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ABSTRACT

In this work we investigated a method for noise removal on Landsat-8 OLI time series using CBERS-4 MUX data 

to improve crop classifi cation. An algorithm was built to look to the nearest MUX image for each Landsat image, 

based on an user defi ned time span. The algorithm checks for cloud contaminated pixels on the Landsat time series 

using Fmask and replaces the contaminated pixels to build the integrated time series (Landsat-8 OLI + CBERS-4 

MUX). Phenological features were extracted from the time series samples for each method (EVI and NDVI original 

time series and multi sensor time series, with and without fi ltering) and subjected to data mining using Random 

Forest classifi cation. In general, we observed a slight increase in the classifi cation accuracy when using the proposed 

method. The best result was observed with the EVI integrated fi ltered time series (78%), followed by the fi ltered 

Landsat EVI time series (76%).

Keywords: Remote Sensing Multi-Sensor Data Integration, Satellite Image Time Series Analysis, Data-mining, Crop 

Mapping, Phenological Parameters.

RESUMO

Foi avaliado um método para a remoção de ruído em séries temporais de imagens Landsat-8 OLI utilizando dados 

CBERS-4 MUX para aprimorar a classifi cação de áreas agrícolas. Foi implementado um algoritmo para identifi car a 

imagem MUX mais próxima de cada imagem Landsat, com base em uma janela temporal defi nida pelo usuário. O 
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algoritmo verifi ca os pixels contaminados por nuvem na série temporal Landsat utilizando o produto Fmask e substitui 

os pixels contaminados para construir a série temporal integrada (Landsat-8 OLI + CBERS-4 MUX). Foram extraídos 

parâmetros fenológicos das amostras das séries temporais para cada método (séries temporais originais EVI e NDVI e 

séries temporais multisensor, com e sem fi ltragem) e então submetidas à mineração de dados utilizando a classifi cação 

por Florestas Aleatórias. Em geral, observamos um ligeiro aumento na acurácia da classifi cação ao utilizar o método 

proposto. O melhor resultado foi observado com a série temporal fi ltrada integrada EVI (78%), seguida pela série 

temporal Landsat EVI fi ltrada (76%).

Palavras-chave: Integração de Dados de Sensoriamento Remoto Multisensor, Análise de Séries Temporais, Mineração 

de Dados, Mapeamento da Agricultura, Atributos Fenológicos.

algorithm (IRISH et al., 2006) and Fmask 
algorithm (ZHU & WOODCOCK, 2012). 
However both ACCA and Fmask sometimes 
fail to detect thin clouds i.e. cirrus and the 
edges of cumulus clouds (LYMBURNER et al., 
2016). In this case, methods based on thresholds 
(HAMUNYELA et al., 2013; BENDINI et al., 
2016a; LYMBURNER et al., 2016) or smoothers 
(PAN et al., 2015) can be used. 

There is also the possibility to take 
advantage of multi-sensor data, considering 
the large amount of available remote sensing 
images. In a previous investigation, we showed 
the potential use of higher temporal resolution 
Landsat-like images for crop mapping (BENDINI 
et al., 2016a). Recently the China Brazil Earth 
Resources Satellite (CBERS) program launched 
CBERS-4 that carries in the payload module, 
among others, the Multispectral Camera (MUX). 

In this work, we investigated a method 
for noise removal in Landsat-8 OLI time series 
using CBERS-4 MUX data to improve a crop 
classifi cation method based on phenological 
features. This paper is based on Bendini et al. 
(2016b), previously presented in XVII Brazilian 
Symposium on Geoinformatics (GEOINFO 
2016) (http://www.geoinfo.info/geoinfo2016/).

2. METHODOLOGY

This section describes the methodology 
and is divided in a description of the study area, 
characteristics of data used on this work, the 
correlation analysis between both sensors to deal 
with the spectral diff erences, how the integrated 
time series were constructed, the attribute 
extraction and the classifi cation. 

