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ABSTRACT 
 
Modernized GPS and the future European Galileo system will offer unprecedented accuracy and availability for precise 
positioning applications. For these applications, the ambiguities of the carrier observations have to be resolved to their 
integer values. The ambiguity success rate is a valuable design parameter to determine if the ambiguities can indeed be 
resolved correctly to their integer values. In this contribution, an overview is given of the modernized GPS and Galileo 
signals, followed by the models used for precise positioning over short, long and intermediate distances and the 
computation of ambiguity success rates. Finally, success rates are computed for a number of observation scenarios, 
ranging from current dual-frequency GPS to integrated triple-frequency GPS and Galileo. 
 
Keywords: GPS, Galileo, ambiguity resolution, ambiguity success rate. 
 
 

RESUMO 
 
A modernização do GPS e o futuro sistema Europeu denominado Galileo irão oferecer acurácia e disponibilidade nunca  
até então obtidas em aplicações de posicionamento de precisão. Para essas aplicações, as ambigüidades das observações 
de fase têm que ser resolvida como inteiras. A taxa de sucesso da solução da ambigüidade é um parâmetro que 
determina se as ambigüidades podem de fato ser solucionadas corretamente. Uma visão geral dos sinais GPS 
modernizado e do Galileo será apresentada neste artigo, seguida pelos modelos usados para posicionamento preciso de 
linhas bases com distâncias curtas, longas e intermediárias e do cálculo da razão do sucesso da ambigüidade. 
Finalmente, razões de sucesso são calculados para vários cenários de observações, desde o caso do GPS com dupla 
freqüência até a freqüência tripla do GPS e Galielo integrados. 
 
Palavras Chaves: GPS, Galileo, solução da ambigüidade, razão de sucesso da ambigüidade. 
 
 
1. INTRODUCTION 
 

Precise positioning with Global Navigation 
Satellite Systems (GNSS), such as the US GPS and the 
future European Galileo, requires resolution of the 
ambiguities of the carrier phase observations to their 
integer values. The ambiguity success rate is defined as 
the probability of correctly fixing the ambiguities to 
their integer values. To compute the success rate, no 
actual data is required; it is therefore a valuable design 
parameter. In this contribution, the success rate will be 
used to evaluate the expected performance of 
modernized GPS and Galileo for a number of 
observation scenarios, which are a function of the 
number of satellite systems used, the number of 
frequencies and the length of the baseline vectors 
considered. 

First a brief overview will be given of the 
modernized GPS and Galileo signals, followed by the 
measurement and stochastic models used to compute the 

ambiguity success rates. Next, the success rates will be 
given for a number of observation scenarios, followed 
by conclusions. 
 
2. MODERNIZED GPS 
 

Between 1978 and 1985, 10 experimental so 
called GPS Block I satellites were launched. In 1989 the 
first operational Block II satellite was brought into orbit 
and the system reached full operational capability in 
1994. Figure 1 gives an overview of the status of the 
current 28-satellite constellation. Although the 
constellation is performing well, a number of satellites 
are on single string, which means there is no 
redundancy to perform one or more critical tasks. 
Fortunately, for the period 2003-2006 13 new launches 
have already been scheduled to maintain constellation 
health, see Table 1. 
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Over the years, the mean mission duration 

(MMD) of the satellites has increased considerably. 
From a contractual MMD of six years and a design life 
of 7.5 years, the MMD has gone up to 9.6 years for the 
block II satellites to over 10 years for the block IIA 
satellites. For the latest block IIR and the new block 
IIR-M satellites, the design life is 10 years and the 
current MMD is nearly eight years. The future block IIF 
satellites, to be launched from 2006 onwards, will have 
a design life of 12 years and an MMD of 10 years. 
Originally these values were higher, but with the 
increased operational life span of the current satellites 
this would result in delaying further modernization into 
the completely redesigned GPSIII, which should 
provide users with the best possible satellite navigation 
system for the next 30 years. 

