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ABSTRACT 
 
Based on a theoretical formulation of the far-zone contribution to the upward continuation of geoid-generated gravity 
anomalies the numerical aspects are investigated. Moreover, the numerical result over the part of the Canadian Rocky 
Mountains is presented in this paper.  
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1. INTRODUCTION 
 

 In order to solve the geodetic boundary value 
problem the gravity anomalies have to be obtained on 
the geoid surface. Therefore, the inverse Dirichlet’s 
boundary value problem is solved to continue the grav-
ity anomalies from the earth surface down onto the 
geoid. The downward continuation is achieved by solv-
ing Poisson’s integral equation, considering that the 
gravity anomalies (multiplied by the geocentric radius) 
are harmonic at the exterior of the geoid.  

In practice Poisson’s integral equation is evalu-
ated numerically. The integral equation (Fredholm’s 
linear integral equation of the first kind (Rektorys, 
1968)) is transformed into a system of linear equations 
that has to be computed as a whole (Martinec, 1996). 
However, the value of the Poisson integral kernel at-
tenuates relatively fast for growing spherical distance, 
which makes the influence of gravity anomalies at lar-
ger distances from the computation point relatively 
small.  

To reduce the number of linear equations that 
has to be solved, a useful approach is to divide the inte-
gration domain into the near-zone and far-zone integra-
tion sub-domains. The far-zone contribution is then 
subtracted from the gravity anomalies referred to the 
earth surface before they are downward continued solv-
ing only the near-zone contribution. Since the far-zone 
contribution is supposed to be much smaller and mainly 
a result of the variations in the anomaly field of low-
frequency, it can be determined directly from an exist-

ing geopotential model from which the effect of topog-
raphy is removed.  

 
2. POISSON’S INTEGRAL 
 

Let us begin with a definition of the geoid-
generated disturbing gravity potential  as a 
difference between the geoid-generated gravity potential 

 and the normal gravity potential 
given as: Vaníček et al. (2004), 
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The geoid-generated gravity potential 

 in eqn. (1) is obtained by subtracting the 
gravitational potential of topographical masses V  
from the actual gravity potential W , so that  
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The geocentric system of the orthogonal coor-

dinates ,  and  is chosen, where  and  denote 
the geocentric spherical latitude and longitude 
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Since the geoid-generated disturbing gravity 
potential T  satisfies the Laplace equation at the 
exterior of the geoid ( , where 

 denotes the geocentric radius of the geoid sur-
face) and is regular in infinity (Pick et al., 1973) 
 

  
             ,   ,        (3) 

 
it can be expressed in terms of the solid spherical har-
monics T  of degree .  

According to Heiskanen and Moritz (1967, 
eqn. 1-87b) it reads 
 

    )T .     (4) 

 
In eqn. (4) and all the equations in the sequel, 

the spherical approximation of the geoid surface by the 
mean radius of the earth  (Bomford, 1981) is used, 
i.e., . 

The solid spherical harmonics  in eqn. 
(4) are given by (e.g., Pick et al., 1973) 

)

 
     

        Ω′ ,   (5) 

 
where  are the Legendre polynomials (Hob-
son, 1931) for the argument of cosine of the spherical 
distance . 

Furthermore, the fundamental formula of 
physical geodesy is introduced by (Heiskanen and 
Moritz, 1967, eqn. 2-154) 
 

                                   

              ,    (6) )

where  is the geoid-generated gravity anom-
aly. 

The first term on the right-hand side of eqn. (6) 
stands for the geoid-generated gravity disturbance 

. Regarding eqns. (4) and (6), the following 
relation is obtained for   
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Inserting eqns. (4) and (7) into the fundamental 
formula of physical geodesy as described by eqn. (6), 
the geoid-generated gravity anomaly  is 
expressed in the form of the solid spherical harmonics 

, i.e., 
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Referred to the geoid surface, eqn. (8) holds  
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Summarizing the previous theory, the geoid-

generated disturbing gravity potential T  can be 
described in the following form 
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By analogy with eqn. (10), the geoid-generated 
gravity disturbance  reads  ( Ω,NT rgδ )
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Finally, the geoid-generated gravity anomaly 

 in eqn. (8) is given by   ( Ω∆ ,NT rg )
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The Dirichlet boundary value problem, i.e., the 
upward continuation, is described by the Poisson inte-
gral (e.g., Kellogg, 1927; see also Bjerhamar, 1963). For 
the geoid-generated gravity anomaly  re-
ferred to the earth surface it reads  
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where  is Poisson’s integral kernel.  ( )[ Ω′Ω ,R;K tr ]