2.1 Study area  

The study area is situated in São Paulo state 
(southeast of Brazil), in a Cerrado biome region 

1. INTRODUCTION

Given the large availability of arable 
land, and the growing demand for food in the 
world, Brazil has consolidated as a big player 
on the global agricultural scene. Remote sensing 
is an important tool used within agriculture, 
regarding its ability to generate information on 
large scale in a cost-eff ective manner. Therefore, 
agricultural mapping has become strategic since 
it provides better understanding of cropland 
distribution, and its impact on the environment. 
With advances in data processing and storage 
technologies as well as the availability of 
consistent and continuous long-term image 
series, remote sensing is undergoing a paradigm 
shift. Time series techniques stand out for 
allowing seasonal variation accounts of the 
analysed target. 

Although the use of time series for 
cropland classifi cation has been well explored 
using MODIS sensor (SAKAMOTO et al., 2005; 
ARVOR et al., 2011; KÖRTING, 2012; RISSO 
et al., 2012; BORGES & SANO, 2014; NEVES 
et al., 2016), there is still a demand for more 
detailed maps, which are made possible from 
time series with fi ner spatial resolutions, such 
as Landsat-like images (ZHENG et al., 2015; 
PEÑA et al., 2015; PAN et al., 2015; BENDINI 
et al., 2016a). As the temporal resolution of 
Landsat-like satellites is still low (e.g. 16 days), 
an open question in the scientifi c literature is 
about how to deal with the noise in the time 
series. The noise is characterized by negative 
outliers, which possibly result from either 
cloud cover or cloud shadow contamination or 
atmospheric scattering. To deal with it, some 
approaches were developed, which include 
cloud and cloud shadow fl ags generated from 
the Automated Cloud Cover Assessment (ACCA) 
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(Figure 1). As the focus is on croplands, we 
selected a region of interest where the main land 
cover is agriculture, silviculture, and pasture. 
In this region, farmers grow a variety of crops 
throughout the year. Major fi eld crops in this 
area are sugarcane, corn, bean, potato, soybean, 
sugar beet and onions. There is also production 
of mango, avocado and eucalyptus. Farmers 
grow crops in double cropping systems and even 
in triple cropping systems, mainly in irrigated 
areas. The usual planting for summer crops 
occurs from October to December and harvesting 

from February to April. We also observed crops 
growing in late fall (May – July) and harvesting 
in the next spring especially in irrigated areas.

2.2 Remote Sensing Data

A total of 24 scenes of Landsat-8 OLI 
(WRS 2 – Worldwide Reference System 2, 
Path/Row 219/75) between August 2015 and 
August 2016 were processed to Level 1 Terrain 
Corrected (L1T) by the USGS EROS Science 
Processing Architecture (ESPA) (DEVRIES et 
al. 2015; DEVRIES et al. 2015a). 

Fig. 1 – Location of the study area in São Paulo state, Brazil.

Landsat 8 data were corrected using L8SR, 
a newly developed algorithm that takes advantage 
of Landsat 8 new sensor characteristics (U.S. 
GEOLOGICAL SURVEY, 2015; VERMOTE, 
2016). Cloud (pixel value 4), cloud shadow 
(pixel value 2), snow (pixel value 3), water 
(pixel value 1) and clear (pixel value 0) masks 
were provided for Landsat 8 data using Cfmask, 
a C implementation of the Fmask algorithm 
(ZHU & WOODCOCK, 2012; ZHU, WANG, 
& WOODCOCK, 2015). 

CBERS-4 MUX imagery has been 
provided by the Brazilian National Institute 
for Space Research (INPE). A total of 9 scenes 
of CBERS-4 MUX (CBERS WRS Path/Row 
155/124) were acquired in the same period. Table 
1 shows OLI and MUX images available from 
August 2015 to August 2016. 

The images were radiometrically corrected 
and geometrically adjusted and refi ned by using 
control points and the SRTM 30m v. 2.1 digital 
elevation model (DEM) (Level 4).



Bendini H. N. et al.

