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Resumo

Este artigo tem como objetivo explorar aspectos teéricos e aplicados da Geometria Diferencial por meio do estudo da curva Cardioide. Inici-
almente, apresenta-se uma fundamentagao tedrica sobre conceitos fundamentais, como regularidade e curvatura. Em seguida, a Cardioide
é introduzida como um exemplo expressivo de curva plana, cuja simetria, parametrizacdo e curvatura sdo analisadas a luz da Geometria
Diferencial. A metodologia adotada baseia-se em uma revisdo da literatura, com foco na identificacdo das ferramentas analiticas utilizadas
em pesquisas anteriores e no aprofundamento teérico do tema. Sdo também apresentadas aplicagdes da Cardioide em dreas como acustica,
dptica e morfologia vegetal, evidenciando seu carater interdisciplinar. Os resultados obtidos confirmam a relevancia da Cardioide tanto para
o desenvolvimento de competéncias matematicas no contexto da Geometria Diferencial quanto para sua aplicabilidade pratica em diferentes
campos do conhecimento.

Palavras-chaves: Geometria. Curvas Planas. Cardioide.

Abstract

This article aims to explore theoretical and applied aspects of Differential Geometry through the study of the cardioid curve. Initially, a
theoretical foundation is presented on fundamental concepts such as regularity and curvature. Next, the cardioid is introduced as a significant
example of a plane curve, whose symmetry, parameterization, and curvature are analyzed in light of Differential Geometry. The methodology
adopted is based on a literature review, focusing on identifying the analytical tools used in previous research and on a deeper theoretical
understanding of the topic. Applications of the cardioid in areas such as acoustics, optics, and plant morphology are also discussed, highlighting
its interdisciplinary nature. The results confirm the relevance of the cardioid both for the development of mathematical skills in the context of
Differential Geometry and for its practical applicability in different fields of knowledge.

Keywords: Geometry. Flat Curves. Cardioid.

1 Introducao

A Geometria, ao longo da histéria, ocupou um lugar de destaque na construcao do conhecimento humano,
ndo apenas por sua utilidade pratica, mas também pela beleza intrinseca de suas formas e relagées. Seu nome
deriva das palavras gregas “geo” (terra) e “metria” (medida) e remonta aos antigos agrimensores egipcios, que
utilizavam cordas para medir e tracar formas simples, como retas e circunferéncias, sobre terrenos. Em espe-
cial, a Geometria Diferencial oferece um olhar aprofundado sobre a estrutura e o comportamento de curvas e
superficies, conectando a intuicdo geométrica com as ferramentas analiticas do Célculo Diferencial. Ao estudar
conceitos como Curvatura, Comprimento de Arco, Superficies Regulares, entre outros, podemos compreender
com maior precisdao os fen6menos naturais, modelar estruturas complexas e apreciar as sutilezas matematicas
que descrevem 0 espagco em que vivemos.

Este trabalho tem por objetivo abordar alguns desses conceitos fundamentais, evidenciando a riqueza teérica
e as amplas aplicacdes da Geometria Diferencial. Precisamente, serao apresentadas a definicdo e principais
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propriedades da curva Cardioide (veja a Figura 1). O trabalho incluird a deducao de equacdes no Sistema de
Coordenadas Polares, a verificacao de propriedades matemaéticas relacionadas com a Geometria Diferencial como
o calculo de sua Curvatura e Evoluta, bem como exemplos de aplicagdes.

A palavra Cardioide deriva do grego kardia “coracao” e eidos “formas” e seu nome se deve por sua forma
se assemelhar a um coracao (EVES, 2011). Formalmente descrita por Johann Castillon (1704-1791) em 1741,
em um artigo publicado na Philosophical Transactions of the Royal Society, a Cardioide ganhou destaque nao
apenas como objeto de estudo na Matemética Pura, mas também como uma estrutura com aplicacOes praticas
em diversas areas do conhecimento (MORENO, 2018).