Mass-market applications usually rely on 
tracking the C/A code on the L1 carrier (1575.42 MHz). 
For precision applications (cm accuracy or better), high-
end dual-frequency receivers are in use. Over the years 
about 50,000 of these receivers have been sold. Before 
1994 the P-code on the L2 carrier (1227.60 MHz) was 
freely available. After the encryption of the P-code into 
the secret Y-code, referred to as Anti-Spoofing (AS), 
manufacturers of civil receivers developed (semi-) 
codeless techniques to acquire and track the L2 signals 
anyway. However, a major drawback of the current 
approach to L2 signal recovery is that the special 
techniques that are required for it, due to the encryption 
of the P-code, results in a significant degradation of the 
signal to noise ratio. Unlike Selective Availability (SA), 
the intentional degradation of the GPS signals, which 
was discontinued in May 2002, AS will remain 
switched on.  

The announcement of a second and third signal 
frequency therefore received a warm welcome from the 
civil GPS community. These signals will be modulated 

on the current L2 frequency and the new L5 frequency 
of 1176.45 MHz. 

The original plans aimed at a modulation of the 
L2-carrier with the same C/A-code as the L1-carrier. 
However, current GPS signals already date back to the 
1970's and better alternatives are available. The 
European initiative to develop Galileo may have been 
another reason to look into a modernized GPS signal 
structure. Current discussions aim at developing and 
implementing a new civil GPS code, called L2 CS (for 
Civil Signal), see [USCG, 2003]. The new code should 
allow for signal tracking in adverse conditions when 
even the current L1 C/A-code signals can no longer be 
tracked, e.g., at low elevations or even inside buildings. 

Details of the new signal can be found in 
[Fontana et al., 2001]. Compared with present semi-
codeless techniques to get around Anti-Spoofing, 
measurement performance will improve considerably. 
Less cycle slips are to be experienced on L2 and 
satellites can be tracked further down to the horizon. 
Concerning measurement precision, a level similar to 
present L1 C/A-code performance is anticipated. 

Eventually, the L2 CS-code might replace the 
L1 C/A-code in single-frequency mass-market 
applications. Dual-frequency range measurements are 
essential in high-precision applications to account for 
ionospheric delays and to enhance carrier phase 
ambiguity resolution. High-end civil dual-frequency 
systems will therefore be based on L1 C/A-code and L2 
CS-code. It is not yet clear if the dual-frequency market 
will expand once the new L2 civil signal is available 
and if this, in addition, will give rise to price drops in 
receiver equipment. 

GPS satellites that will transmit the new L2 
signal will be launched from 2004 onwards. Full 
operational capability (FOC) is anticipated for 2012. By 
that time there will be about 28 satellites transmitting 
the new L2 signal. 

The L5 signals will be transmitted by the Block 
IIF satellites, the first of which will be launched in 
2006. The L5 signals will be different from the L2 CS, 
see again [USCG, 2003], and probably more similar to 
the current P-code, i.e., they will have a chipping rate 
that is 10 times that of the current C/A and the L2 CS 
codes. This high chipping rate code will offer high 
performance ranging capabilities as well as more robust 
carrier tracking for high-precision applications. It is 
anticipated that the L5 code measurement precision will 
be a few times better than the present L1 C/A-code 
precision, see [van Dierendonck and Hegarty, 2000].  
Within 10 years, GPS will turn into a civil triple-
frequency system. It is expected that high-end receivers, 
used for differential and relative positioning in precise 
geodetic and navigational applications, eventually will 
track code (pseudo range) and carrier phase on all three 
frequencies L1, L2 and L5, see Figure 2. 
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Figure 1 – GPS satellite configuration status (March 
2003). 

Table 1: GPS satellite launch schedule. 
Year Launches 
2003 3 IIR 
2004 2 IIR, 1 IIR-M 
2005 3 IIR-M 
2006 1 IIR-M, 1 IIF 
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The new GPS signals will affect both the space 

and user segment, i.e., both satellites and receivers. In 
addition, the GPS control segment will be modernized 
as well. New software will be installed to improve the 
quality of the GPS orbit and clock parameters, 
transmitted by the satellites in their navigation message. 
This will also be accomplished by extending the number 
of tracking stations. Finally, ephemeris and clock data 
will be uploaded to the satellites more frequently. 
 
