
AN ALGEBRA FOR MODELLING THE SIMULTANEITY IN AGENTS’
BEHAVIOR IN SPATIALLY EXPLICIT
SOCIAL-ENVIRONMENTAL MODELS

Uma Álgebra para Modelar o Comportamento Simultâneo dos Agentes em
Modelos Socioambientais Espacialmente Explícitos

Washington Sena de França e Silva & Tiago Garcia de Senna Carneiro

Universidade Federal de Ouro Preto – UFOP
Departamento de Computação

Campus Universitário Morro do Cruzeiro, CEP 35400-000, Ouro Preto, MG - Brasil
wsenafranca@gmail.com, tiagogsc@gmail.com

Received on February 8, 2017/ Accepted on Maio 26, 2017
Recebido em 8 de Fevereiro, 2017/ Aceito em 26 de May, 2017

ABSTRACT

Humanity is the major driver of spatial changes resulting from interactions between social and environmental systems.

Environmental models usually apply the agent-based modeling paradigm to describe the social aspects of spatial changes.

For this reason, these models have incorporated challenges inherent to this paradigm. One of these challenges is how

to provide a semantically correct way to describe and simulate the simultaneity in agents’ behavior. In this context,

this work describes an algebra to the development of spatially explicit agent-based models in a way that the algebra

operators implicitly treat the simultaneity in agents’ behavior.

Keywords: Algebra, Environmental Modelling, Agent-Based Modelling, Agent-Based Simulation.

RESUMO

A humanidade é o principal direcionador de mudanças espaciais decorrentes da interação entre os sistemas sociais e

ambientais. Geralmente, os modelos ambientais aplicam o paradigma de modelagem baseado em agentes para descre-

ver os aspectos sociais das mudanças espaciais. Por esta razão, tais modelos incorporam os desafi os inerentes a este

paradigma de modelagem. Um desses desafi os está em prover uma maneira semanticamente correta para descrever e

simular o comportamento simultâneo dos agentes. Neste contexto, este trabalho descreve uma álgebra para desenvolver

modelos baseado em agentes espacialmente explícitos de maneira que os operadores algébricos tratam implicitamente

o comportamento simultâneo dos agentes.

Palavras chaves: Álgebra, Modelagem Ambiental, Modelagem Baseada em Agentes, Simulação Baseada em Agentes.

Brazilian Journal of Cartography (2017), Nº 69/5, Special Issue GEOINFO 2017: 971-980
Brazilian Society of Cartography, Geodesy, Photgrammetry and Remote Sense
ISSN: 1808-0936

Silva W. S. F. & Carneiro T. G. S.

972 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

1. INTRODUCTION

The most indicated modelling paradigm
to describe social aspects of spatial change
processes is the Agent-Based Model (PARKER
et al., 2003). In this paradigm, diff erent types
of individuals (agents) are able to communicate
and change the space through functions that
represents the behavior rules. (MACAL &
NORTH, 2005). However, this paradigm does
not have a syntactic structure for directly
representing heterogeneous spaces. This type of
spatial structure needs diff erent sets of attributes,
resolutions and neighborhood relations at
diff erent locations. For this reason, it is useful
to combine Cellular Automaton (CA) and Agent-
Based Model (ABM) paradigms to describe
biophysical and social aspects of spatially explicit
environmental models (PARKER et al., 2002).

The use of the ABM presents issues that are
inherent to this paradigm. Among these issues,
there is a need to provide a semantically correct
way to describe and simulate the simultaneity
in execution of agents. This simultaneity means
that agents may perform changes in the current
state of simulation (present) considering the
last synchronized state of simulation (past), and
perceive the changes into environment only
after they synchronize their own information
(MICHEL et al., 2001). Analogously, agents
may perceive also the changes into environment
instantaneously when they perform their changes
from the present state into the same present state
(BROWN et al., 2005).

Ideally, the manner that agents perceive
the environment or execute their behavioral rules
should be independent of simulation platforms
and their architectures (parallel or sequential). A
same set of rules, i.e., a model should have the
same semantics in any simulator. Despite this,
platforms that use the sequential architecture
tend to ignore the simultaneity in execution of
agents. Consequently, these approaches deal
with a strictly simultaneous behavioral rule as a
sequential one. For this reason, simulations may
present incorrect results caused by computational
artifacts (COAKLEY et al., 2012).

