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Resumo

Este artigo tem como objetivo explorar aspectos teóricos e aplicados da Geometria Diferencial por meio do estudo da curva Cardioide. Inici-
almente, apresenta-se uma fundamentação teórica sobre conceitos fundamentais, como regularidade e curvatura. Em seguida, a Cardioide
é introduzida como um exemplo expressivo de curva plana, cuja simetria, parametrização e curvatura são analisadas à luz da Geometria
Diferencial. A metodologia adotada baseia-se em uma revisão da literatura, com foco na identificação das ferramentas analíticas utilizadas
em pesquisas anteriores e no aprofundamento teórico do tema. São também apresentadas aplicações da Cardioide em áreas como acústica,
óptica e morfologia vegetal, evidenciando seu caráter interdisciplinar. Os resultados obtidos confirmam a relevância da Cardioide tanto para
o desenvolvimento de competências matemáticas no contexto da Geometria Diferencial quanto para sua aplicabilidade prática em diferentes
campos do conhecimento.

Palavras-chaves: Geometria. Curvas Planas. Cardioide.

Abstract

This article aims to explore theoretical and applied aspects of Differential Geometry through the study of the cardioid curve. Initially, a
theoretical foundation is presented on fundamental concepts such as regularity and curvature. Next, the cardioid is introduced as a significant
example of a plane curve, whose symmetry, parameterization, and curvature are analyzed in light of Differential Geometry. The methodology
adopted is based on a literature review, focusing on identifying the analytical tools used in previous research and on a deeper theoretical
understanding of the topic. Applications of the cardioid in areas such as acoustics, optics, and plant morphology are also discussed, highlighting
its interdisciplinary nature. The results confirm the relevance of the cardioid both for the development of mathematical skills in the context of
Differential Geometry and for its practical applicability in different fields of knowledge.

Keywords: Geometry. Flat Curves. Cardioid.

1 Introdução

A Geometria, ao longo da história, ocupou um lugar de destaque na construção do conhecimento humano,

não apenas por sua utilidade prática, mas também pela beleza intrínseca de suas formas e relações. Seu nome

deriva das palavras gregas “geo” (terra) e “metria” (medida) e remonta aos antigos agrimensores egípcios, que

utilizavam cordas para medir e traçar formas simples, como retas e circunferências, sobre terrenos. Em espe-

cial, a Geometria Diferencial oferece um olhar aprofundado sobre a estrutura e o comportamento de curvas e

superfícies, conectando a intuição geométrica com as ferramentas analíticas do Cálculo Diferencial. Ao estudar

conceitos como Curvatura, Comprimento de Arco, Superfícies Regulares, entre outros, podemos compreender

com maior precisão os fenômenos naturais, modelar estruturas complexas e apreciar as sutilezas matemáticas

que descrevem o espaço em que vivemos.

Este trabalho tem por objetivo abordar alguns desses conceitos fundamentais, evidenciando a riqueza teórica

e as amplas aplicações da Geometria Diferencial. Precisamente, serão apresentadas a definição e principais
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propriedades da curva Cardioide (veja a Figura 1). O trabalho incluirá a dedução de equações no Sistema de

Coordenadas Polares, a verificação de propriedades matemáticas relacionadas com a Geometria Diferencial como

o cálculo de sua Curvatura e Evoluta, bem como exemplos de aplicações.

A palavra Cardioide deriva do grego kardia “coração” e eidos “formas” e seu nome se deve por sua forma

se assemelhar a um coração (EVES, 2011). Formalmente descrita por Johann Castillon (1704-1791) em 1741,

em um artigo publicado na Philosophical Transactions of the Royal Society, a Cardioide ganhou destaque não

apenas como objeto de estudo na Matemática Pura, mas também como uma estrutura com aplicações práticas

em diversas áreas do conhecimento (MORENO, 2018).

