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ABSTRACT 
 

When two datasets are fused using least-squares adjustment, usually all the results will be affected by some change, 
even the reference data that are meant to provide information of such high quality that they should remain stable.  In 
order to avoid this effect, the sequential adjustment is to be replaced by a strictly hierarchical method in which the esti-
mation procedure is designed to reproduce everything that belongs to a “higher category” and to perform an adjustment 
in the least-squares sense for everything else.  After presenting such a suboptimal estimator, but with the “reproducing 
property,” this technique is applied to the integration of photogrammetric networks of substantially different scales. 
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1. INTRODUCTION 

 
Let us assume that photogrammetric images 

were taken at two substantially different scales from the 
same scene.  To merge the available information we 
could apply one of the following procedures 

 
• perform a simultaneous bundle adjustment, 
• use object space coordinates from one adjustment as 

stochastic constraints on the second, 
• use object space coordinates from one adjustment as 

fixed constraints on the second. 
 

Out of these procedures, only the third one 
would truly reproduce the results from the first adjust-
ment, but at the cost of neglecting the corresponding 
variance-covariance matrix.  The first and second pro-
cedures, however, would provide us with “up-dates” of 
the first adjustment, thus not fulfilling the requirements 
of a hierarchical data fusion method that ought to keep 
the so-called “reference information” unchanged. 

 
On the other hand, the third procedure will ra-

rely be optimal among all possible hierarchical data 
fusion methods.  This was shown by B. Schaffrin 
(1997), who derived the “optimal reproducing estima-
tor” in the context of geodetic network densification by 
employing non-Bayesian techniques.  Hierarchical Ba-
yesian estimators have, in contrast, been proposed by 
L.M. Berliner (1996) for time series, and by C.K. 
Wikle/L.M. Berliner/N. Cressie (1998) for space-time 
models. 

 
In the following we shall give a brief review of 

alternative procedures, including the “optimal hierarchi-
cal data fusion method.”  Afterwards, we shall compare 
them with each other in view of a (synthetic) photo-
grammetric example (where three close-range images 
provide the reference frame for three other closest-range 
images) before we draw some conclusions and give an 
out-look on further research. 

 
In this context we also want to draw attention 

to the previous work of K.R. Koch (1983), E. Grafa-
rend/B. Schaffrin (1988), B. Schaffrin (1989), and 
F.W.O. Aduol (1993), among many others, who have 
discussed the “dynamic” network densification problem, 
mostly without reference to hierarchical procedures for 
which the “Helmert transformation” was traditionally 
used.  Now we know that the latter approach is non-
optimal, in general; see, e.g., Schaffrin (2002). 

 
2. OPTIMAL DATA FUSION – NON-HIERARCHI-
CAL MODE 

 
Let us start from a standard situation in which 

we assume the (higher level) “reference information” to 
be given in the form of estimated parameters which, in 
turn, appear in the (linearized) observation equations for 
the second (lower level) dataset.  Consequently, we 
basically have an Extended Gauss-Markov Model 
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where 
 

y  is a  vector of observational increments, 1×n

1ξ  is a l  vector of parameters with prior informati-
on, 

1×

2ξ  is a (  vector of parameters without prior 
information, 

1)×− lm

],[: 21 AAA =  is the  coefficient matrix, mn ×
e  is a n  vector of random observation errors, 1×

}{: eD=Σ  is the corresponding n  dispersion matrix, n×
P  is the corresponding  weight matrix, nn ×

2
0σ  is the (typically unknown) variance component, 

1̂ξ  is the  (given) vector of unbiased “reference” 
(prior) information, 

1×l

}ˆ{: 1
0
1 ξD=Σ  is the corresponding l  dispersion ma-

trix, 
l×

0
1Q  is the corresponding l  cofactor matrix, l×

10
1

0
1 )(: −= QP  may be used as l  weight matrix if Q  

is positive-definite and thus invertible, 
l× 0

1

C  denotes “covariance” while E stands for “expectati-
on” and D for “dispersion.” 

 
Note that we introduced the same variance 

component  for both the new observations and the 
reference data. 