3. GALILEO 
 

In March 2002, the European Commission 
gave the green light for the development of Galileo, the 
European counterpart of GPS. Galileo should be 
operational in 2008, when modernized GPS will have 
reached initial operational capability (IOC) with 18 
satellites.  

From a technical point of view, Galileo will be 
very similar to (modernized) GPS. According to 
[Salgado et al., 2001] the constellation will consist of 27 
satellites, distributed evenly and regularly over three 
orbital planes. The constellation is probably enhanced 
by three active spare satellites. The projected altitude is 
slightly larger than for GPS. Table 2 gives an overview 
of the Galileo orbits. 

 
The frequency and signal plan of Galileo are 

not yet final. Since the frequency spectrum is extremely 
crowded, see e.g. [NTIA, 2003], only limited bandwidth 
is available. However, the proposal described in [Hein 
et al., 2001; Hein et al., 2002] is believed to serve as the 
current baseline. Like modernized GPS, Galileo will 
employ three bands in the frequency spectrum (see also 
Figure 2). Table 3 gives an overview of the frequency 
bands that may be used for Galileo. 

At the upper end of the L-band spectrum, a 
small band is available on either side of the GPS L1-
band. It is proposed to overlay the GPS L1 signal by 
using the very same center frequency of 1575.42 MHz. 
An overlay signal, with most power concentrated in the 
E2 and E1 side bands, is planned to be reserved for the 
so-called Public Regulated Service. An Open Service 
signal, also overlaid, would occupy a smaller band, in 
the GPS L1 signal band. See again Figure 2. Using 
special signal processing techniques, most of the power 
of the transmitted signal will be in the sidebands, to 
avoid interference with GPS L1. The resulting signal 
will provide pseudo-range measurements with a 
precision somewhere between that of GPS L1 C/A-code 
and future P-code. 
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Figure 2 – GPS and Galileo signals. 

Table 2: Galileo orbital parameters. 
Orbital planes 3 
Satellites/plane 9 
Semi-major axis 29900 km 
Inclination 56° 
Eccentricity ~0 

 

Table 3: Galileo frequencies. 
Identifier Frequency 
E2-L1-E1 1575.42 MHz 
E5b 1207.14 MHz 
E6 1278.75 MHz 
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At the lower end of the L-band spectrum, 
directly adjacent to the GPS L5-band, the E5-band has 
been reserved for Galileo. In the E5-band it is also 
possible to create an overlay with the GPS L5 signal. 
However, this band is wide enough to avoid this, if 
required. It is expected that the large bandwidth will 
result in a signal that has a performance comparable to 
the L5 GPS P-code. Due to the recent decision to shift 
the center frequency in the E5b-band from 1202.25 to 
1207.14 MHz, some signal will be outside the E5-band. 

Finally a reservation exists for Galileo in the 
mid-range of the L-band spectrum, as indicated in 
Figure 2. The E6-band is 40 MHz wide and is to be 
shared with radar applications. The signal in this band 
will be available for commercial services, as opposed to 
the other two signals, that are freely available (but 
remember that the current GPS L2 signal was also not 
meant for use by the civilian community). Measurement 
performance of the E6 signal will be comparable to that 
of E2-L1-E1. 

More details on the proposed Galileo signals 
and frequencies are available from the Galileo website 
at http://www.galileo-pgm.org. 
 
4. PRECISE POSITIONING 
 

Assuming measurements consist of code and 
carrier observations, collected at m different 
frequencies, the GNSS double-difference (DD) baseline 
measurement model for a single epoch k can be written 
as 
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with p code observations, φ  carrier observations, b 
baseline parameters, a carrier ambiguities and I 
ionospheric effects. The corresponding covariance 
matrix reads 
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There are several ways to deal with the 

ionosphere. In the ionosphere fixed model, we assume 
that ionospheric effects are absent. In that case, the 
parameters I are elminated from (1). In the ionosphere 
float case, we assume the ionospheric effects are 
completely uncorrelated and unknown at both ends of 
the baseline. 

