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ABSTRACT

Humanity is the major driver of spatial changes resulting from interactions between social and environmental systems. 

Environmental models usually apply the agent-based modeling paradigm to describe the social aspects of spatial changes. 

For this reason, these models have incorporated challenges inherent to this paradigm. One of these challenges is how 

to provide a semantically correct way to describe and simulate the simultaneity in agents’ behavior. In this context, 

this work describes an algebra to the development of spatially explicit agent-based models in a way that the algebra 

operators implicitly treat the simultaneity in agents’ behavior.

Keywords: Algebra, Environmental Modelling, Agent-Based Modelling, Agent-Based Simulation.

RESUMO

A humanidade é o principal direcionador de mudanças espaciais decorrentes da interação entre os sistemas sociais e 

ambientais. Geralmente, os modelos ambientais aplicam o paradigma de modelagem baseado em agentes para descre-

ver os aspectos sociais das mudanças espaciais. Por esta razão, tais modelos incorporam os desafi os inerentes a este 

paradigma de modelagem.  Um desses desafi os está em prover uma maneira semanticamente correta para descrever e 

simular o comportamento simultâneo dos agentes. Neste contexto, este trabalho descreve uma álgebra para desenvolver 

modelos baseado em agentes espacialmente explícitos de maneira que os operadores algébricos tratam implicitamente 

o comportamento simultâneo dos agentes.

Palavras chaves: Álgebra, Modelagem Ambiental, Modelagem Baseada em Agentes, Simulação Baseada em Agentes.
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1. INTRODUCTION

The most indicated modelling paradigm 
to describe social aspects of spatial change 
processes is the Agent-Based Model (PARKER 
et al., 2003). In this paradigm, diff erent types 
of individuals (agents) are able to communicate 
and change the space through functions that 
represents the behavior rules. (MACAL & 
NORTH, 2005). However, this paradigm does 
not have a syntactic structure for directly 
representing heterogeneous spaces. This type of 
spatial structure needs diff erent sets of attributes, 
resolutions and neighborhood relations at 
diff erent locations. For this reason, it is useful 
to combine Cellular Automaton (CA) and Agent-
Based Model (ABM) paradigms to describe 
biophysical and social aspects of spatially explicit 
environmental models (PARKER et al., 2002).

The use of the ABM presents issues that are 
inherent to this paradigm. Among these issues, 
there is a need to provide a semantically correct 
way to describe and simulate the simultaneity 
in execution of agents. This simultaneity means 
that agents may perform changes in the current 
state of simulation (present) considering the 
last synchronized state of simulation (past), and 
perceive the changes into environment only 
after they synchronize their own information 
(MICHEL et al., 2001). Analogously, agents 
may perceive also the changes into environment 
instantaneously when they perform their changes 
from the present state into the same present state 
(BROWN et al., 2005).

Ideally, the manner that agents perceive 
the environment or execute their behavioral rules 
should be independent of simulation platforms 
and their architectures (parallel or sequential). A 
same set of rules, i.e., a model should have the 
same semantics in any simulator. Despite this, 
platforms that use the sequential architecture 
tend to ignore the simultaneity in execution of 
agents. Consequently, these approaches deal 
with a strictly simultaneous behavioral rule as a 
sequential one. For this reason, simulations may 
present incorrect results caused by computational 
artifacts (COAKLEY et al., 2012).

On the other hand, platforms for simulation 
of agents that execute under some parallel 
architecture like REPAST-HPC (COLLIER & 
NORTH, 2011), FLAME (COAKLEY et al., 
2012) and D-MASON (CORDASCO et al., 

2013), are able to deal with the simultaneity in 
the execution of agents. They deal with it using 
parallel programming and defi ning strategies to 
allow that tasks like scheduling, communication 
and synchronization (SHOOK et al., 2013) 
(FUJIMOTO, 2015) (ROUSSET et al., 2016) 
perform in automatized and transparent way from 
the modeler’s perspective. This way, modelers 
can explore high performance simulations even 
when they are inexperienced to deal with parallel 
programming issues. However, these approaches 
force modelers to describe behavioral rules 
in a manner that such rules have to guarantee 
the coherence and consistency of simulations. 
This can be highlighted in cases in which exist 
concurrent access to shared resource like in 
collision avoidance (TORRENS & MCDANIEL, 
2013), matching and reproduce (LYSENKO et 
al. 2008).