2
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Following the standard approach, we may re-

phrase (3) and give it the form of stochastic constraints 
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from which we arrive at the same formulas as given by 
H.J. Buiten (1978), for instance; namely 
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for the estimated parameters, and at 
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for their dispersion matrix.  Obviously, 1  does not have 
the “reproducing property” since the corresponding 
residual vector 

ˆ̂ξ
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will not vanish, in general (unless , which 
would rarely be fulfilled).  The corresponding disper-
sion matrix is then readily derived as 
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We may also introduce the residual vector for 
the observations as 
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with the dispersion matrix 
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and the covariance matrix 
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knowing that  and ~e  (as well as e~ ) will be uncorre-
lated: 

ξ̂̂ 0
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Obviously, the normal equations from which 

the solution (6) was obtained essentially represent or-
thogonality relations which in terms of the residual 
vectors can be rewritten as: 
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If we now turn to the estimation of the variance 

component , the best invariant quadratic uniformly 
unbiased estimate of it is readily given by 
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where and Ω  can be shown to be statistically inde-
pendent under the assumption of normal distributions 
for e  and .  Thus, we may check the consistency of 

R

0
1e
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the “reference information” ξ  with the new observati-
ons in  by looking at the test statistic (if ) 
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which happens to be F-distributed under the null hy-
pothesis 
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Of course, T  would follow a non-central F-

distribution if the alternative hypothesis 
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holds true where the non-centrality parameter is then 
given as 
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For later applications, let us mention that under 

certain conditions the regular inverse N  may be re-
placed by a g-inverse  in the above formulas, and  
by q  if the latter is smaller than . 

−N m
: m

 
Note that, due to the special structure of 

, we may always replace KN  by the 
inverse of the “first Schur complement” of the matrix , 
namely 
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Similarly, we have 
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This concludes our short review of the optimal 

data fusion procedure in the non-hierarchical mode. 
 
3. OPTIMAL DATA FUSION – HIERARCHICAL 

MODE 
 

Now let us turn to the hierarchical mode, but 
still using the original Extended Gauss-Markov Model 
as defined in (1)-(5).  In this case we require the prior 
information  to be reproduced along with its covari-
ance matrix Σ , or at least with its cofactor matrix Q .  
Let us call the new estimate 

1̂ξ
0
1

0
1

; then the “reproducing 
property” reads: 

,1̂1 ξξ =    .}{ 0
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Following the derivations in B. Schaffrin 

(1997), the “optimal linear uniformly unbiased estimate 
of , with the reproducing property for ,” is readily 
obtained as 
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where  and  are to be taken from (6), (7) and (9), re-
spectively.  Because of (17), we immediately get its disper-
sion matrix as 
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thereby exploiting the special pattern of . ]0,[: lIK =

 
The corresponding residual vectors then result 

in 
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with the dispersion matrix 
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in contrast to (17) for the optimal (non-reproducing) 
linear estimate of .  Furthermore, the orthogonality 
relations (18) turn into 
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which again shows the central role that the “original” 
residual vector  has to play. 0
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For the variance component , we now deri-

ve an invariant quadratic uniformly unbiased estimate 
based on the sum of weighted squared residuals 
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defines the increase due to the additional requirement of 
“reproducing ”.  Consequently, the expectation of 1̂ξ
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thus leading to the new estimate 
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We may now form the new test statistic 
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in order to test the null hypothesis 
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against the alternative 
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On the other hand, if T  ends up being smaller 
than the appropriate fractile of the F-distribution, then 
we should also be allowed to conclude that it would be 
smaller than the fractile of the actual (but unknown) 
distribution, thus enabling us to at least accept the null 
hypothesis  in (47).  It will be harder to argue the 
opposite direction, namely when to reject H , without 

the knowledge of approximate fractiles for 

0H

0

T . 
 
Note that any test for consistency in the form 

of the null hypothesis 
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4. THE APPROACH BASED ON HELMERT’S 
TRANSFORMATION 

 
In this chapter we try to follow the “traditio-

nal” approach, which can be interpreted as a free ad-
justment of the new dataset , followed by a so-called 
“Helmert transformation” with respect to the reference 
data  which, at the end, will not be changed.  This is a 
two-step procedure in which the stochastic constraints 
(4)-(5) are used only to identify a unique solution within 
the solution space of the normal equations coming from 
the model (1)-(2) alone.  Nevertheless, in this contribu-
tion, we shall derive all corresponding formulas on the 
basis of the full model (1)-(5), that explains some of the 
variations from the established formalism. 

y
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In accordance with B. Schaffrin (1984), for in-
stance, the above described estimation formulas can 
equivalently be based on the following set of minimum 
constraints as they refer to our original prior informa-
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where, in comparison to (6), only the matrix  is to be 
replaced by KE .  The result would not even 
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Note that ξ  would not possess the “reprodu-

cing property”, in general; this is why we have to mo-
dify this solution by using the residual vector 
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in agreement with B. Schaffrin (1984, formula (51)). 
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Combining (60)-(61) with (66)-(70) now yields 
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after applying (63)-(64), and its dispersion matrix will 
thus be 
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On the other hand, formula (71) confirms the 

second part of (59), indeed, as we get 
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since 
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We may now study the residual vector for the 

observations as defined by 
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and the residual vector for the reference data given by 
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which vanishes following (56) with 
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In order to compute the dispersion matrix 

}~{eD  we first determine 
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and secondly 
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using (52) in combination with (65).  Therefore, we can 
readily conclude that the dispersion matrix of e~  is re-
presented by 
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and the covariance matrix between ξ̂  and e~  by 
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using the fact that ξ  and e  are uncorrelated according 
to 
 

TADyCeC ⋅−= }{},{},{ ξξξ  
.0)()( 10

0
2
0

10
0

2
0 =+−+= −− TTTT AKPKNAKPKN σσ  (84) 

 
Apparently the following orthogonality relation 

holds true as well: 
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due to (54), (62)-(64) and (65), which nicely comple-
ments the earlier result in (72). 