Figura 1: Cardioide

Fonte: Os autores

Sua forma peculiar, simétrica em relacdo a um eixo, emerge em contextos surpreendentes da Fisica e da Enge-
nharia, como nas causticas de luz geradas por superficies curvas e nos padrdes de interferéncia de ondas (EVES,
2011). Em acustica, por exemplo, a Cardioide é amplamente conhecida como o padrao polar caracteristico de
muitos microfones, destacando-se por sua capacidade de captar sons de maneira direcional, minimizando rui-
dos indesejados provenientes de outras direcdes (BOURNE, 2009). A curva Cardioide é observada em superficies
refletoras circulares, evidenciando sua relevancia tanto na teoria quanto em aplicacbes praticas. Na biologia, a
Cardioide é utilizada para realizar a analise morfolégica de sementes (MARTIN GOMEZ, 2013). Algumas dessas
aplicacOes sao discutidas na Secdo 3.

2 A Cardioide: definicao e propriedades geométricas

Nesta secao, sao apresentados o conceito de Curvas Diferencidveis Parametrizadas Regulares, com destaque
para as curvas Parametrizadas por Comprimento de Arco (PCA), a definicao de Epicicloide e a parametrizacao da
Cardioide como um caso particular de Epicicloide. Também sera explorado o conceito de Evoluta, complementando
o estudo das propriedades geométricas dessas curvas.

2.1 Parametrizacao da Cardioide em Coordenadas Polares

O diametro de uma Cardioide é a maior distancia entre dois pontos da curva, medidos ao longo de uma reta
que passa pela origem (ou polo).
Segundo (PARADINHA et al., 1999) quando a medida do diametro da Cardioide for 2a (constante), a sua equagao
cartesiana é
(22 + ¥? + az)? = a?(z? + y?). (1)

Para realizar a transformacao da equacao que descreve a Cardioide em Coordenadas Cartesianas para Coor-
denadas Polares, utiliza-se a mudancga de coordenadas z = rcos() e y = rsen(d). Substituindo na Equacgéo (1),
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tem-se:
[r2cos?(8) + r? sen?(8) + arcos(8)]? = a?(r?cos?(8) + 2 sen?(h)).

Fazendo-se as simplificacfes necessarias, obtém-se:
r? + 2arcos(8) + a*cos?(8) = a?,
que é uma equacao do segundo grau em r:
r? 4+ 2acos()r + a*cos?(8) — a? = 0. (2)

Para resolver a Equacdo (2), utiliza-se a férmula resolutiva para equacbes do segundo grau, obtendo-se as
solucoes
r = —acos(f) + a.

Assumindo implicitamente a > 0 e considerando o dominio usual das coordenadas polares, com r > 0, observa-
se que a solugdo r = a(1 — cos(#) é ndo negativa para todo 6, enquanto r = —a(1 + cos(#) assume apenas valores
nao positivos.

Do ponto de vista geométrico, em coordenadas polares, pares do tipo (r,8) e (—r, 8 + 7) representam o mesmo
ponto do plano. Assim, embora as duas expressdes para r possuam sinais distintos, ambas descrevem o mesmo
conjunto geométrico de pontos quando se leva em conta essa equivaléncia polar.

Entretanto, a fim de evitar interpretagdes envolvendo raios negativos e simplificar as andlises subsequentes,
opta-se por considerar apenas a solugdao nao negativa

r = a(1 — cos(9)),

a qual descreve completamente a curva em estudo.

Observa-se que o valor maximo de r é de fato 2a (diametro) e o minimo é 0, ou seja, a curva vai desde o polo
até uma distancia 2a, formando uma figura cuja extens&o total (maior comprimento linear a partir do polo) é 2a. E
importante destacar que a definicdo de didametro ndo coincide com a maior distéancia entre dois pontos da curva.