The ionosphere fixed and float models are 
extreme cases. In many cases in practice baselines are 
too long to assume there are no residual ionospheric 
effects in the double difference data, but too short to 
assume these effects are completely unknown. We 
therefore introduce a third model, the ionosphere 
weighted model. For this model we extend the 
measurement model (1) with an additional vector of 

ionospheric (pseudo-) observations, Ip, with covariance 
matrix 

pIQ . The measurement model becomes 
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with covariance matrix 
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The weight of the ionospheric observations is 

governed by their standard deviations. For a standard 
deviation equal to zero, we arrive at the ionosphere 
fixed model, for a standard deviation approaching 
infinity, we obtain the ionosphere float model. 

The parameters Ip can be eliminated from (3), 
resulting in a measurement model that has a similar 
structure as the ionosphere fixed model 
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and with covariance matrix 
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Note that (5) and (6) are completely equivalent to (3) 
and (4). In order to solve for the unknown parameters 
using least squares, we need the inverse of the 
covariance matrix of the observations. For the 
ionosphere float model, computing the inverse of (6) 
may be problematic. However, applying the matrix 
identity 
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to (6) results in the inverse 
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where 
 

CQQCQD p
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For the ionosphere float model, the weights of the 
ionosphere observations become zero and we get 
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 CQQCD p
T 111 )( −−− += φ  (10) 

 
Note that for the ionosphere fixed model we can simply 
ignore the second term of (8). 

Care should be taken to assigne realistic 
weights to the ionospheric pseudo-observations. These 
observations may, e.g., be derived from the ionospheric 
estimates of permanent GPS arrays. In case no such 
information is available, one may have to revert to 
sample values of the ionospheric observations that are 
equal to zero. For this latter case the standard deviations 
of the ionospheric observations will be larger than for 
the former. The standard deviations should be chosen 
sufficiently large not to bias the estimated carrier 
ambiguities by an amount that may result in a wrong 
integer ambiguity. The effect of biases on integer carrier 
ambiguity resolution is described e.g. in [Teunissen, 
2001]. 

If code and carrier observations are available, 
both baseline components and ambiguities can be 
resolved using only a single epoch of data (however, as 
we will see later, the probability of correctly solving the 
integer ambiguities may be very low). If only carrier 
observations are used, at least two epochs are required 
to solve for baseline components and ambiguities. The 
measurement model becomes 
 

























=








+
+

a
b
b

AB
AB

CI
CI

j

k

j

k

jpj

kpk

0
0

,

,

φ
φ

 (11) 

 
where the subscripts j and k denote the two epochs. 
Resolution of the integer ambiguities is only possible 
for the ionosphere fixed and weighted baselines; for the 
ionosphere float model, it is not possible to separate the 
ambiguities from the ionospheric effects. 

Not using code observations has the advantage 
that effects due to multipath do not affect resolution of 
the integer ambiguities. However, there is also a 
disadvantage in that the number of satellites required to 
obtain a solution is much higher: four for a code and 
carrier solution, but seven for a carrier-only solution 
(for a moving receiver). This can be seen by eliminating 
the ambiguities from (11). What is left is a triple 
difference model with two different sets of position 
parameters at epochs j and k. There are six unknown 

parameters; solving for these parameters requires six 
triple differences, which in turn require seven satellites. 

If two different satellite systems are available, 
such as GPS and Galileo, the ambiguities of a mixed 
pair of double differences are in general not integer, due 
to different hardware and clock characteristics. 
Therefore the design matrix A and ambiguity vector a 
should be partitioned as 
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This also means that for a carrier-only GPS and Galileo 
solution, at least eight satellites are required. 