On the other hand, platforms for simulation
of agents that execute under some parallel
architecture like REPAST-HPC (COLLIER &
NORTH, 2011), FLAME (COAKLEY et al.,
2012) and D-MASON (CORDASCO et al.,

2013), are able to deal with the simultaneity in
the execution of agents. They deal with it using
parallel programming and defi ning strategies to
allow that tasks like scheduling, communication
and synchronization (SHOOK et al., 2013)
(FUJIMOTO, 2015) (ROUSSET et al., 2016)
perform in automatized and transparent way from
the modeler’s perspective. This way, modelers
can explore high performance simulations even
when they are inexperienced to deal with parallel
programming issues. However, these approaches
force modelers to describe behavioral rules
in a manner that such rules have to guarantee
the coherence and consistency of simulations.
This can be highlighted in cases in which exist
concurrent access to shared resource like in
collision avoidance (TORRENS & MCDANIEL,
2013), matching and reproduce (LYSENKO et
al. 2008).

An alternative way to guarantee coherence
and consistency in simulations is to provide
such simultaneity control in the language level
instead of doing it in level of the simulation
engine. In this way, modelers can clearly
express the expected semantics from his/her
code diminishing ambiguity in rules semantics.
Sequential architectures will fi nd in the model
code the information required to simulate
simultaneity. Parallel architectures will fi nd the
necessary information to simulate sequential
behaviors. It is possible to guarantees that a
correct model will perform a correct simulation
as well. In this context, this paper defi nes and
evaluates one approach for the specifi cation of
simultaneity in the execution of agents through
an algebra for spatially explicit agent-based
model development.

This paper is organized as follows. Section
2 highlights some related works. Next, section 3
describes the algebra, its types, operators, syntax
and semantics. Section 4 shows the experiments
developed to demonstrate how the algebra has
solved some problems faced in agent’s modelling
and simulations and then we present the algebra
usage through a classical model. Finally, section
5 presents the conclusions of this work.

This paper is based on (SILVA &
CARNEIRO, 2016), previously presented in
XVII Brazilian Symposium on Geoinformatics
(GEOINFO, 2016).

973Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

An Algebra for Modelling the Simultaneity in Agents’ Behavior in Spatially

2. RELATED WORKS

Providing the simultaneity in execution
of agents in modelling level is a manner to
guarantee consistence and coherence for
semantically correct models in simulation
time. In these approaches, the modelling
language is able to deal with these issues.
The early works to present solutions for this
are DESIRE (DUNIN-KEPLICZ & TREUR,
1994), Concurrent METATEM (FISHER, 1994),
ConLog (GIACOMO et al., 2000) e AALAADIN
(MICHEL et al., 2001).

Recently, the works that much relate to
our approach are the languages ALOO and
SARL. The agent-oriented language ALOO
(RICCI & SANTI, 2013) uses the concept of
agents (mobility entities) and objects (stationary
entities) to define one semantic for mutual
exclusion on language level for scenarios
where several agents are trying to access or
change a same object. ALOO is therefore able
to guarantee concurrency control in accesses to
shared resource.

The general-purpose agent-oriented
programming language SARL (RODRIGUEZ
et al., 2014) provides a manner to encapsulate
the model’s partition, and the communication
and synchronization of agents through concepts
of multi-contexts and spatial hierarchy. Briefl y,
agents can communicate only with other agents
that are located at same space and are able to
access the same context. In this way, the language
make explicit the groups of agents that are able
to communicate and therefore, need to keep their
states synchronized.

Comparing the previous approaches
with our own. Both ALOO and our approach
have mechanisms to guarantee coherence in a
scenario where exist concurrent access to shared
resource in a way that modelers do not need
to deal with the concurrency control directly.
Comparing our algebra and SARL, they both use
concepts as groups of agents in language level
for providing coherency in communication and
synchronization of agents.

The main aspects that diff er our algebra
and these languages are: (1) Modelers can clearly
express the expected semantics for agent’s rules;
(2) The algebra provides two ways (simultaneous
or sequential) to execute a same agent’s rule.

3. AN ALGEBRA FOR DESCRIBING
SOCIAL-ENVIRONMENTAL SPATIALLY
EXPLICIT MODEL

An algebra specifi es his components in
a manner that makes possible to abstract the
implementation of these components (FRANK,
1999). Hence, algebras for ABM are independent
of programming languages and of simulator’s
architectures as well. In this paper, we defi ne an
algebra by a set of types and operators applicable
to these types.