Figura 1: Cardioide

x

y

Fonte: Os autores

Sua forma peculiar, simétrica em relação a um eixo, emerge em contextos surpreendentes da Física e da Enge-

nharia, como nas cáusticas de luz geradas por superfícies curvas e nos padrões de interferência de ondas (EVES,

2011). Em acústica, por exemplo, a Cardioide é amplamente conhecida como o padrão polar característico de

muitos microfones, destacando-se por sua capacidade de captar sons de maneira direcional, minimizando ruí-

dos indesejados provenientes de outras direções (BOURNE, 2009). A curva Cardioide é observada em superfícies

refletoras circulares, evidenciando sua relevância tanto na teoria quanto em aplicações práticas. Na biologia, a

Cardioide é utilizada para realizar a análise morfológica de sementes (MARTÍN GÓMEZ, 2013). Algumas dessas

aplicações são discutidas na Seção 3.

2 A Cardioide: definição e propriedades geométricas

Nesta seção, são apresentados o conceito de Curvas Diferenciáveis Parametrizadas Regulares, com destaque

para as curvas Parametrizadas por Comprimento de Arco (PCA), a definição de Epicicloide e a parametrização da

Cardioide como um caso particular de Epicicloide. Também será explorado o conceito de Evoluta, complementando

o estudo das propriedades geométricas dessas curvas.

2.1 Parametrização da Cardioide em Coordenadas Polares

O diâmetro de uma Cardioide é a maior distância entre dois pontos da curva, medidos ao longo de uma reta

que passa pela origem (ou polo).

Segundo (PARADINHA et al., 1999) quando a medida do diâmetro da Cardioide for 2a (constante), a sua equação

cartesiana é

(x2 + y2 + ax)2 = a2(x2 + y2): (1)

Para realizar a transformação da equação que descreve a Cardioide em Coordenadas Cartesianas para Coor-

denadas Polares, utiliza-se a mudança de coordenadas x = rcos(�) e y = r sen(�). Substituindo na Equação (1),

2 V. A. A. Melo - G. F. F. Filho - C. M. S. Meneghetti



Volume 12 - Número 2 Dezembro 2025 Páginas: 1 a 13

tem-se:

[r2cos2(�) + r2 sen2(�) + arcos(�)]2 = a2(r2cos2(�) + r2 sen2(�)):

Fazendo-se as simplificações necessárias, obtém-se:

r2 + 2arcos(�) + a2cos2(�) = a2;

que é uma equação do segundo grau em r:

r2 + 2acos(�)r + a2cos2(�)� a2 = 0: (2)

Para resolver a Equação (2), utiliza-se a fórmula resolutiva para equações do segundo grau, obtendo-se as

soluções

r = �acos(�)� a:

Assumindo implicitamente a > 0 e considerando o domínio usual das coordenadas polares, com r � 0, observa-

se que a solução r = a(1� cos(�) é não negativa para todo �, enquanto r = �a(1 + cos(�) assume apenas valores

não positivos.

Do ponto de vista geométrico, em coordenadas polares, pares do tipo (r; �) e (�r; �+�) representam o mesmo

ponto do plano. Assim, embora as duas expressões para r possuam sinais distintos, ambas descrevem o mesmo

conjunto geométrico de pontos quando se leva em conta essa equivalência polar.

Entretanto, a fim de evitar interpretações envolvendo raios negativos e simplificar as análises subsequentes,

opta-se por considerar apenas a solução não negativa

r = a(1� cos(�));

a qual descreve completamente a curva em estudo.

Observa-se que o valor máximo de r é de fato 2a (diâmetro) e o mínimo é 0, ou seja, a curva vai desde o polo

até uma distância 2a, formando uma figura cuja extensão total (maior comprimento linear a partir do polo) é 2a. É

importante destacar que a definição de diâmetro não coincide com a maior distância entre dois pontos da curva.

Assim, tem-se uma parametrização de uma Cardioide para um caso específico em que a curva é simétrica em

relação ao eixo x (Figura 6), mas essa curva pode ser representada de várias formas, rotacionando sua represen-

tação no Plano Cartesiano. Considerando:

r: distância de um ponto da curva até a origem do Plano Polar;

a: parâmetro que define o tamanho/diâmetro da Cardioide;

�: ângulo em radianos,

as parametrizações da Cardioide em Coordenadas Polares e seus traços podem ser observados na Figura 2.