An alternative way to guarantee coherence 
and consistency in simulations is to provide 
such simultaneity control in the language level 
instead of doing it in level of the simulation 
engine. In this way, modelers can clearly 
express the expected semantics from his/her 
code diminishing ambiguity in rules semantics. 
Sequential architectures will fi nd in the model 
code the information required to simulate 
simultaneity. Parallel architectures will fi nd the 
necessary information to simulate sequential 
behaviors. It is possible to guarantees that a 
correct model will perform a correct simulation 
as well. In this context, this paper defi nes and 
evaluates one approach for the specifi cation of 
simultaneity in the execution of agents through 
an algebra for spatially explicit agent-based 
model development.

This paper is organized as follows. Section 
2 highlights some related works. Next, section 3 
describes the algebra, its types, operators, syntax 
and semantics. Section 4 shows the experiments 
developed to demonstrate how the algebra has 
solved some problems faced in agent’s modelling 
and simulations and then we present the algebra 
usage through a classical model. Finally, section 
5 presents the conclusions of this work.

This paper is based on (SILVA & 
CARNEIRO, 2016), previously presented in 
XVII Brazilian Symposium on Geoinformatics 
(GEOINFO, 2016).



973Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

An Algebra for Modelling the Simultaneity in Agents’ Behavior in Spatially 

2. RELATED WORKS

Providing the simultaneity in execution 
of agents in modelling level is a manner to 
guarantee consistence and coherence for 
semantically correct models in simulation 
time. In these approaches, the modelling 
language is able to deal with these issues. 
The early works to present solutions for this 
are DESIRE (DUNIN-KEPLICZ & TREUR, 
1994), Concurrent METATEM (FISHER, 1994), 
ConLog (GIACOMO et al., 2000) e AALAADIN 
(MICHEL et al., 2001).

Recently, the works that much relate to 
our approach are the languages ALOO and 
SARL. The agent-oriented language ALOO 
(RICCI & SANTI, 2013) uses the concept of 
agents (mobility entities) and objects (stationary 
entities) to define one semantic for mutual 
exclusion on language level for scenarios 
where several agents are trying to access or 
change a same object. ALOO is therefore able 
to guarantee concurrency control in accesses to 
shared resource.

The general-purpose agent-oriented 
programming language SARL (RODRIGUEZ 
et al., 2014) provides a manner to encapsulate 
the model’s partition, and the communication 
and synchronization of agents through concepts 
of multi-contexts and spatial hierarchy. Briefl y, 
agents can communicate only with other agents 
that are located at same space and are able to 
access the same context. In this way, the language 
make explicit the groups of agents that are able 
to communicate and therefore, need to keep their 
states synchronized.

Comparing the previous approaches 
with our own. Both ALOO and our approach 
have mechanisms to guarantee coherence in a 
scenario where exist concurrent access to shared 
resource in a way that modelers do not need 
to deal with the concurrency control directly. 
Comparing our algebra and SARL, they both use 
concepts as groups of agents in language level 
for providing coherency in communication and 
synchronization of agents.

The main aspects that diff er our algebra 
and these languages are: (1) Modelers can clearly 
express the expected semantics for agent’s rules; 
(2) The algebra provides two ways (simultaneous 
or sequential) to execute a same agent’s rule.

3. AN ALGEBRA FOR DESCRIBING 
SOCIAL-ENVIRONMENTAL SPATIALLY 
EXPLICIT MODEL

An algebra specifi es his components in 
a manner that makes possible to abstract the 
implementation of these components (FRANK, 
1999). Hence, algebras for ABM are independent 
of programming languages and of simulator’s 
architectures as well. In this paper, we defi ne an 
algebra by a set of types and operators applicable 
to these types.