Comparing eqn. (12) with Poisson’s integral in 
eqn. (13), the Poisson’s integral kernel is found in the 
following spectral form (ibid)  
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3. FAR-ZONE CONTRIBUTION TO UPWARD 

CONTINUATION 
 

To evaluate the Poisson integral in eqn. (13), 
the integration domain π20;π0O ≤≤≤≤∈Ω αψ

oψ

, 
where  stands for the spherical azimuth, can be di-
vided into the near-zone integration sub-domain Ω , 

defined on the interval 
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integration sub-domain Ω , defined on the inter-

val ( π,oψ ψ∈ . The right-hand side of eqn. (13) is then 
rewritten as (Martinec, 1996) 
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where  and  are the 

modified Poisson’s kernels for the near-zone and far-
zone integration sub-domains. 
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As follows from the above equation, the far-zone con-
tribution to the upward continuation is given by  
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According to Molodensky et al. (1960), the 

modified Poisson kernel  in eqn. 

(17) can further be expanded into a series of Legendre 
polynomials . Thereby (Martinec, 1996) 
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where  are Molodensky’s truncation coef-
ficients. 
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Furthermore, the integration with respect to the 

spherical distance ψ  at the interval π,0∈ψ  is ap-
plied in eqn. (19) 
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Using the orthogonality property of the Legen-
dre polynomials (Hobson, 1931) 
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and substituting for  from eqn. 

(18), the expression for the Molodensky truncation 
coefficients ]  is obtained (Martinec, 1996) 
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The truncation coefficients  can 

be computed either by numerical integration over the 
interval 
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Inserting eqn. (18) back to eqn. (16), the far-

zone contribution to the upward continuation of gravity 
anomalies consequently becomes    
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Regarding eqns. (5) and (9), the geoid-

generated gravity anomaly on the right-hand side of 
eqn. (24) can be described by 
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By applying the function  from eqn. (5) 

to the upward continuation of the geoid-generated grav-
ity anomaly, the following relation for the far-zone 
contribution is found 
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Taking into account also the expression of 
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iskanen and Moritz, 1967) 
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the far-zone contribution to the upward continuation of 
the geoid-generated gravity anomaly can be rewritten as 
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where  are the Legendre associated functions 
(Hobson, 1931), and GM is the geocentric gravitational 
constant. 

( φsinP mn,

 
4. NUMERICAL INVESTIGATION 
 

From eqn. (28) follows that the far-zone con-
tribution to Poisson’s upward continuation is a function 
of the spatial distance between the computation and 
integration points, the degree to which the coefficients 

 and S  are taken into account and the step of the 
numerical integration used for the computation of the 
truncation coefficients. To get an idea of how these 
dependencies are manifested in the actual value of the 
far-zone contribution, eqn. (28) is applied with varying 
heights, maximal EGM-96 retained degree and step of 
numerical integration. In this investigation the geody-
namic coeficients C  and S  of the geopotential 
model EGM-96 are assumed to describe the gravity 
field generated by the geoid. In real, of course, they 
describes the earth gravity field (including the topogra-
phy and the atmosphere). 

T
mn,C T

mn,

T
mn,

T
mn,

The numerical integration used for the compu-
tation of the truncation coefficients , as 
defined in eqn. (22), was applied for the integration 
steps  and 1  on the interval 

( )[ ]on ψ,Q Ωtr

01,1o ′=∆ψ ′ ( π,1o∈ψ . 
The relative precision of the numerical integration with 
different step sizes is shown in Figs. 1 to 4. 
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Fig. 1- Relation between the truncation coefficients 

 and the steps of numerical integration 
 and 1  for the height 100 m 
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Fig. 2- The relative accuracy of the numerical integra-

tion to evaluate the truncation coefficients  
for the height 100 m and step of numerical integration 
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( )[ on ψ,Q Ωtr ]

o1=∆ψ 0′
 

 
Fig. 3- Relation between the truncation coefficients 

  and the steps of numerical integration 
 and 1  for the height 6000 m 
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Fig. 4- The relative accuracy of the numerical integra-

tion to evaluate the truncation coefficients  
for the height 6000 m and step of numerical integration 