Figura 2: Representações gráficas de cardioides em diferentes posições

x

y

Figura 3: Cardioide r(�) = a+ a sen(�)

x

y

Figura 4: Cardioide r(�) = a� a sen(�)

Fonte: Os autores
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Figura 5: Representações gráficas de cardioides em diferentes posições

x

y

Figura 6: Cardioide r(�) = a� acos(�)

x

y

Figura 7: Cardioide r(�) = a+ acos(�)

Fonte: Os autores

Essas equações descrevem a curva (Cardioide), mas com posições diferentes no plano, dependendo da função

trigonométrica e do sinal utilizados.

2.2 Curva Diferenciável Parametrizada Regular

Uma curva �!
 : I ! R2 é definida como Parametrizada Regular Diferenciável (ou suave) quando satisfaz duas

condições principais. Primeiramente, a função deve ser diferenciável de classe C1, ou seja, ela e sua derivada

devem ser contínuas em todo o intervalo I. Em segundo lugar, sua derivada, dada por
�!

0 (t) = (x0(t); y0(t)),

não pode ser nula, ou seja,
�!

0 (t) 6= (0; 0) para todo t 2 I. Essa segunda condição garante que a velocidade da

curva não se anula e, consequentemente, a curva possui uma orientação local bem definida em todos os seus

pontos e admite uma reta tangente em cada um deles, o que é fundamental para o estudo de suas propriedades

geométricas.

O ponto onde a derivada da curva se anula é chamado de Ponto de Reversão (PARADINHA et al., 1999). Nesse

ponto a variação do declive das retas tangentes à imagem da curva muda de sentido. A Cardioide possui um Ponto

de Reversão, por isso não é regular e seu diâmetro é então o comprimento da maior corda que se pode traçar a

partir do Ponto de Reversão.

Observa-se que a equação r = a(1 + cos(�)) descreve uma cardioide geometricamente equivalente àquela

dada por r = a(1 � cos(�)), diferindo apenas por uma rotação do plano. Como rotações são isometrias do R2,

ambas representam o mesmo objeto geométrico. A partir deste ponto, adota-se a forma r = a(1 + cos(�)) por

conveniência nas análises subsequentes.

Considerando a parametrização em Coordenadas Polares da Cardioide

r(�) = a(1 + cos(�)); � 2 [0; 2�]

e convertendo para sua forma paramétrica, tem-se:

x(�) = a(1 + cos(�))cos(�); y(�) = a(1 + cos(�)) sen(�): (3)

Para verificar que a Cardioide não é uma Curva Regular, é necessário calcular a derivada do vetor posição
�!
r (�) = (x(�); y(�)) :

Calculando as derivadas das funções coordenadas, tem-se: x0(�) = �a [ sen(2�) + sen(�)] e y0(�) =

a [cos(2�) + cos(�)].

Agora, será necessário verificar que o vetor tangente
�!
r0 (�) = (x0(�); y0(�)) é nulo para algum �. Para isso,

serão investigadas, primeiramente, as condições que acarretam x0(�) = 0. Observa-se que isto ocorre se

sen(2�) + sen(�) = 0: (4)
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Note que para a Equação (4) ser verdadeira tem-se duas possibilidades: a primeira é � = 0 e a segunda ocorre

quando � = �. Por outro lado, para que y0(�) = 0, tem-se:

cos(2�) + cos(�) = 0: (5)

Para que a Equação (5) seja satisfeita tem-se � = �.

Ocorre que x0(�) e y0(�) se anulam ao mesmo tempo quando � = �. Portanto, tem-se
�!
r0 (�) = (0; 0), o que

significa que a curva não é regular.