Assim, tem-se uma parametrizacao de uma Cardioide para um caso especifico em que a curva é simétrica em
relacdo ao eixo z (Figura 6), mas essa curva pode ser representada de varias formas, rotacionando sua represen-
tacao no Plano Cartesiano. Considerando:

r: distancia de um ponto da curva até a origem do Plano Polar;
a: parametro que define o tamanho/diametro da Cardioide;
8: angulo em radianos,

as parametrizacdes da Cardioide em Coordenadas Polares e seus tracos podem ser observados na Figura 2.

Figura 2: Representacdes graficas de cardioides em diferentes posicdes

Y Y
NN T
z
Figura 3: Cardioide r(0) = a + a sen(6) Figura 4: Cardioide r(8) = a — asen(6)

Fonte: Os autores
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Figura 5: Representagdes gréficas de cardioides em diferentes posicdes

Y Y

Figura 6: Cardioide r(6) = a — acos(6) Figura 7: Cardioide r(8) = a + acos(6)
Fonte: Os autores

Essas equacdes descrevem a curva (Cardioide), mas com posicdes diferentes no plano, dependendo da funcdo
trigonométrica e do sinal utilizados.

2.2 Curva Diferenciavel Parametrizada Regular

Uma curva 7 : I — R? é definida como Parametrizada Regular Diferenciavel (ou suave) quando satisfaz duas
condicdes principais. Primeiramente, a funcdo deve ser diferencidvel de classe C*, ou seja, ela e sua derivada
devem ser continuas em todo o intervalo I. Em segundo lugar, sua derivada, dada por 7(25) = (2'(t),¥'(2)),
ndo pode ser nula, ou seja, 7(75) # (0,0) para todo t € I. Essa segunda condigdo garante que a velocidade da
curva nao se anula e, consequentemente, a curva possui uma orientacdo local bem definida em todos os seus
pontos e admite uma reta tangente em cada um deles, o que é fundamental para o estudo de suas propriedades
geométricas.

O ponto onde a derivada da curva se anula é chamado de Ponto de Reversdo (PARADINHA et al., 1999). Nesse
ponto a variacao do declive das retas tangentes a imagem da curva muda de sentido. A Cardioide possui um Ponto
de Reversdo, por isso nao é regular e seu diametro é entdo o comprimento da maior corda que se pode tracar a
partir do Ponto de Reversao.

Observa-se que a equacao r = a(l + cos(6)) descreve uma cardioide geometricamente equivalente aquela
dada por 7 = a(1 — cos(f)), diferindo apenas por uma rotacdo do plano. Como rota¢des s&o isometrias do R?,
ambas representam o mesmo objeto geométrico. A partir deste ponto, adota-se a forma r = a(1 + cos(8)) por
conveniéncia nas analises subsequentes.

Considerando a parametrizacao em Coordenadas Polares da Cardioide

r(8) = a(1l + cos(d)), 6 € [0,2n7]

e convertendo para sua forma paramétrica, tem-se:

z(6) = a(1 + cos(f))cos(d), y(#) = a(l+ cos(d))sen(8). (3)

Para verificar que a Cardioide ndo é uma Curva Regular, é necessério calcular a derivada do vetor posicao
7 (6) = (2(6),9(6)).

Calculando as derivadas das funcdes coordenadas, tem-se: z'() = —a[sen(20)+sen(d)] e y'(9) =
a[cos(26) + cos(8)].

Agora, serd necessario verificar que o vetor tangente 7(6) = (2'(9),v'(9)) é nulo para algum 6. Para isso,
serdo investigadas, primeiramente, as condigdes que acarretam z'() = 0. Observa-se que isto ocorre se

sen(26) + sen(d) = 0. (4)
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Note que para a Equacdo (4) ser verdadeira tem-se duas possibilidades: a primeira é § = 0 e a segunda ocorre
quando 6 = 7. Por outro lado, para que y'(8) = 0, tem-se:

cos(26) + cos(8) = 0. (5)

Para que a Equagao (5) seja satisfeita tem-se § = 7.

|

Ocorre que z'(8) e y'(8) se anulam ao mesmo tempo quando § = «w. Portanto, tem-se r'(7) = (0,0), o que
significa que a curva nao é regular.