3.1 Types

Types in an algebra are the kind of
entities that the algebra’s operators are able
to manipulate. Types define in which kind
of entities the modeled phenomenon can be
decomposed and represented. In this work,
modelers are able to describe their models in
terms of agents, collections of agent, cellular
spaces, and social and spatial relations. These
types are grouped into three main categories: (1)
basic, (2) collections and (3) relations.

An agent is a basic type that performs
changes in the environment. An agent has an
attribute list. Each attribute in this list is a pair
key-value (Figure 1). A key represents the name
of an agent property and the value represents the
current state of the correspondent property.

l

Fig. 1 – Formal defi nition of an attribute.

All agents have a non-null attribute that
locate them in the space. This attribute is a
reference to a certain cell. The main function of
this attribute is to enable agent movement. To
perform this movement, an agent just need to
replace the current value of his location attribute
by another cell. A cell describes properties of
a spatial location. Besides the attribute list, a
cell also has an agent list to store all agents
placed inside it and a list of its neighbor cells
(Figure 2).

Silva W. S. F. & Carneiro T. G. S.

974 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

]

Fig. 2 – Defi nition of basic types.

A collection represents a set of same-type
entities. The Figure 3 shows the defi nition of
all collections in this algebra. A society is a
collection for same-type agents. Two agents
have the same type when they present the same
internal states and the same behavioral rules.
Group is a set of agents in which every agent
must satisfy a given selection function. For
example, a group of agents of same gender or
a group of agents where every agent is older
than a given age. A group can sort its agents
to defi ne a kind of precedence between them.
Thus, groups are fi lters defi ned over societies,
selecting the agents that will activated in some
action.

Fig. 3 – Defi nition of agent and cell collections.

A Cellular Space is a grid of cells described
by the same attributes. Each cell has a set of cells
that defi nes its neighborhood. This neighborhood
is essential to simulate spatial process using the
CA paradigm.

A relational type is responsible for
connecting agents enabling communication
between them. The relational type social network

can represents any relation between agents.
A modeler defi ned function generate a social
network. This function must determine the
weight of a connection between two agents in
a society. A weight with 0% means that there is
no connection and 100% means a connection of
maximum intensity. In a social network, agents
are nodes in a graph, their connection are edges
and the edges’ weight are the strength agent’s
connection (ANDRADE et al., 2010). In this
algebra, social networks are like maps in which
agents work as indexes which maps to lists
containing agents and weights representing their
connections (Figure 4).

Fig. 4 – Defi nition of algebra’s relational types.

Besides the social network, neighborhoods
represent spatial relations between agents. In
this relation, an agent connects to another agent
through the cell’s neighborhood structure. Using
the cell’s list of agents, an agent can access all
agents from a neighbor cell. In this manner,
agents are able to connect by proximity relations.
A spatial neighborhood is defi ned by a reference
to a cellular space and by its dimension. The size
of a neighborhood is a pair N and M (MxN),
where N is the number of cells in vertical and M
is the number of cells in horizontal.

3.2 Operators

Operators are a set of functions applicable
to the types previously presented. Next, we
present the syntax and semantic of each operator
defi ned in this algebra.

The ask operator uses a message passing
schema for providing interaction between agents
and other types (Figure 5). Agents send messages
to receivers requesting them to perform some
actions (tasks).

975Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

An Algebra for Modelling the Simultaneity in Agents’ Behavior in Spatially

Fig. 5 – Defi nition of ask operator.

Since actions like move, die and reproduce
are very common in ABM, these operators were
pre-defi ned in this algebra using the ask operator
(Code. 1).

Code. 1 – Defi ning operators move, die and
reproduce.

In this algebra, there is not a way for
directly create basic types. Modelers must use
collection construction operators to instantiating
entities of these types. In this manner, every basic
entity will be enclosed in at least one collection.
Figure 6 briefl y defi nes the construction operators
for collections and relations.