 
Applying (76), we then obtain 

 
,)(~ 0

111
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which is somewhat in contrast to formulas (40) for the 
optimal linear estimate with the reproducing property.  
Consequently, we may derive an invariant quadratic 
uniformly unbiased estimate  from the sum of weigh-
ted squared residuals 

2
0σ

e~  and 00 =~
1e , which is easily 

calculated as 
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with 
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after applying (69) and further simplifications.  Thus, 
our estimated variance component will turn out as 
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and the appropriate test statistic as 
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by means of which we may check the null hypothesis 
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against the alternative 
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while still keeping (5) unchanged, i.e. e .  It is 

an open question whether 
),0(~ 0

1
0
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 is statistically inde-
pendent of Ω ; it rather looks unlikely so that R+ T  will 
not strictly follow a F-distribution.  We may, neverthe-
less, use the F-fractiles as lower bounds for those of the 
true, but unknown, distribution.  In this way we are able 
to at least make a decision of accepting the null hypo-
thesis (92) in case the lower bound is not surpassed by 

~

T
~

.  Unfortunately, we cannot reject (92) simply because 
T
~

 turns out to be larger than this threshold. 
Again, as in Chapter 3, we would not use a 

comparison of }
~

{/ RE
~
R  and Ω  to check consis-

tency in the sense of (49). 
)/( qn −

 
5. AN EXAMPLE: THE JOINT ANALYSIS OF 
PHOTOGRAMMETRIC IMAGERY WITH TWO 
DIFFERENT SCALES 
 

To illustrate the theory of non-hierarchical and 
hierarchical data fusion in a photogrammetric applicati-
on, let us consider the object space point field shown in 
Figure 1. The field consists of two distinct arrangements 
of points: 

 
1) a ring, centered at the origin and consisting of 20 

points labeled R1-R20, representing points to be ad-
ded to, and 

2) a box-like framework, also centered at the origin and 
consisting of 27 points labeled C21-C47.

 

 
Fig. 1. - Object Space Point Field 
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The small scale network, which we denote 
FAR3, consists of three images with a total of 81 obser-
vations of points C21-C47 (see Table 1).  This network 
contained no observations of the ring points.  The mean 
scale of the images in this network is approximately 
235:1.  We will consider FAR3 our reference network. 
 

TABLE 1 - FAR3 EXTERIOR ORIENTATION      
PARAMETERS 

Xo (mm) Yo (mm) Zo (mm) 
FAR3 omega 

(deg) phi (deg) kappa 
(deg) 

Range 
(mm) 

6000 -10000 8000 far1 
51.35 25.10 18.74 

14,142 

6000 10000 8000 far2 -51.35 25.10 -18.74 11,313 

8000 0 8000 far3 0 45.00 -90.00 14,142 

 
The large scale network, which we denote 

NEAR3, also consists of three images but with a mean 
scale of approximately 88:1 (see Table 2).  The NEAR3 
photographs contain observations of points R1-R20 and, 
because of their larger scale, only points C24, C25, C27, 
C33, C34, C35, C36 and C43 of the reference field.  
These eight points are the only common parameters 
between the two networks. 

 
TABLE 2 – NEAR3 EXTERIOR ORIENTATION      

PARAMETERS 
Xo (mm) Yo (mm) Zo (mm) 

NEAR3 omega 
(deg) phi (deg) kappa 

(deg) 

Range 
(mm) 

2000 2500 2000 near1 
-51.00 32.00 -22.99 

3,775 

2000 -4500 2000 near2 66.00 22.10 9.51 5,315 

2000 4500 2000 near3 -66.00 22.00 -9.51 5,315 

 
We applied the following, normally distributed, 

random errors to generate image coordinates of the 
object space point field: 

 
Exterior Orientation Parameters, rotation angles: 
  arc seconds 5±=σ
Exterior Orientation Parameters, camera position:
  mm 100±=σ
Interior Orientation Parameters, (xp,yp,c):  
  mm 01.0±=σ
Image Coordinates after projection:  
  mm 005.0±=σ

 
In order to isolate network geometry effects 

and keep the model parameters to a minimum, the simu-
lation did not model other interior orientation parame-
ters such as lens distortion or field unflatness. 