2.3 Curvatura da Cardioide

Segundo MORENO (2018), a Curvatura de uma Curva pode ser interpretada geometricamente como a medida

de sua diferença em relação a uma reta. Mais precisamente, a Curvatura é uma medida intrínseca que descreve

como uma curva se desvia de ser uma reta ou superfície se desvia localmente de ser plana, sendo fundamental

no estudo das propriedades geométricas das curvas e superfícies. A autora SOUZA LUZ (2017) explica que em

uma curva, a Curvatura é definida como a taxa de variação da direção do vetor tangente ao longo da curva em

um ponto específico.

Na Figura 8, além da representação da Cardioide, são exibidos vetores tangentes em diferentes pontos da

curva. Esses vetores tangentes ajudam a visualizar a direção instantânea da curva e servem como base para

calcular o Vetor Normal, utilizado no cálculo da Curvatura e na parametrização do Círculo Osculador da curva.

Figura 8: Representação dos Vetores Tangente e Normal na Cardioide

x

y

Legenda:

Pontos

Vetores Tangentes

Vetor Normal

Círculo Osculador

Fonte: Os autores

Considere uma aplicação �!r : I ! R2 de classe C1, regular, definida em um intervalo aberto I = (c; d) da reta.

Suponha que �!r está Parametrizada por Comprimento de Arco (PCA), isto é,

k�!r0 (s)k = 1; para todo s 2 I:

Para cada s 2 I, o vetor
�!
r0 (s) é um vetor unitário que será designado por t(s). Seja n(s) o vetor unitário de R2

ortogonal à
�!
r0 (s) tal que a base ft(s);n(s)g tem a mesma orientação da base canônica fe1; e2g. A função k : I ! R

tal que t’(s) = k(s)n(s), para todo s 2 I, é chamada curvatura de �!r em s 2 I (DELGADO e FRENSEL, 2019).

Essa definição decorre do fato de o vetor tangente unitário t(s) satisfazer kt(s)k = 1 para todo s 2 I. Derivando
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a identidade ht(s); t(s)i = 1 em relação a s, obtém-se

ht0(s); t(s)i = 0;

o que implica que t0(s) é ortogonal a t(s). Assim, como n(s) é definido como o vetor normal unitário à curva,

conclui-se que t0(s) é necessariamente paralelo a n(s), justificando a existência da função escalar k.

Assim, considerando a parametrização �!r (s) = (x(s); y(s)), tem-se

k(s) = hn(s); t’(s)i = �x00(s)y0(s) + y00(s)x0(s):

Caso a curva não seja PCA (como é o caso da Cardioide), segundo DELGADO e FRENSEL (2019, p.20), conside-

rando �!r (t) = (x(t); y(t)), tem-se que sua curvatura é dada por

k(t) =
x0(t)y00(t)� x00(t)y0(t)

[(x0(t))2 + (y0(t))2]3=2
:

Considerando a parametrização �!r (t) = (a(1� cos(t))cos(t); a(1� cos(t)) sen(t)) da Cardioide, tem-se:

x(t) = a(1� cos(t))cos(t) x0(t) = �a sen(t) + a sen(2t) x00(t) = �acos(t) + 2acos(2t)

y(t) = a(1� cos(t)) sen(t) y0(t) = acos(t)� acos(2t) y00(t) = �a sen(t) + 2a sen(2t)

(x0(t))2 + (y0(t))2 = 2a2(1� cos(t)
p

(x0(t))2 + (y0(t))2 =
p
2a(1� cos(t))1=2

Portanto,

k(t) =
3

2
p
2a(1� cos(t))1=2

:

O cálculo explícito mostra que a expressão da curvatura envolve o termo 1� cos(t) no denominador, de modo

que, ao aproximar-se de t = 0 ou t = 2�, o termo tende a zero. Consequentemente, a curvatura diverge, assumindo

valores arbitrariamente grandes. Assim, do ponto de vista da Geometria Diferencial, o cúspide constitui uma

singularidade da curva, caracterizado por uma curvatura que tende ao infinito.