3.1 Types

Types in an algebra are the kind of 
entities that the algebra’s operators are able 
to manipulate. Types define in which kind 
of entities the modeled phenomenon can be 
decomposed and represented. In this work, 
modelers are able to describe their models in 
terms of agents, collections of agent, cellular 
spaces, and social and spatial relations. These 
types are grouped into three main categories: (1) 
basic, (2) collections and (3) relations.

An agent is a basic type that performs 
changes in the environment. An agent has an 
attribute list. Each attribute in this list is a pair 
key-value (Figure 1). A key represents the name 
of an agent property and the value represents the 
current state of the correspondent property.

l

Fig. 1 – Formal defi nition of an attribute. 

All agents have a non-null attribute that 
locate them in the space. This attribute is a 
reference to a certain cell. The main function of 
this attribute is to enable agent movement. To 
perform this movement, an agent just need to 
replace the current value of his location attribute 
by another cell. A cell describes properties of 
a spatial location. Besides the attribute list, a 
cell also has an agent list to store all agents 
placed inside it and a list of its neighbor cells 
(Figure 2).
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Fig. 2 – Defi nition of basic types.

A collection represents a set of same-type 
entities. The Figure 3 shows the defi nition of 
all collections in this algebra. A society is a 
collection for same-type agents. Two agents 
have the same type when they present the same 
internal states and the same behavioral rules. 
Group is a set of agents in which every agent 
must satisfy a given selection function. For 
example, a group of agents of same gender or 
a group of agents where every agent is older 
than a given age. A group can sort its agents 
to defi ne a kind of precedence between them. 
Thus, groups are fi lters defi ned over societies, 
selecting the agents that will activated in some 
action.

Fig. 3 – Defi nition of agent and cell collections.

A Cellular Space is a grid of cells described 
by the same attributes. Each cell has a set of cells 
that defi nes its neighborhood. This neighborhood 
is essential to simulate spatial process using the 
CA paradigm.

A relational type is responsible for 
connecting agents enabling communication 
between them. The relational type social network 

can represents any relation between agents. 
A modeler defi ned function generate a social 
network. This function must determine the 
weight of a connection between two agents in 
a society. A weight with 0% means that there is 
no connection and 100% means a connection of 
maximum intensity. In a social network, agents 
are nodes in a graph, their connection are edges 
and the edges’ weight are the strength agent’s 
connection (ANDRADE et al., 2010). In this 
algebra, social networks are like maps in which 
agents work as indexes which maps to lists 
containing agents and weights representing their 
connections (Figure 4).

Fig. 4 – Defi nition of algebra’s relational types.

Besides the social network, neighborhoods 
represent spatial relations between agents. In 
this relation, an agent connects to another agent 
through the cell’s neighborhood structure. Using 
the cell’s list of agents, an agent can access all 
agents from a neighbor cell. In this manner, 
agents are able to connect by proximity relations. 
A spatial neighborhood is defi ned by a reference 
to a cellular space and by its dimension. The size 
of a neighborhood is a pair N and M (MxN), 
where N is the number of cells in vertical and M 
is the number of cells in horizontal.

3.2 Operators

Operators are a set of functions applicable 
to the types previously presented. Next, we 
present the syntax and semantic of each operator 
defi ned in this algebra.

The ask operator uses a message passing 
schema for providing interaction between agents 
and other types (Figure 5). Agents send messages 
to receivers requesting them to perform some 
actions (tasks).
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Fig. 5 – Defi nition of ask operator.

Since actions like move, die and reproduce 
are very common in ABM, these operators were 
pre-defi ned in this algebra using the ask operator 
(Code. 1).

Code. 1 – Defi ning operators move, die and 
reproduce.

In this algebra, there is not a way for 
directly create basic types. Modelers must use 
collection construction operators to instantiating 
entities of these types. In this manner, every basic 
entity will be enclosed in at least one collection. 
Figure 6 briefl y defi nes the construction operators 
for collections and relations.