The experiment consisted of one adjustment 
followed by three updates. 

1.  The free network adjustment of FAR3.  This provi-
ded a reference framework of points C21-C47 (i.e. 
the a priori information contained in 1  and ). ξ̂ }ˆ{ 1ξD

2.  The update of the FAR3 reference framework with 
observations from NEAR3 using the non-hierarchical 
procedures described by equations (6) and (8) to ob-
tain  and , respectively. ξ̂̂ }ˆ̂{ξD

3.  The update of the FAR3 reference framework with 
the optimal hierarchical procedure described by equa-
tions (31) and (32) to obtain ξ  and }{ξD , respecti-
vely. 

4.  The update of the FAR3 reference framework with 
the non-optimal hierarchical procedure described by 
equations (57) and (71) to obtain ξ  and ˆ }ξ̂{D , re-
spectively. 

 
We consider all involved object space points 

and exterior orientation elements as parameters to be 
estimated.  All adjustments treated interior orientation 
elements (xp,yp, and c) and parameters with pseudo-
observations and variance of 0.0001mm2, essentially 
fixing them at their a priori values.  This small variance, 
and associated large weight, did not significantly affect 
the condition number of the normal matrices.  We as-
sumed the a priori image coordinate observation preci-
sion to be ±0.005mm.  We further assumed the a priori 
variance component to be 1.00. 

The results of the three update adjustments are 
shown in Table 3. 

 
TABLE 3 - VARIANCE COMPONENT                 

COMPUTATIONS 
Sum of Re-

siduals 
Squared 

Expectation 
2
0σ  

Update 
Type Variance 

Component 
Estimate 

Test 
Statistic 

F-
fractile 
α =0.01 

145.53=Ω  65 (computed 
from each 

update) N/A N/A 
N/A 

421.7=R  102 Stochastic 
Update 0.363 0.089T =  0.60 

613.47=− RR
 112.442 Optimal 

Reproducing 
Update 0.387 166.1=T  

0.66 

188.126
~

=− RR
 

208.439 Helmert 
Reproducing 

Update 0.4973 668.1
~

=T  
0.73 

 
The point-by-point errors for each adjustment 

are shown in Figures 2, 3, 4, and 5.  We define RMS as 
the distance between the true point locations and the 
estimated location, and show it in the graph as a triangle.  
The square root of the trace of the cofactor matrix of 
each point is shown as an open circle.  Finally, the Hel-
mert point error is shown as a closed circle. 
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Fig. 2 - Reference Network 

 

 
Fig. 3 - Stochastic Update (Chapter 2) 

 

 
Fig. 4 - Optimal Reproducing Method (Chapter 3) 

 

 
Fig. 5 - Helmert Reproducing Method (Chapter 4) 
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6.  CONCLUSIONS 
 
In this paper we have studied data fusion in a 

hierarchical mode.  The traditional approach based on 
Helmert’s transformation has been found non-optimal 
(in the sense of minimum mean square error); the op-
timum, reference-data reproducing estimator has been 
presented and compared with the above as well as with 
the optimal non-hierarchical estimator.  The following 
conclusions may be drawn with particular view of the 
photogrammetric example in Chapter 5. 

 
(i) The non-hierarchical approach yields Helmert point 

errors that tend to underestimate the true deviations 
in the non-reference points quite drastically.  This is 
particularly surprising as the test clearly confirms the 
hypothesis of consistency between new and reference 
data.  Consequently, the reference points would ex-
perience a certain improvement, both in terms of true 
deviations as well as Helmert point errors. 

 
(ii) In the hierarchical approach, none of the reference 

points involved will be affected by the adjustment.  
The optimal reproducing method will provide the 
same results for the non-reference points as the non-
hierarchical approach except for the slightly enlarged 
variance component estimate.  Thus, the true devia-
tions will still be mostly underestimated by the Hel-
mert point errors. 

 
(iii) In contrast, for the Helmert reproducing method 

we find a much better agreement between true devia-
tions and Helmert point errors of the non-reference 
points, while the mean square errors have grown 
considerably.  It also seems that the true deviations 
themselves have been reduced somewhat through the 
process. 

 
(iv) The tests for both hierarchical procedures, althou-

gh (strictly speaking) inconclusive, would hint to-
ward rejecting the hierarchical approach in favor of 
the non-hierarchical one.  At this point it is still un-
clear why this should be so, in view of the previously 
established consistency. 

 
(v) Further studies are also necessary to explain the 

mechanism that lets the Helmert reproducing method 
perform so well in comparison, although on paper it 
is known to be “outperformed” by the optimal 
reproducing method. 

 
(vi) It would also be nice to learn more about the true 

(or at least approximate) distributions of the test sta-
tistics in the hierarchical mode. However, this must 
be postponed for future investigations. 
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