950 Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 947-957, Mai/2017

Table 1: Availability of Landsat-8 (Path/Row 
219/75) and CBERS-4 (Path/Row 155/124) 
imagery from August 2015 to August 2016

Month/Year Sensor
Acquisition 

dates (day of 
year)

Number 
of scenes

Aug – Dec

2015

OLI

218, 234, 
250, 266, 
282, 298, 
314, 330, 
346, 362

10

MUX
215, 241, 
267, 345

4

Jan – Aug

2016

OLI

13, 29, 45, 
61, 77, 93, 
109, 125, 
141, 157, 
173, 189, 
205, 237

14

MUX
32, 110, 162, 

188, 240
5

The atmospheric correction was proceeded 
using the 6S model (Second Simulation of 
a Satellite Signal in the Solar Spectrum) 
(VERMOTE et al. 1997). For the MUX imagery, 
the cloud cover for the region of interest was 
visually assessed. The specification of the 
Landsat-8 OLI and CBERS-4 MUX spectral 
bands used in this can be seen on Table 2.

Table 2: Spectral Band Specifications for 
Landsat-8 OLI and CBERS-4 MUX

Band
Landsat-8 OLI 

(µm)
CBERS-4 MUX 

(µm)

Blue B2: 0.45 - 0.51 B5: 0.45 - 0.52

Green B3: 0.53 - 0.59 B6 0.52 - 0.59

Red B4: 0.64 - 0.67 B7: 0.63 - 0.69

Near Infrared 
(NIR)

B5: 0.85 - 0.88 B8: 0.77 - 0.89

The greatest diff erence in spectral bandwidths 
between the two sensors are on the NIR band, 
but there are also significant differences in 
spectral response function (SRF) profi les between 
corresponding CBERS-4 MUX and Landsat-8 OLI 
spectral bands (PINTO et al., 2016).

2.3 Correlation Analysis between Landsat-8 
OLI and CBERS-4 MUX

First we selected a pair of MUX and OLI 
images, considering the temporal proximity 
between them. The characteristics of the two 
images are shown in Table 3.

Table 3: Characteristics of the pair of MUX and 
OLI images used for correlation analysis

Satellite/Sensor CBERS-4/MUX Landsat-8/OLI

Date 04-Aug-15 06-Aug-15

Acquisition 
Time (UTC)

13:26:11 13:03:18

Path/Row 155/124 219/75

Sun elevation 43.37° 40.61°

Sun azimuth 36.05° 41.58°

Look Angle NADIR NADIR

Considering the spatial resolution diff erence 
between the images (30 meters for OLI and 20 
meters for MUX), we resampled MUX images 
to 30 meters, using the nearest neighbour 
interpolation. To deal with cloud contamination, 
we used the Fmask image and visual assessment to 
crop a cloud free region on OLI and MUX surface 
refl ectance images, respectively (Figure 2).

(a)

(b)
Fig. 2 – Cropped images used on the correlation 
analysis. (a) LANDSAT-8 OLI EVI (06 August 
2015) and (b) CBERS-4 MUX EVI (August 
4th, 2015).
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2.4 Building the multi-sensor time series

An algorithm was built to look for the 
nearest MUX image to each Landsat image, 

based on a user defi ned time span. In this case, 
we used time span of 8 days. Figure 3 shows a 
general scheme of the proposed method.

Fig. 3 – General scheme of the methodology used to build the integrated time series. On the left, 
a time series of EVI (the red line is the predicted time series using the equation to predict OLI 
refl ectance from MUX and the blue line is the original Landsat time series); the integrated time 
series is on the right, which points out the positions where the replacement has occurred.

After detecting the nearest MUX images 
for each Landsat image, the algorithm checks 
the pixels contaminated by cloud and cloud 
shadow in the Landsat time series using Fmask 
images. When a contaminated pixel is detected 
in the time series, it is replaced by a predicted 
OLI refl ectance, if it is within the defi ned time 
window.

2.5 Filtering the time series

We also applied a combined filtering 
approach for noise removal to the Landsat 
time series in order to assess the classifi cation 
improvement compared to that of integrated 
time series. The approach was put forth by 
interpolating noise values with the average 

between the nearest neighbours in time, 
considering the Fmask quality data (Equation 
1) and negative outliers based on a threshold 
as recommended by Hamunyela et al. (2013) 
(Equation 2).