2.4 Definição da Epicicloide

Seja c um círculo de raio r (vermelho) e centro Q rolando externamente sobre um círculo c0 de raio R (azul) e

centro O, sem escorregamento. Seja P = (x; y) um ponto fixo em c. A Epicicloide é a curva descrita pelo ponto P

à medida que c rola sobre c0 (SILVA, 2021). Veja a Figura 9.

Figura 9: Coordenadas da Epicicloide

R+ r

�

�

O

Q

P x

y

Fonte: Os autores
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As coordenadas do ponto Q são dadas por ((R+ r)cos(�); (R+ r) sen(�)).

O comprimento de circunferência entre o ponto de tangência entre os dois círculos e o ponto P em c é lr e em

c0 é lR. Uma vez que lR = lr, sendo lR = R� e lr = r�, ou seja, � = R �
r , tem-se que a Epicicloide é parametrizada

por:

8<
:

x(�) = (R+ r)cos(�)� rcos
�
�R
r + �

�
y(�) = (R+ r) sen(�)� r sen

�
�R
r + �

� com � 2 [0; 2�]: (6)

Quando o raio R do círculo c0 for igual ao raio r do círculo móvel c, isto é, R = r, a Epicicloide resultante será

uma Cardioide, orientada como na Figura 6, com Ponto de Reversão de coordenadas (R; 0) e diâmetro 4R. Isso

acontece porque, nesse caso, o círculo móvel c percorre exatamente uma volta completa ao redor do círculo fixo

c0 enquanto também gira uma volta completa sobre si mesmo. A Figura 11 ilustra a formação de uma Cardioide

com círculo móvel c tangenciando c0.

Este processo de construção da Cardioide, fazendo-se R = r na Equação 6, é dado pelas seguintes funções

paramétricas:

x(�) = 2Rcos(�)�Rcos(2�)

= 2Rcos(�)�R(cos2(�)� sen2(�))

= 2Rcos(�)�Rcos2(�) +R sen2(�)

= 2Rcos(�)�R(cos2(�) +R(1� cos2(�))

= 2Rcos(�)(1� cos(�)) +R

y(�) = 2R sen(�)�R sen(2�)

= 2R sen(�)� 2R sen(�)cos(�)

= 2R sen(�)(1� cos(�)):

Assim, a curva descrita pelo ponto P pode ser parametrizada como:

�!
r (�) = (R+ 2R(1� cos(�))cos(�); 2R(1� cos(�)) sen(�));

ou seja,

�!
r (�) = (R; 0) + 2R((1� cos(�))cos(�); (1� cos(�)) sen(�)):

Na Figura 10 é apresentada a Cardioide juntamente com os eixos coordenados. A Figura 11 ilustra a represen-

tação da construção da Epicicloide.

Figura 10: Epicicloide

x

y

Fonte: Os autores
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Figura 11: Representações gráficas de uma Epicicloide para R = r

Círculo fixo Círculo móvel

Ponto especial

ponto

Figura 12: Circunferências tangentes pelo ponto especial P

Círculo fixo

Círculo móvel

Figura 13: O círculo móvel após 1

4
de volta

Círculo fixo

Círculo móvel

Figura 14: O círculo móvel após 1

3
de volta

Círculo fixo Círculo móvel

Cardioide formada

Figura 15: Formação completa da Cardioide após uma volta

Fonte: Os autores

Portanto, a Cardioide é um caso particular de Epicicloide, onde a igualdade dos raios r = R cria essa curva

única e simétrica.

2.5 Evoluta da Cardioide

Seja �!r : I ! R2 uma curva regular com k(t) 6= 0 ; 8 t 2 I. Define-se a evoluta de �!r como o lugar geométrico

dos centros dos círculos osculadores da curva, isto é, a curva �!e : I ! R2 dada por

�!
e (t) = �!

r (t) +
1

k(t)
�!
n (t);

onde k(t) =
�x00(t)y0(t) + x0(t)y00(t)

[(x0(t))2 + (y0(t))2]3=2
e �!n (t) =

(�y0(t); x0(t))p
(x0(t))2 + (y0(t))2

representam, respectivamente, a curvatura e

o vetor normal unitário no ponto �!r (t). Assim, para cada t0 2 I, o ponto �!e (t0) corresponde ao centro do círculo

osculador de �!r em t0.