2.3 Curvatura da Cardioide

Segundo MORENO (2018), a Curvatura de uma Curva pode ser interpretada geometricamente como a medida
de sua diferenca em relacdo a uma reta. Mais precisamente, a Curvatura é uma medida intrinseca que descreve
como uma curva se desvia de ser uma reta ou superficie se desvia localmente de ser plana, sendo fundamental
no estudo das propriedades geométricas das curvas e superficies. A autora SOUZA LUZ (2017) explica que em
uma curva, a Curvatura é definida como a taxa de variacado da direcdo do vetor tangente ao longo da curva em
um ponto especifico.

Na Figura 8, além da representacado da Cardioide, sao exibidos vetores tangentes em diferentes pontos da
curva. Esses vetores tangentes ajudam a visualizar a direcdo instanténea da curva e servem como base para
calcular o Vetor Normal, utilizado no célculo da Curvatura e na parametrizacao do Circulo Osculador da curva.

Figura 8: Representacdo dos Vetores Tangente e Normal na Cardioide

Y

Legenda:
Pontos
Vetores Tangentes

Circulo Osculador

Fonte: Os autores

Considere uma aplicacdo 7 I - R? de classe C®, regular, definida em um intervalo aberto I = (¢, d) da reta.

Suponha que 7 estd Parametrizada por Comprimento de Arco (PCA), isto &,

7 (s)| =1, paratodosel.

Para cada s € I, o vetor ﬁ(s) é um vetor unitario que sera designado por t(s). Seja n(s) o vetor unitario de R?
ortogonal a 7(5) tal que a base {t(s), n(s)} tem a mesma orientagdo da base canodnica {ey,ez}. Afungdok : I — R
tal que t’'(s) = k(s)n(s), para todo s € I, é chamada curvatura de 7 em s € I (DELGADO e FRENSEL, 2019).

Essa definicdo decorre do fato de o vetor tangente unitario t(s) satisfazer ||t(s)|| = 1 para todo s € I. Derivando
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a identidade (t(s), t(s)) = 1 em relagdo a s, obtém-se

0 que implica que t'(s) é ortogonal a t(s). Assim, como n(s) é definido como o vetor normal unitério a curva,

conclui-se que t'(s) é necessariamente paralelo a n(s), justificando a existéncia da fungao escalar k.

Assim, considerando a parametrizacdo 7 (s) = (z(s), y(s)), tem-se

k(s) = (n(s),¥'(s)) = —2"(s)y'(s) + y"(s)2'(s).

Caso a curva nao seja PCA (como é o caso da Cardioide), segundo DELGADO e FRENSEL (2019, p.20), conside-
rando 7' (t) = (z(t),y(t)), tem-se que sua curvatura é dada por

z'(t)y" (t) — 2" (t)y'(¢)
[(z'(1))* + (v'(£))*]/>

Considerando a parametrizacdo 7 (¢) = (a(1 — cos(t))cos(t), a(1 — cos(t)) sen(t)) da Cardioide, tem-se:

k(t) =

z(t) = a(1 — cos(t))cos(t) z'(t) = —asen(t) + asen(2t) z'(t) = —acos(t) + 2acos(2t)
y(t) = a(1l — cos(t)) sen(t) y'(t) = acos(t) — acos(2t) y"(t) = —asen(t) + 2a sen(2t)

(2'(£))? + (¥'(¢))? = 2a2(1 — cos(t) V(@' ()2 + (v ()2 = vV2a(1 — cos(t))/?

Portanto,

3
- 2v/2a(1 — cos(t))1/2

O célculo explicito mostra que a expressdo da curvatura envolve o termo 1 — cos(t) no denominador, de modo

k(2)

que, ao aproximar-sedet = 0 out = 2w, o termo tende a zero. Consequentemente, a curvatura diverge, assumindo
valores arbitrariamente grandes. Assim, do ponto de vista da Geometria Diferencial, o cUspide constitui uma
singularidade da curva, caracterizado por uma curvatura que tende ao infinito.