        (1)

 

                (2)

Where xt is an observation of the time 
series at time, t, xt-1 is the observation in the time 
series at time t -1 , and xt+1 is the observation at 
time t+1. Observation xt is replaced as an outlier 
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with the average of xt-1 and xt+1 if the diff erence 
between xt and xt-1 is less than -1% of , and the 
diff erence between xt and xt+1 is less than -1% 
of xt+1. This method, however, is not capable of 
removing consecutive outliers. Figure 4 shows 
an example of how local outliers were removed 
from the NDVI and EVI time series.

Fig. 4 – Example of how local outliers were 
removed from the NDVI time series. The cyan 
lines are the positions where cloud and cloud 
shadow were detected by Fmask. The black 
line is the integrated time series and the green 
line is the fi ltered integrated time series using 
Equation 2.

2.6 Extracting phenological features

We selected 100 well-known polygon 
samples in the study area, considering the classes 
of annual agriculture (potato, corn, sugar beet, 
onion, bean and soybean), perennial agriculture 
(avocado and mango), semi-perennial agriculture 
(sugarcane), grassland and native forest. 

We extracted NDVI and EVI time series 
of pixels from each sample polygon in the 
study area. Phenological metrics in time series 
were obtained by the TIMESAT v3.2 software 
(JÖNSSON; EKLUNDH, 2004), where seasonal 
data are extracted for each of the growing 
seasons of the central year (Figure 5). During a 
period of n years there may be n – 1 full seasons 
together with two fractions of a season in the 
beginning and end of the time series. So, to 
extract seasonality parameters from one year of 
data, the time series has been duplicated to span 
three years, as recommended by Jönsson and 
Eklundh (2015). For the phenological metrics 
extraction, we smoothed (out) the time series 
considering the double logistic fi lter (ZHANG et 

al., 2003; JÖNSSON; EKLUNDH, 2004). This 
function is recommended for smoothing image 
time series on cropland areas in the Brazilian 
Cerrado (BORGES & SANO, 2014). 

Figure 5 illustrates the schema of the 
seasonality parameters generated by TIMESAT. 
In this study, we assume that the seasonality 
parameters are the same as the phenological 
metrics. The time for the start of season (sos) 
(a), and the end of season (eos) (b) is the time 
for which the left and right edge, respectively, 
has increased to a defi ned level measured from 
the minimum level on the corresponding side. 
The length of the season (c) is the time from the 
start to the end of the season. The base value 
(d) is the average of the left and right minimum 
values. The middle of season (e) is computed as 
the mean value of observations dates for which, 
respectively, the left edge has increased to 80% 
level and the right edge has decreased to 80% 
level.

Fig. 5 – Some of the seasonality parameters 
generated by TIMESAT: (a) beginning of season, 
(b) end of season, (c) length of season, (d) base 
value, (e) time of middle of season, (f) maximum 
value, (g) amplitude, (h) small integrated value, 
(h+i) large integrated value. The red and blue 
lines represent the fi ltered and the original data, 
respectively.

The maximum value (f), or the peak of 
the phenological cycle, is the largest data value 
for the fi tted function during the season. The 
seasonal amplitude (g) is the diff erence between 
the maximum value and the base level. The 
left derivative is calculated as the ratio of the 
diff erence between the left 20% and 80% levels 
and the corresponding time diff erence. The right 
derivative (i.e. the rate of decrease at the end of 



953Brazilian Journal of Cartography, Rio de Janeiro, No 69/5 p. 947-957, Mai/2017

Assessment of a Multi-Sensor Approach for Noise Removal on Landsat-8 Oli Time Series

the season) is the absolute value of the ratio of 
the diff erence between the right 20% and 80% 
levels and the corresponding time diff erence. 
The rate of decrease is thus given as a positive 
quantity. The large seasonal integral (h+i) is the 
integral of the function describing the season 
from start to end. The small seasonal integral 
(h) is the integral of the diff erence between the 
function describing the season and the base level 
from start to end of the season. (JÖNSSON & 
EKLUNDH, 2015). For more details see Jönsson 
and Eklundh (2002; 2004). 