The construction operator of society 
creates a society using an agent defi nition and 
a given quantity. This defi nition works as a 
template that enables the operator to instantiate 
any quantity of agents in a society. The operator 
creates each agent as a copy of the archetype 
agent. The parameter quantity determines the 
number of agents that the operator will create. 
The construction operator for group uses a 
society, a selection function and a compare 
function to create a group. In the same way, 
the construction operator for cellular spaces 
instantiates cells by copying the archetype 
cell received as parameter. The cellular space 
dimension determines the quantity of cells 
that the operator will create. The construction 

operator for social network uses a society and 
a function that determines the intensity of 
connections between each pair of agents to create 
a social network. The construction operator for 
spatial neighborhood uses a cellular space and 
the required neighborhood dimension to create 
a spatial neighborhood.

Fig. 6 – Defi nition of agent and cell collections.

 Modelers should use execution operator 
to simulate collection of agents provoking 
changes described by the behavioral rule received 
as parameter. The modeler defi nes these rules as 
functions that govern the behavior of some types 
of agents. This approach allows the reuse of rule 
defi nitions, allowing the modeler to apply them 
to any collections able to execute it. Three factors 
determine the semantics of the operator execute. 
The type of collection received as parameter, the 
use of any relational as parameter, and the type 
of behavioral rule received as parameter (Tab. 1).

 When a society executes a rule, all 
agent simultaneously performs changes. This 
means that agents will perceive the provoked 
changes only after all of them have accomplished 
their execution. A group enables that agents 
instantaneously perceives any provoked 
change. Group executes agent by agent in a 
sorted and sequential manner. This mode of 
execution guarantees mutual exclusion for 
agents performing the same rule. In this context, 
the rule code works as a critical section. Thus, 
agents perceive changes as soon as each agent 
fi nishes its execution. The group’s order function 
determines in which order agents will execute.

 Relational types determines how the 
communications between agents of a given 
collection will occur. When execute operator 
does not receive a relation, changes are local. 
This mean that, an agent will apply a change 
independently of the others. When an execution 
has a relation, the rules will receive two agents 
as parameter. The first agent will apply the 
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rule while the second one will only take in a 
communication process. Usually, these rules 
describe behaviors that collect information from 
other agents to support the decision-making 
process. The second agent is a read-only object. 
The only way to change the value of an attribute 
from the second agent is through requests using 
the ask operator. This is a convention in order to 
guarantees coherent computations for all agents. 
Requests sent through the ask operator will be 
served only after the simulation synchronization 
stage, causing the changes requested.

The execute operator is also responsible for 
performing communication and synchronization 
of agents. Synchronization of agents is transparent 
to the modelers. Modelers do not need to deal 
with concurrency control to guarantee coherent 
computation. For this, the ask operator sends 
asynchronous messages and senders do not need 
to wait for receivers’ responses to resume their 
execution. The execute operator will synchronize 
agents and process messages according to the 
semantics desired by the modeler, depending 
on the type of collection received as parameter: 
Society or group.

When a society invokes the execute 
operator, all agents perform their simulations 
in parallel and a synchronization barrier forces 
agents to wait until all other agents to fi nish. 
Only then, all agents will process the received 
asynchronous messages. This guarantees that all 
agent rules will execute taking in consideration 
the same model state, which immediately 
precedes the invocation of the execute operator. 
In addition, no communication happens while 
agent internal states are changing.

On the other hand, when a group invokes 
the execute operator, each agent will execute 
the behavioral rule sequentially. Immediately 
after the execution of each agent, all agents will 
perform the received messages and all agents 
will perceive the changes caused by the last 
behavioral rule executes (Figure 7).

In this semantic, if a rule demands an 
intermediate synchronization, the modeler 
should split the rule’s code into two rules: 
(1) One containing the code that precedes 
the synchronization point, and (2) another 
one containing the code that comes after the 
synchronization point.

