using a 
processing model known as MapReduce. 

Our results guide the processing analytics 
streaming approaches as a more generic 
way in terms of performance and capacity. 
They highlighted that for different number 
of pixels, and MODIS time series (one, two, 
three and four years), the processing time was 
linear for complex algorithms such as those 
found in deforestation detection applications. 
Exemplary situations in which such algorithms 
are important were demonstrated for a specifi c 
region in Brazil. Future works will comprise 
studies about alternative approaches that 
perform streaming analytics processing in 
other sources of information such as SciDB, a 
multidimensional array database. We also plan 
to evaluate this approach in a multi-node cluster 
experiment focusing more on data, memory and 
CPU intensive tests. The Spark framework is also 
a promising and effi  cient approach to be tested 
in our approach. 
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