2.7 Classifi cation

We subjected the phenological metrics 
obtained on TIMESAT to data mining using the 
Random Forest (RF) algorithm (BREIMAN, 
2001) considering each input: 1) Original 
Landsat EVI time series; 2) Filtered Landsat 
EVI time series; 3) Integrated EVI time series; 4) 
Filtered Integrated EVI time series; 5) Original 
Landsat NDVI time series, 6) Filtered Landsat 
NDVI time series, 7) Integrated NDVI time 
series and 8) Filtered Integrated NDVI time 
series. 

The RF algorithm is a classification 
technique in which the data set is randomly 
divided into several subsets of smaller size, and 
from each subset a decision tree is built. 

Random Forest algorithm has been widely 
used in remote sensing applications since it 
effi  ciently handles large databases (MÜLLER et 
al, 2015; PEÑA et al, 2015). Besides, it provides 
estimates on the most relevant variables, allowing 
the identifi cation of outliers (RODRIGUEZ-
GALIANO et al., 2012). 

There was a total of 31 training pixels 
for annual agriculture, 15 pixels for perennial 
agriculture, 26 pixels for semi-perennial 
agriculture, 14 pixels for grassland and 14 pixels 
for native forest. The results were evaluated 
using confusion matrix index and global 
accuracy (WITTEN; FRANK; HALL, 2011). 
The models were executed considering a 10-
fold cross validation method. The classifi cation 
results were obtained using the software package 
WEKA (HALL et al., 2009).

3. RESULTS AND DISCUSSION

The results of the correlation analysis 
between the cropped images are shown in Figure 

6, for each selected vegetation index: a) EVI and 
b) NDVI. The linear regressions equations to 
predict OLI refl ectance from MUX refl ectance 
are also shown. The goodness of fi t for EVI 
and NDVI are respectively 0.8573 and 0.7733. 
We can see that both EVI and NDVI values of 
Landsat-8 are higher than CBERS-4. Figure 7 
shows the results of diff erent approaches for 
noise removal in an EVI time series. 

(a)

(b)
Fig. 6 – Scatterplot of the pair of cropped images 
used to predict OLI reflectance from MUX 
refl ectance. (a) EVI and (b) NDVI.

As we can see in Figure 7, the integrated 
time series can deal with noise, replacing cloud 
and cloud shadow contaminated pixels with 
clear pixels of MUX images, and allowing 
improvement of the time series according to 
the phenological behavior of the vegetation, 
which is signifi cant regarding the capability of 
TIMESAT of extracting features. Concerning 
the 100 analysed pixels of a time series, 11.96% 
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average of cloud and cloud shadow contaminated 
observations were replaced using CBERS-4 
MUX images. 

(a)

(b)
Fig. 7 – Results of diff erent approaches for noise 
removal in an EVI time series. In (a) the black 
line is the original Landsat-8 time series, the blue 
line is the integrated time series and the black 
thin line is fi ltered integrated time series. In (b) 
the blue line is the fi ltered integrated and the 
black line is the Landsat-8 fi ltered time series.

A 10 fold cross-validation technique was 
applied using diff erent training sets (Original 
Landsat EVI time series; Filtered Landsat EVI 
time series; Integrated EVI time series; Filtered 
Integrated EVI time series; Original Landsat 
NDVI time series, Filtered Landsat NDVI time 

series, Integrated NDVI time series and Filtered 
Integrated NDVI time series). The diff erent data 
set classifi cation accuracy is presented in Table 
4. Concerning the NDVI time series, the multi-
sensor approach accuracy was 64% using the 
fi ltering approach (Equation 2), as opposed to 
68% without the fi ltering step.

Table 4: Accuracy of classification for the 
diff erent data set classifi cations

Time series Data sets NDVI EVI

Integrated 68% 73%

Filtered Integrated 64% 78%

Filtered Landsat 70% 76%

Original Landsat 60% 70%

However, when using only Landsat-8 data, 
the accuracy was 60%. But when combining 
the fi ltering approaches of Equation 1 and 2, 
the classifi cation accuracy with Landsat-8 time 
series reached 70%. 