 
5. AMBIGUITY RESOLUTION 
 

Processing GPS data for precise relative 
positioning generally consists of the three steps shown 
in Figure 3. In the first step, known as the float solution, 
receiver positions, carrier ambiguities, and possibly a 
number of additional nuisance parameters, are 
determined in a least squares adjustment. The carrier 
ambiguities are known to be integers. However, after 
the first step, only real-valued ambiguities and their 
associated covariance matrix are available. These 
estimates and their covariance matrix are the input for 
the second step, in which the integer values of the 
carrier ambiguities are estimated. Once the integer 
ambiguities are known, they are applied to the carrier 
observations, after which these start acting as very 
precise pseudo range measurements. These adapted 
measurements are used as input for the third step, 
known as the fixed solution, in which the final, precise 
positions are determined.  
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Figure 3 – The three steps involved in precise 
GNSS positioning. 
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Figure 4 – Ambiguity decorrelation by pushing tangents. From left to right: 1) push horizontal tangents of confidence ellipse
inwards; 2) push vertical tangents inwards; 3) repeat procedure until resulting ellipse resembles a circle as much as possible, i.e., until no
further decorrelation of the ambiguities is possible. The areas of the original and decorrelated ellipse are the same and the integer nature of
the ambiguities is preserved. 
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The optimal method to resolve the ambiguities 
is based on integer least squares. An efficient 
implementation of this method for ambiguity resolution 
is the Least squares AMBiguity Decorrelation 
Adjustment (LAMBDA) method, developed at Delft 
University of Technology, [Teunissen, 1993], [de Jonge 
& Tiberius, 1996]. This method is based on a 
decorrelation of the original ambiguities, followed by a 
search procedure. The decorrelation is required since the 
spectrum of the conditional variances of the original 
ambiguities shows a large discontinuity. As a result, the 
search space will be very elongated and the search for 
the correct set of integer ambiguities will be very 
inefficient, [Teunissen et al., 1994]. After decorrelation 
of the ambiguities, the spectrum will be much more 
homogeneous, which results in a more efficient search 
procedure. A schematic overview of the decorrelation 
procedure is shown in Figure 4. 

Denoting the real-valued ambiguities and their 
covariance matrix by â  and aQ ˆ , respectively, and the 
decorrelation matrix by ZT, the transformed ambiguities 
and their corresponding covariance matrix are given by 
 

aZz T ˆˆ =  ZQZQ a
T

z ˆˆ =  (13) 
 

The elements of the matrix ZT are all integers; 
its determinant is equal to 1 or –1. After the integer 
values of the transformed ambiguities, denoted by z( , 
are determined, the integer values of the original 
ambiguities are obtained by using the inverse of 
transformation (13) 
 

zZa T (( −=  (14) 
 
Contrary to popular belief, the resolved carrier 

ambiguities are stochastic rather than deterministic. The 
integer ambiguities are determined from observations 
and since these observations carry an inherent 
uncertainty, the integer ambiguities are also subject to 

this uncertainty. Rather than stating that the ambiguities 
are determined from the observation data, it is more 
appropriate to say that they are estimated from this data. 

The ambiguities being estimated have an 
important implication: they may not always be correct. 
What we would like to know is, given a particular 
estimate, the probability that this estimate is indeed the 
correct integer or integer vector. This probability of 
correct integer ambiguity estimation will be referred to 
as success rate, [Teunissen, 1998]. For the computation 
of the success rate, we need the probability mass 
function of the integer least squares estimator. This 
probability mass function can be constructed from the 
probability density function of the real-valued 
ambiguity estimates resulting from the float solution, 
and the integer mapping applied in the second step. The 
characteristics of the probability density function are 
captured in the covariance matrix of the real-valued 
ambiguities. This covariance matrix is a function of the 
a priori stochastic model of the observations and of the 
relative receiver-satellite geometry. For its computation 
no actual data is required. Consequently, for the 
computation of success rates, also no observation data is 
required. As such, it can be used as a design tool, just 
like the popular DOP (Dilution of Precision) values. 

Another application of the success rate is its 
use as a system design parameter when looking for the 
best possible combination of frequencies for integer 
ambiguity estimation. Examples of the success rate as a 
planning and design tool will be given in Section 6. 