2.4 Definicao da Epicicloide

Seja c um circulo de raio r (vermelho) e centro @ rolando externamente sobre um circulo ¢’ de raio R (azul) e
centro O, sem escorregamento. Seja P = (z,y) um ponto fixo em c. A Epicicloide é a curva descrita pelo ponto P
a medida que c rola sobre ¢’ (SILVA, 2021). Veja a Figura 9.

Figura 9: Coordenadas da Epicicloide

Y

Fonte: Os autores
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As coordenadas do ponto @ s&o dadas por ((R + r)cos(8), (R + r) sen(F)).

O comprimento de circunferéncia entre o ponto de tangéncia entre os dois circulos e o ponto Pem cé [, e em
c élg. Umavezquelr =1, sendolgr = Rfel, = ra, ouseja, a = R%, tem-se que a Epicicloide é parametrizada
por:

z(8) = (R+r)cos(f) — rcos (L& +6

com 6 € [0, 27]. (6)
y(8) = (R+r)sen(d) — rsen (£& +6)

Quando o raio R do circulo ¢’ for igual ao raio r do circulo mével ¢, isto é, R = r, a Epicicloide resultante sera
uma Cardioide, orientada como na Figura 6, com Ponto de Reversdo de coordenadas (R,0) e diametro 4R. Isso
acontece porgue, nesse caso, o circulo mével ¢ percorre exatamente uma volta completa ao redor do circulo fixo
¢’ enquanto também gira uma volta completa sobre si mesmo. A Figura 11 ilustra a formacédo de uma Cardioide
com circulo mével c tangenciando ¢'.

Este processo de construcdo da Cardioide, fazendo-se R = r na Equacao 6, é dado pelas seguintes funcdes
paramétricas:

z(f) = 2Rcos() — Rcos(26) y(6) = 2Rsen(d) — Rsen(26)
= 2Rcos(8) — R(cos?(8) — sen’(d)) = 2Rsen(f) — 2R sen(f)cos(8)
— 2Rcos(8) — Reos?(6) + Rsen?(6) _ 2Rsen(8)(1 — cos(8)).
= 2Rcos(f) — R(cos?(8) + R(1 — cos?(8))
= 2Rcos(8)(1 — cos(8)) + R

Assim, a curva descrita pelo ponto P pode ser parametrizada como:

7 (8) = (R + 2R(1 — cos(6))cos(8),2R(1 — cos(6)) sen(d)),
ou seja,
7 () = (R, 0) + 2R((1 — cos(8))cos(8), (1 — cos()) sen(8)).

Na Figura 10 é apresentada a Cardioide juntamente com os eixos coordenados. A Figura 11 ilustra a represen-
tacdo da construcao da Epicicloide.

Figura 10: Epicicloide

ah

Fonte: Os autores
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Ponto especial

Circulo mével o
\\
\
\
\
1
Circulo mével ,‘

1

/

/
Figura 12: Circunferéncias tangentes pelo ponto especial P

Figura 13: O circulo mével apds % de volta

Figura 11: Representacdes graficas de uma Epicicloide para R =r

\
Circulo mével

Cardioide formada

culo mével

\

Figura 14: O circulo mével apés 1 de volta

Fonte: Os autores
Unica e simétrica.