The construction operator of society
creates a society using an agent defi nition and
a given quantity. This defi nition works as a
template that enables the operator to instantiate
any quantity of agents in a society. The operator
creates each agent as a copy of the archetype
agent. The parameter quantity determines the
number of agents that the operator will create.
The construction operator for group uses a
society, a selection function and a compare
function to create a group. In the same way,
the construction operator for cellular spaces
instantiates cells by copying the archetype
cell received as parameter. The cellular space
dimension determines the quantity of cells
that the operator will create. The construction

operator for social network uses a society and
a function that determines the intensity of
connections between each pair of agents to create
a social network. The construction operator for
spatial neighborhood uses a cellular space and
the required neighborhood dimension to create
a spatial neighborhood.

Fig. 6 – Defi nition of agent and cell collections.

 Modelers should use execution operator
to simulate collection of agents provoking
changes described by the behavioral rule received
as parameter. The modeler defi nes these rules as
functions that govern the behavior of some types
of agents. This approach allows the reuse of rule
defi nitions, allowing the modeler to apply them
to any collections able to execute it. Three factors
determine the semantics of the operator execute.
The type of collection received as parameter, the
use of any relational as parameter, and the type
of behavioral rule received as parameter (Tab. 1).

 When a society executes a rule, all
agent simultaneously performs changes. This
means that agents will perceive the provoked
changes only after all of them have accomplished
their execution. A group enables that agents
instantaneously perceives any provoked
change. Group executes agent by agent in a
sorted and sequential manner. This mode of
execution guarantees mutual exclusion for
agents performing the same rule. In this context,
the rule code works as a critical section. Thus,
agents perceive changes as soon as each agent
fi nishes its execution. The group’s order function
determines in which order agents will execute.

 Relational types determines how the
communications between agents of a given
collection will occur. When execute operator
does not receive a relation, changes are local.
This mean that, an agent will apply a change
independently of the others. When an execution
has a relation, the rules will receive two agents
as parameter. The first agent will apply the

Silva W. S. F. & Carneiro T. G. S.

976 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

rule while the second one will only take in a
communication process. Usually, these rules
describe behaviors that collect information from
other agents to support the decision-making
process. The second agent is a read-only object.
The only way to change the value of an attribute
from the second agent is through requests using
the ask operator. This is a convention in order to
guarantees coherent computations for all agents.
Requests sent through the ask operator will be
served only after the simulation synchronization
stage, causing the changes requested.

The execute operator is also responsible for
performing communication and synchronization
of agents. Synchronization of agents is transparent
to the modelers. Modelers do not need to deal
with concurrency control to guarantee coherent
computation. For this, the ask operator sends
asynchronous messages and senders do not need
to wait for receivers’ responses to resume their
execution. The execute operator will synchronize
agents and process messages according to the
semantics desired by the modeler, depending
on the type of collection received as parameter:
Society or group.

When a society invokes the execute
operator, all agents perform their simulations
in parallel and a synchronization barrier forces
agents to wait until all other agents to fi nish.
Only then, all agents will process the received
asynchronous messages. This guarantees that all
agent rules will execute taking in consideration
the same model state, which immediately
precedes the invocation of the execute operator.
In addition, no communication happens while
agent internal states are changing.

On the other hand, when a group invokes
the execute operator, each agent will execute
the behavioral rule sequentially. Immediately
after the execution of each agent, all agents will
perform the received messages and all agents
will perceive the changes caused by the last
behavioral rule executes (Figure 7).

In this semantic, if a rule demands an
intermediate synchronization, the modeler
should split the rule’s code into two rules:
(1) One containing the code that precedes
the synchronization point, and (2) another
one containing the code that comes after the
synchronization point.

To execute more than one society at the
same time, the modeler should use a list of tuples
(Figure 8). When an execution will perform a
local rule, a tuple has a society and a local rule. In
case of a rule demands communication between
agents, the tuple will contain a relational type as
well. Semantically, a tuple execution is equals
to the execute operator (Tab. 1). In a practical
manner, all tuples simultaneously execute before
that agents perceive any change (communication
and synchronization). Execution by tuples allows
for example that two diff erent societies, using
diff erent rules, change the space at the same time.

Fig. 8 – Defi nition of an execution tuple.

4. EXPERIMENTS

 We have done two kind of experiments.
(1) The fi rst one demonstrated how the Algebra
solves some problems that are related with
the simultaneity and how they may aff ect the
simulation results. In addition, these experiments
also demonstrated how the simultaneity and
the semantic of execution are related. (2) The
second one demonstrates the algebra usage in
implementing of Predator-Prey model. This
classical model has features that are relevant
and frequently used in spatial-explicit social-
environmental models.