To illustrate the computation of success rates, 
we will consider a simple, one-dimensional example. 
The probability density function of the real-valued 
estimator is shown in Figure 5. This function is 
continuous because the real-valued estimator can take 
any real value. The function is centered at the correct 
integer, due to the unbiasedness of the least squares 
estimator. 

For this case, we assume that the correct 
integer ambiguity is equal to four. In one dimension, 

probability density function (pdf) â

 

probability mass function

 

∫===
5.4

5.3

)ˆ(pdf    )4(    rate Success aaP (  

Figute 5 – Computation of success rate, one-dimensional example (from [Teunissen & de Jong, 1999]). 
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integer estimation boils down to simple rounding. All 
real-valued estimates in an interval of +0.5 and –0.5 
around an integer value are mapped onto that integer. 
The probability that the integer least squares estimator 
takes on a particular integer value can therefore be 
computed by integrating the probability density function 
of the real-valued estimator over these mapping 
intervals. Consequently, the success rate is equal to the 
integral of the probability density function over the 
mapping interval around four, see again Figure 5.  

Denoting the probability of correctly resolving 
the decorrelated integer ambiguities by )( zzP =( , a 
lower bound of the probability of correct integer 
ambiguity resolution, i.e., the success rate, is given by 
 

∏
=

−Φ≥=
n

i z Ii

zzP
1 ˆ

)1)
2

1(2()(
|

σ
(  (15) 

 
where n is the number of ambiguities, 2

ˆ |Iizσ  is the 

conditional variance, resulting from the decomposition 
T

z LDLQ =ˆ  of the covariance matrix of the transformed 
ambiguities, with L a lower triangular matrix, D a 
diagonal matrix and ),(2

ˆ |
iiD

Iiz =σ . The function Φ  is 

defined as 
 

∫
∞−

−=Φ
x

dzzx )exp(
2
1)( 2

2
1

π
 (16) 

 
which is the integral of the Gaussian probability density 
function. 
 
6. SUCCESS RATES 
 

Success rates were computed for São Paulo 
(latitude 23°32’ S, longitude 46°37’ W), for 23 March 
2003, using a minimum elevation of 10°. Standard 
deviations of the undifferenced carrier observations 
were 0.003 m, the standard deviations of the code 
observations are given in Table 4. As explained in 
Sections 2 and 3, the precision of the code observations 
depend on the signals considered for both GPS and 
Galileo. Unless indicated otherwise, the a priori 
standard deviation of single-difference ionospheric 
pseudo-observations was chosen as 0.05 m, 
corresponding to a baseline length of about 50 km. 
 

Success rates are computed for a number of 
scenarios. For the first three scenarios, ionosphere fixed 
(short baselines), ionosphere weighted (medium 
baselines) and ionosphere float (long baselines) will be 
considered for single-epoch ambiguity resolution. These 
scenarios include: 
1. GPS-only, dual- and triple-frequency. 
2. Integrated GPS and Galileo, dual- and triple-

frequency. 
3. Integrated GPS and Galileo, dual-frequeny, 

different standard deviations of code observations. 
For the fourth scenario, only the weighted ionosphere 
model will be considered. Rather than looking at single-
epoch success rates, the number of epochs required to 
obtain a predefined success rate of 99% are computed: 
4. Integrated GPS and Galileo, dual-frequency, 

success rate of 99%, different standard deviations 
of code observations and different standard 
deviations of ionospheric pseudo-observations. 

The results are shown as 95% percentiles, 
which mean that in 95% of all cases (during the day 
considered), the success rate is greater than the 
indicated value. 

Shown in Figure 6 are the number of visible 
GPS and Galileo satellites for São Paulo on 23 March 
2003. Visible here means above the cut-off elevation of 
10°. As we can see, the total number of satellites ranges 
from 12 to 21. It should be noted here that, unlike GPS, 
the Galileo constellation does not repeat itself every 
sidereal day (23h56m) but every five days. As a result, 
the number of satellites, and the results given later in 
this section, will vary from day to day. 