Figura 15: Formagao completa da Cardioide apds uma volta

Portanto, a Cardioide é um caso particular de Epicicloide, onde a igualdade dos raios r = R cria essa curva
2.5 Evoluta da Cardioide

onde k(t) =

dos centros dos circulos osculadores da curva, isto é, a curva ¢ : I — R? dada por
i

Seja 7 .1 — R? uma curva regular com k(t) # 0,Vt € I. Define-se a evoluta de 7 como o lugar geométrico

t)=7T(@) +
—z"(t)y'(t) + ='(1)y"(2)

[(='())? + (v'())*]*/2

osculador de 7 em to.

e m(t) =

V(@'(1)? + (v'(1)?
Considerando a Cardioide:

o vetor normal unitério no ponto 7' (¢). Assim, para cada tg € I, o ponto ?(to) corresponde ao centro do circulo

representam, respectivamente, a curvatura e

r(0) = a(l — cosh),
obtém-se, a partir das expressodes da curvatura e do vetor normal em coordenadas polares, que

k(6)

3
~ 2v2a(1 — cos(8)) /2

V. A. A. Melo - G. F. F. Filho - C. M. S. Meneghetti
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(—acos(8) + acos(26), —asen(8) + asen(26))
v2a(1 — cos(8))!/2 '

Substituindo esses resultados na definicdo de evoluta, chega-se a parametrizacdo

() =

2 2
2(6) = (gcos(e)(l — cos(8)) + Facos(ze), % sen(6)(1 — cos(6) + ?a sen(20))> .
Essa curva representa o lugar geométrico dos centros de curvatura da Cardioide, ou seja, sua Evoluta.

Figura 16: Cardioide e sua evoluta (em azul).

—— Cardioide
--- Evoluta

Fonte: Os autores

Efetuando-se uma simplificagdo trigonométrica: cos(26) = 2cos?6 — 1, sen(26) = 2sen(6)cos(d), tem-se:
e-(8) = %(cose — cos?6 + 4cos?6 — 2) = %(3C0529 + cosf — 2),
ey(8) = %(senﬁ — senfcosb + 4sen 6(:050) = % senf (1 + 3cosh).

Assim, uma decomposicao vetorial util é

2
€)= %(Scosé + 1) (cosh, sen8) — (;, o)

que pode ser escrita na forma polar

R(6) = % (1 + 3cosb).

Portanto, relativamente ao ponto C = (%‘l, 0), a evoluta tem equacao polar

R(8) = < (1 + 3cosb) |,

wla

que é um Limacon de Pascal (com laco interno, pois 3 > 1). Logo, a evoluta ndo é uma Cardioide homotética da
original; trata-se de um caso particular de Limacgon.

3 Aplicacoes da Cardioide

A curva Cardioide, além de seu interesse matemadtico intrinseco, encontra aplicagdes relevantes em diferentes
areas do conhecimento, evidenciando sua importancia tanto tedrica quanto pratica. Nesta secao, serdo apresen-
tadas algumas dessas aplicacdes.
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3.1 Acustica: reflexao de ondas sonoras em superficies com formato de Cardioide

Segundo BOURNE (2009), a Cardioide é diretamente aplicada no design do Microfone Cardioide, onde o padrao
de captacdo de som segue o mesmo comportamento da curva. Na pratica, o microfone é mais sensivel na direcdo
frontal (§ = 0°), captando o som com maior intensidade, enquanto a sensibilidade diminui gradualmente nas
laterais (8 = 90° e 8 = 270°) e é praticamente nula na parte traseira (6 = 180°). Essa caracteristica permite isolar o
som desejado, reduzindo a captacado de ruidos indesejados provenientes de outras direcdes, tornando o Microfone
Cardioide ideal para gravacdes em estldio, palcos e outras situacdes onde a direcionalidade do som é crucial.
Veja a Figura 17.

Figura 17: Exemplo de Microfone Cardioide em um palco com Public Address (P.A.) e monitor de retorno

(0 vorer
PA ALTO-FALANTE [(]))) 180° 0° @
(©:

Fonte: KRUNNER (2021)

Na Figura 17 estdo indicados o Monitor de Retorno, que é o sistema responsavel por permitir que os musicos
se escutem durante a apresentacao, podendo ser feito por meio de caixas no chao ou fones de ouvido conectados
a sistemas individuais de monitoramento e o PA., que é o sistema de som voltado para o publico, composto por
caixas acusticas, posicionadas ao lado do palco para garantir que o som chegue com qualidade a plateia.