4.1 Eff ects of simultaneity in simulation
results

The experiments demonstrated the eff ects
of simultaneity in the simulation results using
three simple models (Figure 9). In the fi rst model,
agents are trying to change simultaneously the
energy in one shared cell of space (Figure 9a).
When simulated through a society, changes
performed by most of these agents have no
eff ects. Agents update the cell computing their
rules from the simulation past state, overwriting
changes in the current simulation state and
ignoring any other changes previously simulated.

977Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

An Algebra for Modelling the Simultaneity in Agents’ Behavior in Spatially

This way, only changes performed by one unique
agent will be persisted and perceived in the future
computations. On the other hand, when simulate
via groups, changes are sequenced and agents
will perceive the changes instantaneously.

In another model, eight agents are
simultaneously trying to move to one a same
empty cell (Figure 9b). Disregarding the
collision, simultaneity semantics have shown
to have a huge impact in model results. The
execution by society resulted in a scenario where
all agents moved to the same cell. In this case,
they sensed the environment’s state where this
cell was empty. In the other hand, execution by
group resulted in another mobility pattern, in
this case only one agent has moved to the target
cell. This because after his move the other agents
perceived the environment’s state where this cell
was not empty anymore.

The third model describes a rule where
each agent have to collect information from
neighbor cells to decide whether he should put
fi re in his location (Figure 9c). When simulating
this model through groups, the order of execution
of the agents affects the simulation results,
possibly introducing computational artifacts in it.
However, this artifact did not appear when agents’
rules are simulated through a society, because
agents sense and change the space simultaneously,
there is order in agents’ execution.

These experiments shows that a unique
model code (syntax) can lead to diff erent results
depending on the simultaneity semantics adopted
by a given modeling language or simulation
engine. In the proposed algebra, modelers can
clearly state the expected semantic diminishing
ambiguity in model specifi cation and allowing
for simulations that produce exactly the same
result no matters whether models are been
executed by sequential simulators or not.
Modelers may choose which semantics fi ts better
the phenomenon being modeled. In addition, the
algebra promotes code reuse allowing modelers
to apply a same rule with diff erent semantics.

4.2 Description of Predator-Prey model in
the proposed algebra

The Predator-Prey model used in these
experiments is an adaptation of Wilensky’s
version of Wolf-Sheep (WILENSKY, 1997). In
this simplifi ed version, there are three types of

entities: Wolves, Sheep and Space. Wolves and
Sheep are agents that, in each simulation step,
randomly move in space. Agents spend energy
to move and dies once they spent all energy.
Agents eat to recover their energy. Sheep eat
grass from their cells. Wolves prey sheep that are
in their cell. The space is modeled as a cellular
automaton that simulates grass periodical
regrowth. Agents also reproduce by losing half
of their energy for the newborn agents.

This model demonstrates the usage
of execute and ask operators in describing
interactions between two diff erent societies,
which individuals compete for access to shared
resources (preys and grass). The algorithm
(Code. 2) shows the hunting rule of predators. If
a predator meets a prey, predator will target this
prey. After marking a prey as target, a predator
will attack it. The algorithm (Code. 2) describes
the behavior of an attack. The attacking rule
recovers predator’s energy by the amount of
target’s energy and informs that the target is
going to lose its energy and then die after the
next synchronization.

One can interpret the prey’s behavior
analogously to predator’s behavior (Code. 2).
Preys will target their own location cells. Then,
preys will eat grass from these cells. This case
shows that diff erent types of agent can perform
a same rule since they have a same set of internal
states. In this experiment, preys and predators
have energy and target as attributes, and cells
have the unique attribute energy (Code. 3). In this
manner, any agent can perform the attacking rule.

d

Code. 2 – Behavioral rules of hunting.

Silva W. S. F. & Carneiro T. G. S.

978 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

Code. 3 – Defi ning predator, prey and cell.

The algorithm (Code. 4) shows the
execution of predator and prey rules. Predators
and preys must sense the same environment state.
Therefore, they must execute simultaneously.
For this, agents execute their rules (moving,
hunting and tryEat) using two tuples (moving
Execute Tuples and hunting Execute Tuples).
These tuples allow both societies to execute at
same time.

In contrast, some agent behavior demands
that only one agent executes per time in order
to guarantee coherence to model results. For
instance, only one predator can kill a given prey.
Therefore, a group must execute the attacking
rule sequentially, meaning that only one agent
will attack a target. This way, the attacking rule
is a critical section of code in which mutual
exclusion to resources (target) is guaranteed and
all agents will sense attacks at the same instant
as they occurs.