To execute more than one society at the 
same time, the modeler should use a list of tuples 
(Figure 8). When an execution will perform a 
local rule, a tuple has a society and a local rule. In 
case of a rule demands communication between 
agents, the tuple will contain a relational type as 
well. Semantically, a tuple execution is equals 
to the execute operator (Tab. 1). In a practical 
manner, all tuples simultaneously execute before 
that agents perceive any change (communication 
and synchronization). Execution by tuples allows 
for example that two diff erent societies, using 
diff erent rules, change the space at the same time.

Fig. 8 – Defi nition of an execution tuple.

4. EXPERIMENTS

 We have done two kind of experiments. 
(1) The fi rst one demonstrated how the Algebra 
solves some problems that are related with 
the simultaneity and how they may aff ect the 
simulation results. In addition, these experiments 
also demonstrated how the simultaneity and 
the semantic of execution are related. (2) The 
second one demonstrates the algebra usage in 
implementing of Predator-Prey model. This 
classical model has features that are relevant 
and frequently used in spatial-explicit social-
environmental models.

4.1 Eff ects of simultaneity in simulation 
results

The experiments demonstrated the eff ects 
of simultaneity in the simulation results using 
three simple models (Figure 9). In the fi rst model, 
agents are trying to change simultaneously the 
energy in one shared cell of space (Figure 9a). 
When simulated through a society, changes 
performed by most of these agents have no 
eff ects. Agents update the cell computing their 
rules from the simulation past state, overwriting 
changes in the current simulation state and 
ignoring any other changes previously simulated. 
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This way, only changes performed by one unique 
agent will be persisted and perceived in the future 
computations. On the other hand, when simulate 
via groups, changes are sequenced and agents 
will perceive the changes instantaneously.

In another model, eight agents are 
simultaneously trying to move to one a same 
empty cell (Figure 9b). Disregarding the 
collision, simultaneity semantics have shown 
to have a huge impact in model results. The 
execution by society resulted in a scenario where 
all agents moved to the same cell. In this case, 
they sensed the environment’s state where this 
cell was empty. In the other hand, execution by 
group resulted in another mobility pattern, in 
this case only one agent has moved to the target 
cell. This because after his move the other agents 
perceived the environment’s state where this cell 
was not empty anymore.

The third model describes a rule where 
each agent have to collect information from 
neighbor cells to decide whether he should put 
fi re in his location (Figure 9c). When simulating 
this model through groups, the order of execution 
of the agents affects the simulation results, 
possibly introducing computational artifacts in it. 
However, this artifact did not appear when agents’ 
rules are simulated through a society, because 
agents sense and change the space simultaneously, 
there is order in agents’ execution.

These experiments shows that a unique 
model code (syntax) can lead to diff erent results 
depending on the simultaneity semantics adopted 
by a given modeling language or simulation 
engine. In the proposed algebra, modelers can 
clearly state the expected semantic diminishing 
ambiguity in model specifi cation and allowing 
for simulations that produce exactly the same 
result no matters whether models are been 
executed by sequential simulators or not. 
Modelers may choose which semantics fi ts better 
the phenomenon being modeled. In addition, the 
algebra promotes code reuse allowing modelers 
to apply a same rule with diff erent semantics.

4.2 Description of Predator-Prey model in 
the proposed algebra

The Predator-Prey model used in these 
experiments is an adaptation of Wilensky’s 
version of Wolf-Sheep (WILENSKY, 1997). In 
this simplifi ed version, there are three types of 

entities: Wolves, Sheep and Space. Wolves and 
Sheep are agents that, in each simulation step, 
randomly move in space. Agents spend energy 
to move and dies once they spent all energy. 
Agents eat to recover their energy. Sheep eat 
grass from their cells. Wolves prey sheep that are 
in their cell. The space is modeled as a cellular 
automaton that simulates grass periodical 
regrowth. Agents also reproduce by losing half 
of their energy for the newborn agents.