3.2 Optica

Conforme o trabalho de (MELO FILHO et al., 2016) quando uma fonte de luz fixa em um circulo emite raios em
todas as direcdes, cada raio bate na superficie curva e é refletido seguindo a lei da reflexao (o angulo de entrada
é igual ao de saida). Quando a luz é refletida no circulo, cada raio refletido é tangente a uma Cardioide invisivel
dentro do circulo. O interessante é que, quando todos esses raios sao refletidos, formam a curva Cardioide. Isso
ocorre porgue os angulos de reflexao fazem com que os raios se alinhem perfeitamente, como se a Cardioide fosse
um molde que todos os raios refletidos tocam. E como se a prépria geometria do circulo escondesse essa forma
cardiaca, revelada apenas quando a luz é refletida de maneira organizada. Veja a Figura 18:

Figura 18: Reflexdo Cardioide

Fonte: MELO FILHO et al. (2016)
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3.3 Aplicacdo da Curva Cardioide na Analise Morfolégica de Sementes

A Cardioide é utilizada como ferramenta de andlise morfoldégica no estudo de algumas espécies de sementes
(MARTIN GOMEZ, 2013). Este método geométrico permite avaliar com precisdo a similaridade entre o contorno
das sementes e a forma Cardioide ideal por meio do indice de similaridade j. A andlise realizada evidenciou que
sementes com maior similaridade a Cardioide, isto é, que apresentam valores elevados de 7, tém uma maior
qualidade.

O indice de similaridade ;7 é dado como:
_ AC 1
o Ac + Ap

onde Ac representa a drea da Cardioide e Ap é a drea entre a Cardioide e a semente. Essa comparacdo pode ser

J 00, (7)

feita por quadrantes como mostra a Figura 19.

Figura 19: Divisdo da Cardioide em Quadrantes

Fonte: MARTIN GOMEZ (2013, p.127)

Um exemplo da aplicacdo com sementes de Arabidopsis, Lotus e Medicago pode ser vista na Figura 20.

Figura 20: Composicao: a esquerda, semente de Arabidopsis; no centro, semente de Lotus; e a direita,
semente de Medicago, com as Cardioides que melhor se ajustam as suas formas

Fonte: MARTIN GOMEZ (2013, p.80)
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4 Conclusao

Do ponto de vista matematico, a Cardioide oferece uma rica oportunidade para integrar diferentes temas,
desde Coordenadas Polares e Cartesianas até conceitos de Célculo Diferencial e Geometria Diferencial. Ao mesmo
tempo, sua analise proporciona uma conexao rica entre ideias matematicas abstratas e aplicacdes concretas,
oferecendo um ponto de partida motivador para explorar como a matematica se manifesta no mundo ao nosso
redor.

Conclui-se, com base neste trabalho, que o estudo da curva Cardioide é relevante e apresenta potencial para
novas investigacdes. Durante a pesquisa tedrica, foi possivel encontrar aplicacdes interessantes da Cardioide,
destacando-se seu papel na acUstica, em particular na reflexdo de ondas sonoras em superficies com formato de
Cardioide, frequentemente explorada em projetos de microfones direcionais e ambientes com controle acustico.
Em 6tica, a Cardioide surge em fen6menos de reflexao de luz em espelhos curvos, revelando propriedades ge-
ométricas interessantes (MELO FILHO et al., 2016). Por fim, foi abordada sua utilizacdo na analise morfolégica
de sementes, onde a forma cardioidal serve como referéncia para a caracterizacdo de estruturas naturais, contri-
buindo para a andlise da qualidade de grdos (MARTIN GOMEZ, 2013). Essas aplicacdes ilustram como conceitos
da Geometria Diferencial transcendem o campo abstrato e se conectam a contextos reais e interdisciplinares.
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