 and 1  
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As follows from the result in Fig. 1, the far-
zone contribution differs less than 5  when 10’ 
integration step for the numerical integration is used 
instead of 1’. However, when 30’ step is applied the 
difference is only acceptable when the heights are less 
than 3000 m. For the heights up to 6000 m it can reach 
up to 40 . From these results it can be concluded 
that with a step of the numerical integration  
the truncation coefficients  can be calcu-
lated with an accuracy of about 10 .  
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For the calculations in this section, the global 
geopotential model EGM-96 is used, and the normal 
gravity field is defined based on parameters of the geo-
centric reference ellipsoid GRS-80. The harmonic part 
of the normal gravity field is described by the following 
spherical harmonics expansion (Heiskanen and Moritz, 
1967) 
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Adopting the following parameters: the major 

semi-axis , the first numerical flat-
tening , the geocentric gravitational con-
stant GM  (Ries et al., 1992) 
and the mean angular velocity of the earth spin 

 (IAG SC3 Rep., 1995), 
the coefficients of the series expansion in eqn. (29) are 
evaluated according to (ibid) 
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In eqn. (30), the first and second numerical ex-

centricities  and , and Clairaut’s constant m  are 
given by 

e e′
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The coefficients of GRS-80 and their corre-

sponding EGM-96 coefficients are shown in Tab. 1. 
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TABLE 1: COEFFICIENTS OF THE NORMAL 
GRAVITY FIELD GRS-80 AND THE EARTH 

GRAVITY MODEL EGM-96 
n EGM96

n,0C  GRS80
n,0C  GRS80

n,0
EGM96
n,0 CC −  

2 -4.841654⋅10-4 -4.841679⋅10-4 0.025436⋅10-7 

4 5.398739⋅10-7 7.903083⋅10-7 -2.504344⋅10-7 

6 -1.499580⋅10-7 -1.687269⋅10-9 -1.482707⋅10-7 

8 4.967117⋅10-8 3.460615⋅10-12 0.496677⋅10-7 

      

The geopotential model EGM-96 can be used 
up to different degrees to calculate the far-zone contri-
bution. Figure 5 shows for all degrees the far-zone con-
tribution to the gravity anomaly for the heights h  equal 
to 1000, 2000 and 6000 m. For the numerical integra-
tion the step  is used. 01 ′=∆ψ

As follows from comparison of the coefficients 
in Tab. 1, the coefficients C  and C  are of the same 

order of magnitude in both series. However  is 
already two orders smaller than its corresponding coef-
ficient of EGM-96. It can be shown that for a rough 
estimation of the maximal influence of the normalized 
coefficient  onto the gravity anomalies referred to 
the earth surface the following holds 
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Although the result for higher degrees seems to 
converge, it is not obvious from Fig. 5 up to which 
degree EGM-96 should be applied. For heights up to 
1000 m an accuracy of 10  can be achieved with 
the use of only 180 degrees. When the heights are larger 
the global geopotential model should be used up to a 
higher degree to reach the same accuracy. This conclu-
sion is however only valid when we assume that the 
coefficients of the higher degrees are accurate, i.e. that 
they add information. 
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Using the above relation it is possible to deter-

mine up to what degree the series expansion of the 
GRS-80 normal gravity potential field should be taken 
into account. Considering  and 

, the influence of the ellipsoidal coefficients is 
estimated to be 

m8000Rrmax +=
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The result shows that for the normal gravity 

potential  can, with an accuracy of 10 , be 
computed for Helmert’s spheroid  
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Consequently, the disturbing potential is given by  
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Fig. 5- The far-zone contribution to gravity 

anomalies on the topography computed from  
The EGM-96 for degrees n  360,...,4,3,2=

 
The far-zone contribution to the gravity anoma-

lies referred to the earth surface at a part of the Cana-
dian Rocky Mountains is shown in Fig. 6. At this terri-
tory it varies between –83 and 708 µGal .  
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Figure. 6- The far-zone contribution to the gravity 
anomalies [µGal] 
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5. CONCLUSIONS 
 

The far-zone contribution to gravity anomalies 
referred to the earth surface can directly be calculated 
from the spherical harmonics model for the global dis-
turbance potential. To reach an accuracy of 1 it is 
sufficient to use this model up to degree and order 180 
when the heights are smaller than 1000 m.   

Galµ0

The truncation coefficients can be calculated 
with sufficient accuracy using numerical integration 
with a 10’ step.  

When an ellipsoidal normal potential field is 
used to transform the coefficients of a global geopoten-
tial model into coefficients of the global disturbance 
model, the spherical harmonics expansion of the normal 
field can be truncated after the fourth degree. 
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