This model demonstrates the usage 
of execute and ask operators in describing 
interactions between two diff erent societies, 
which individuals compete for access to shared 
resources (preys and grass). The algorithm 
(Code. 2) shows the hunting rule of predators. If 
a predator meets a prey, predator will target this 
prey. After marking a prey as target, a predator 
will attack it. The algorithm (Code. 2) describes 
the behavior of an attack. The attacking rule 
recovers predator’s energy by the amount of 
target’s energy and informs that the target is 
going to lose its energy and then die after the 
next synchronization.

One can interpret the prey’s behavior 
analogously to predator’s behavior (Code. 2). 
Preys will target their own location cells. Then, 
preys will eat grass from these cells. This case 
shows that diff erent types of agent can perform 
a same rule since they have a same set of internal 
states. In this experiment, preys and predators 
have energy and target as attributes, and cells 
have the unique attribute energy (Code. 3). In this 
manner, any agent can perform the attacking rule.

d 

 

 

Code. 2 – Behavioral rules of hunting.



Silva W. S. F. & Carneiro T. G. S. 

978 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

Code. 3 – Defi ning predator, prey and cell.

The algorithm (Code. 4) shows the 
execution of predator and prey rules. Predators 
and preys must sense the same environment state. 
Therefore, they must execute simultaneously. 
For this, agents execute their rules (moving, 
hunting and tryEat) using two tuples (moving 
Execute Tuples and hunting Execute Tuples). 
These tuples allow both societies to execute at 
same time.

In contrast, some agent behavior demands 
that only one agent executes per time in order 
to guarantee coherence to model results. For 
instance, only one predator can kill a given prey. 
Therefore, a group must execute the attacking 
rule sequentially, meaning that only one agent 
will attack a target. This way, the attacking rule 
is a critical section of code in which mutual 
exclusion to resources (target) is guaranteed and 
all agents will sense attacks at the same instant 
as they occurs.

Group also fi lters the society allowing 
only few agents to execute the attacking rule, 
the ones who have targets. The predatorsGroup) 
and preys (preysGroup groups do not have 
an order function defi ned by the modeler. By 
default, groups will randomly organize their 
agents. Hence, all agents have the same chance 
to attempt an attack to a prey.

d

Code. 4 – Describing the execution of predators 
and preys.

In order to evaluate the performance 
that can be attained by a C++ and OpenMP 
(DAGUM & MENON, 1998) implementation 
of this algebra (Figure 10), the predator-prey 
model was simulated for spaces of diff erent 
sizes and, therefore, diff erent population sizes 
(Figure 11).
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Fig. 10 – Population growth of predators and 
preys in a cellular space of dimension 1000 x 
1000.

Fig 11 – Performance results of Predator-Prey 
simulation.

Initial experiments have shown that 
simulations using the proposed algebra may 
achieve a performance curve near to linear in 
relation of the number of cells in space. This 
demonstrates that this algebra is also a viable 
solution from the performance point of view.

5. CONCLUSIONS

This paper has presented an algebra for 
modeling the social aspects of spatial changes in 
accordance to the Agent-Based Model paradigm. 
Experiments have demonstrated how this algebra 
can handle some problems that relates to the 
simultaneity in execution of agents. Beside this, 
experiments have demonstrated also the usage 
of the algebra in the development of a model 
that has features that are common to many 
spatially explicit socio-environmental models. 
The contributions of this algebra are as follow:

To allow the defi nition of behavioral rules 
independently of the agents that will execute them.

To show one way of decoupling model 

description from the issues that rises from the 
parallel simulation of multiple agents.

To allow for modeler decides the execution 
semantics of agent’s rules.

For these reasons, we believe that this 
algebra can facilitate the development of models 
that use the agent-based modeling paradigm. It 
is still necessary to evaluate the algebra in the 
development and simulation of other models. 
Thus, determining if there are models that 
this algebra is not suffi  cient to describe them. 
Furthermore, we wish to evaluate this algebra 
in large-scale simulations in order to understand 
the pros and cons of this approach from the high 
performance point of view.
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