In relation to EVI time series, multi-sensor 
approach produced an accuracy higher than 
those when using the original Landsat-8 time 
series (respectively, 73% and 70%), as well 
as when combined with fi ltering approaches. 
The classifi cation accuracy using the fi ltered 
integrated time series (78%) was slightly better 
than that using Landsat-8 time series (76%). 

Holden et al. (2016) observed the eff ect 
of combining data from the two sensors (L7 
ETM+ and L8 OLI). Once L7 ETM+ has the 
same spectral bandwidths of CBERS-4 MUX, we 
can use some of their conclusions. For example, 
NDVI relies on the contrasting relationship 
between the near infrared band and the red 
band. They observed that there is a strong and 
consistent positive bias in NDVI, with Landsat 
8 having higher NDVI. Here we observed that 
there is also a strong bias, but not consistent, 
as this relation is not observed for the smaller 
values. We observed that the EVI values are 
also higher for Landsat-8 than CBERS-4, but 
the correlation between them is higher than 
NDVI. The EVI diff ers from NDVI by utilizing 
the blue band as an additional normalizing 
factor that corrects the red band for atmospheric 
infl uences. The bias in the blue band between 
Landsat-8 and CBERS-4 nullifi es the bias in the 
red and near infrared band, resulting in a more 
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correlated EVI across sensors (HOLDEN et al., 
2016). This is probably the reason explaining the 
higher correlation for EVI, and consequently the 
best classifi cation results when using the EVI 
integrated time series. We can see that small 
diff erences on the time series values lead to 
changes in the results of the smoothers improved 
by TIMESAT. Furthermore, fi nding diff erences 
on the extracted parameters, which can modify 
the results of classifi cation. As the correlation 
between the MUX NDVI and OLI NDVI tend 
to be smaller, it can modify the amplitude of the 
signal, resulting in signifi cant changes on the 
smooth time series. We can also see in Figure 
6 that the goodness of fi t between the Landsat 
NDVI and MUX NDVI are signifi cantly lower 
than in respect EVI. As observed by Pinto et 
al. (2016), the greatest spectral bandwidths 
diff erence between the sensors are on the NIR 
band. But there are also significant spectral 
response function (SRF) profi les diff erences 
between corresponding CBERS-4 MUX and 
Landsat-8 OLI spectral bands.

4. FINAL CONSIDERATIONS

This work had the objective of investigating 
a method for noise removal on Landsat-8 OLI 
time series using CBERS-4 MUX data to 
improve a crop classifi cation method based on 
phenological features. We observed a slight 
increase in the classifi cation accuracy when 
using the proposed method. The results for EVI 
were consistently more accurate compared to 
NDVI. The best result was observed with the EVI 
integrated fi ltered time series (78%), followed 
by the fi ltered Landsat EVI time series (76%).

This work did not compared thoroughly 
the two sensors, but we can see that there 
are significant differences. We suggest that 
image normalization procedures are strongly 
recommended to equate the surface refl ectance 
from CBERS-4 to Landsat-8. A per-scene 
relative correction should also be performed to 
incorporate the spatial variability of the sensor 
diff erences and the seasonal variation.

We can also infer that the diff erent methods 
of atmospheric correction and ancillary datasets 
may be aff ecting the results; as well problems of 
misregistration between the images, resampling 
and the use of just one pair of images for determine 
the equation to predict OLI refl ectance from MUX 

refl ectance can also be sources of errors. More 
studies using other footprints and for longer 
time series are needed to better comprehend the 
relation between the OLI and MUX images and 
the eff ects of the diff erent fi ltering approaches, as 
well to understand these eff ects on the results of 
smoothing proceeded by TIMESAT with double 
logistic functions. It is also suggested to test the 
other smoothing approaches implemented by 
TIMESAT as the Asymmetric Gaussian functions 
and Savitzky-Golay.
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