 
Shown in Figure 7 are the success rates for the 

GPS-only cases. The dual-frequency results are based 
on the current L1 and L2 frequencies, for the triple-
frequency results the new L5 signal was added. For 
short baselines, the dual-frequency success rates are 
already very high, so adding a third frequency has only 
a marginal effect. The situation is different for the 
medium and long baseline cases, although it can be 
concluded that instantaneous ambiguity resolution is not 
feasible for most of the time. 

 
 

Table 4: Standard deviations of code observations, 
used for computation of success rates. 

Standard precision 
L1 0.30 E2-L1-E1 0.15 
L2 0.30 E5b 0.10 
L5 0.10 E6 0.10 
High precision 
L1 0.30 E2-L1-E1 0.10 
L5 0.05 E5b 0.05 
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Figure 6 – Number of visible satellites (above 10° 
elevation mask) for São Paulo, 23 March 2003. 
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For an integrated GPS/Galileo solution, the 
success rates show a significant improvement, 
compared to the GPS-only case (see Figure 8). In 
particular for the weighted ionosphere model (medium 
baseline length) instantaneous ambiguity resolution 
becomes feasible during most of the day. The dual-
frequency Galileo system considered here was assumed 
to use the E2-L1-E1 frequency of 1575.42 MHz and the 
E5b frequency of 1207.14 MHz. 

In the third scenario, only dual-frequency GPS 
(L1, L5) and Galileo (E2-L1-E1, E5b) were considered 
for different precisions of the code observations, see 
Table 4. As can be seen from Figure 9, the long baseline 
(ionosphere float model) benefited the most from the 
improved precision of the code observations. High 
precision code observations are even more beneficial 
than standard precision observations for the triple-
frequency case. However, instantaneous ambiguity 
resolution is possible for only a limited period of the 
day. 

For the last scenario again the integrated dual-
frequency GPS and Galileo system from scenario 3 
were considered, but this time only for the medium 
baseline case. Instead of looking at single-epoch 
ambiguity resolution, it was now investigated how many 
epochs were required for a success rate of 99%. Results 
are shown in Figure 10 for the standard- and high-
precision code measurements for a standard deviation of 
0.05 m for the ionospheric pseudo-observations; in the 
same figure similar results are shown for a standard 
deviation of 0.10 m for these pseudo-observations. It 
can be concluded that only a limited (2-4) number of 

epochs are required to attain a success rate of 99%. A 
second conclusion is that improved code observations 
do not contribute much to reducing the number of 
epochs required to attain a predefined success rate. 
Formulated differently, code observations do not 
contribute much when processing more than one epoch. 

The carrier observations in this case seem to 
provide enough geometrical strength by themselves to 
warrant reliable ambiguity resolution. The additional 
advantage is that it is not necessary to use code 
observations, which often suffer from multipath, which 
in turn affect the resolution of the carrier ambiguities, 
see [Joosten et al., 2002].  
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Figure 8 – Instantaneous success rates for 
integrated GPS/Galileo positioning (standard 
precision code observations). 
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Figure 7 – Instantaneous success rates for the GPS-
only case (standard precision of code observations). 
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Figure 9 – Instantaneous success-rates for integrated 
dual-frequency GPS/Galileo and different 
precisions for the code observations (see Table 4). 
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Figure 10 – Number of epochs, required to attain a 
success rate of 99% for dual-frequency GPS/Galileo 
and standard and high precision code observations 
and for a ionospheric pseudo-observations standard 
deviation of 0.05 m (top) and 0.10 m. 
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7. CONCLUSIONS 
 

For integrated GPS/Galileo positioning 
ambiguity success rates are significantly higher than for 
GPS-only, in particular for medium and long baselines. 
However, for very long baselines, instantaneous 
ambiguity resolution is not feasible, due to ionospheric 
effects. Fortunately, the influence of the ionosphere is 
smaller for shorter baselines. For medium baselines (up 
to 100 km), ambiguities can be resolved nearly 
instantaneously, using only a limited number of 
observation epochs. 
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