Group also fi lters the society allowing
only few agents to execute the attacking rule,
the ones who have targets. The predatorsGroup)
and preys (preysGroup groups do not have
an order function defi ned by the modeler. By
default, groups will randomly organize their
agents. Hence, all agents have the same chance
to attempt an attack to a prey.

d

Code. 4 – Describing the execution of predators
and preys.

In order to evaluate the performance
that can be attained by a C++ and OpenMP
(DAGUM & MENON, 1998) implementation
of this algebra (Figure 10), the predator-prey
model was simulated for spaces of diff erent
sizes and, therefore, diff erent population sizes
(Figure 11).

979Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

An Algebra for Modelling the Simultaneity in Agents’ Behavior in Spatially

Fig. 10 – Population growth of predators and
preys in a cellular space of dimension 1000 x
1000.

Fig 11 – Performance results of Predator-Prey
simulation.

Initial experiments have shown that
simulations using the proposed algebra may
achieve a performance curve near to linear in
relation of the number of cells in space. This
demonstrates that this algebra is also a viable
solution from the performance point of view.

5. CONCLUSIONS

This paper has presented an algebra for
modeling the social aspects of spatial changes in
accordance to the Agent-Based Model paradigm.
Experiments have demonstrated how this algebra
can handle some problems that relates to the
simultaneity in execution of agents. Beside this,
experiments have demonstrated also the usage
of the algebra in the development of a model
that has features that are common to many
spatially explicit socio-environmental models.
The contributions of this algebra are as follow:

To allow the defi nition of behavioral rules
independently of the agents that will execute them.

To show one way of decoupling model

description from the issues that rises from the
parallel simulation of multiple agents.

To allow for modeler decides the execution
semantics of agent’s rules.

For these reasons, we believe that this
algebra can facilitate the development of models
that use the agent-based modeling paradigm. It
is still necessary to evaluate the algebra in the
development and simulation of other models.
Thus, determining if there are models that
this algebra is not suffi cient to describe them.
Furthermore, we wish to evaluate this algebra
in large-scale simulations in order to understand
the pros and cons of this approach from the high
performance point of view.

REFERENCES

ANDRADE, P. R., MONTEIRO, A. M. V.,
CAMARA, G. Entities and relations for agent-
based modelling of complex spatial systems.
2010 Second Brazilian Workshop on Social
Simulation (BWSS). IEEE, 2010. p. 111-118.

BROWN, D. G., RIOLO, R., ROBINSON, D.
T., NORTH, M., and RAND, W. Spatial process
and data models: Toward integration of agent-
based models and GIS. Journal of Geographical
Systems, v. 7, n. 1, 2005. p. 25-47.

COAKLEY, S., GHEORGHE, M., HOLCOMBE,
M., CHIN, S., WORTH, D., and GREENOUGH,
C. Exploitation of high performance computing in
the FLAME agent-based simulation framework.
14th International Conference on High
Performance Computing and Communication
& 9th International Conference on Embedded
Software and Systems (HPCC-ICESS). IEEE,
2012. p. 538-545.

COLLIER, N., NORTH, M. Repast HPC: A
platform for large-scale agentbased modeling.
Large-Scale Computing Techniques for
Complex System Simulations, 2011. p. 81-110.

CORDASCO, G., DE CHIARA, R., MANCUSO,
A., MAZZEO, D., SCARANO, V., SPAGNUOLO,
C. Bringing together effi ciency and eff ectiveness
in distributed simulations: the experience with
D-MASON. Simulation, v. 89, n. 10, 2013. p.
1236-1253.

DAGUM, L., MENON, R. OpenMP: an industry
standard API for shared-memory programming.
IEEE computational science and engineering,

Silva W. S. F. & Carneiro T. G. S.

980 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 971-980, Mai/2017

v. 5, n. 1, p. 1998. 46-55.

DUNIN-KEPLICZ, B., TREUR, J. Compositional
formal specification of multi-agent systems.
International Workshop on Agent Theories,
Architectures, and Languages. Springer, Berlin,
Heidelberg, 1994. p. 102-117.

FISHER, M. Representing and executing agent-
based systems. International Workshop on
Agent Theories, Architectures, and Languages.
Springer, Berlin, Heidelberg, 1994. p. 307-323.

FRANK, A. U. One step up the abstraction
ladder: Combining algebras-from functional
pieces to a whole. International Conference on
Spatial Information Theory. Springer, Berlin,
Heidelberg, 1999. p. 95-107.

FUJIMOTO, R. Parallel and distributed simulation.
Winter Simulation Conference. IEEE Press,
2015. p. 45-59.

GEOINFO: XVII Simpósio Brasileiro de
Geoinformática. Campos do Jordão. Claudio
Campelo e Laercio Namikawa, 27-30 nov. 2016.
Anual. Disponível em: http://www.geoinfo.info/
geoinfo2016. Acesso em: 3 dez. 2017.

GIACOMO, G., LESPÉRANCE, Y., LEVESQUE,
H. J. ConGolog, a concurrent programming
language based on the situation calculus. Artifi cial
Intelligence, v. 121, n. 1-2, 2000, p. 109-169.

LYSENKO, M., D’SOUZA, R. M. A framework
for megascale agent based model simulations on
graphics processing units. Journal of Artifi cial
Societies and Social Simulation, v. 11, n. 4,
2008. p. 10.

MACAL, C. M., NORTH, M. J. Tutorial on
agent-based modeling and simulation. Winter
Simulation Conference. IEEE, 2005. p. 14.

MICHEL, F., FERBER, J., GUTKNECHT,
O. Generic simulation tools based on MAS
organization. 10th European Workshop on
Modelling Autonomous Agents in a Multi
Agent World MAMAAW. 2001. p. 109-126.

PARKER, D. C, AQUINO, P., AUGUST P.,
BALMANN, A., BERGER, T., BOUSQUET, F.,
BRONDÍZIO, E., BROWN, D., COUCLELIS, H.,
DEADMAN, P., GOODCHILD, M. F., GOTTS,
N. M., GUMERMAN, G. J., HOFFMANN, M.
J., HUIGEN, M. G. A., IRWIN, E., JANSEN,

M. A., JOHNSTON, R., KOHLER, T., LAW,
A. N. R., PAGE, C. L., LIM, K., MANSON, S.
M., MCCONNELL, W. J., MCCRAKEN, S.,
MORAN, E., NAJLIS, R., NASSAUER, J. I.,
OPALUCH, J. J., PAGE, S. E., POLHILL, J. G.,
ROBINSON, D., THOMPSON, R., TORRENS,
P., WARREN, K. Agent-based models of land-use
and land-cover change. Proc. of an International
Workshop. 2002. p. 4-7.

PARKER, D. C., MANSON, S. M., JANSSEN, M.
A., HOFFMANN, M. J., DEADMAN, P. Annals
of the association of American Geographers, v.
93, n. 2, 2003. p. 314-337.

RICCI, A., SANTI, A. Concurrent object-
oriented programming with agent-oriented
abstractions: The ALOO approach. Workshop
on Programming based on actors, agents, and
decentralized control. ACM, 2013. p. 127-138.

RODRIGUEZ, S., GAUD, N., GALLAND,
S. SARL: a general-purpose agent-oriented
programming language. IEEE/WIC/ACM
International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent
Technologies (IAT). IEEE, 2014. p. 103-110.

ROUSSET, A. HERRMANN, B., LANG, C., and
PHILIPPE, L. A survey on parallel and distributed
multi-agent systems for high performance
computing simulations. Computer Science
Review, v. 22, 2016. p. 27-46.

SHOOK, E., WANG, S., TANG, W. A
communica t ion-aware f ramework for
parallel spatially explicit agent-based models.
International Journal of Geographical
Information Science, v. 27, n. 11, 2013. p.
2160-2181.

SILVA, W. S. F., CARNEIRO, T. G. S. An algebra
for modelling the simultaneity in agents’ behavior
in spatially explicit social-environmental models.
GeoInfo. 2016. p. 80-92.

TORRENS, P. M., MCDANIEL, A. W. Modeling
geographic behavior in riotous crowds. Annals
of the Association of American Geographers,
v. 103, n. 1, 2013. p. 20-46.

WILENSKY, U. NetLogo Wolf Sheep
Predation model. 1997. Disponível em:
http://ccl.northwestern.edu/netlogo/models/
WolfSheepPredation. Acesso em: 3 dez. 2017.