Considerando a Cardioide:

r(�) = a(1� cos�);

obtém-se, a partir das expressões da curvatura e do vetor normal em coordenadas polares, que

k(�) =
3

2
p
2a(1� cos(�))1=2
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e
�!
n (�) =

(�acos(�) + acos(2�);�a sen(�) + a sen(2�))p
2a(1� cos(�))1=2

:

Substituindo esses resultados na definição de evoluta, chega-se à parametrização

�!
e (�) =

�
a

3
cos(�)(1� cos(�)) +

2a

3
cos(2�);

a

3
sen(�)(1� cos(�) +

2a

3
sen(2�))

�
:

Essa curva representa o lugar geométrico dos centros de curvatura da Cardioide, ou seja, sua Evoluta.

Figura 16: Cardioide e sua evoluta (em azul).

x

y
Cardioide
Evoluta

Fonte: Os autores

Efetuando-se uma simplificação trigonométrica: cos(2�) = 2cos2� � 1, sen(2�) = 2 sen(�)cos(�), tem-se:

ex(�) =
a

3

�
cos� � cos2� + 4cos2� � 2

�
=

a

3

�
3cos2� + cos� � 2

�
;

ey(�) =
a

3

�
sen � � sen �cos� + 4 sen �cos�

�
=

a

3
sen � (1 + 3cos�):

Assim, uma decomposição vetorial útil é

�!
e (�) =

a

3
(3cos� + 1) (cos�; sen �) �

�
2a

3
; 0

�

que pode ser escrita na forma polar

R(�) =
a

3
(1 + 3cos�):

Portanto, relativamente ao ponto C =
�
2a
3
; 0
�
, a evoluta tem equação polar

R(�) =
a

3

�
1 + 3cos�

�
;

que é um Limaçon de Pascal (com laço interno, pois 3 > 1). Logo, a evoluta não é uma Cardioide homotética da

original; trata-se de um caso particular de Limaçon.

3 Aplicações da Cardioide

A curva Cardioide, além de seu interesse matemático intrínseco, encontra aplicações relevantes em diferentes

áreas do conhecimento, evidenciando sua importância tanto teórica quanto prática. Nesta seção, serão apresen-

tadas algumas dessas aplicações.

V. A. A. Melo - G. F. F. Filho - C. M. S. Meneghetti 9



Revista Eletrônica Matemática e Estatística em Foco

3.1 Acústica: reflexão de ondas sonoras em superfícies com formato de Cardioide

Segundo BOURNE (2009), a Cardioide é diretamente aplicada no design do Microfone Cardioide, onde o padrão

de captação de som segue o mesmo comportamento da curva. Na prática, o microfone é mais sensível na direção

frontal (� = 0�), captando o som com maior intensidade, enquanto a sensibilidade diminui gradualmente nas

laterais (� = 90� e � = 270�) e é praticamente nula na parte traseira (� = 180�). Essa característica permite isolar o

som desejado, reduzindo a captação de ruídos indesejados provenientes de outras direções, tornando o Microfone

Cardioide ideal para gravações em estúdio, palcos e outras situações onde a direcionalidade do som é crucial.

Veja a Figura 17.

Figura 17: Exemplo de Microfone Cardioide em um palco com Public Address (P.A.) e monitor de retorno

Fonte: KRUNNER (2021)

Na Figura 17 estão indicados o Monitor de Retorno, que é o sistema responsável por permitir que os músicos

se escutem durante a apresentação, podendo ser feito por meio de caixas no chão ou fones de ouvido conectados

a sistemas individuais de monitoramento e o P.A., que é o sistema de som voltado para o público, composto por

caixas acústicas, posicionadas ao lado do palco para garantir que o som chegue com qualidade à plateia.

3.2 Óptica

Conforme o trabalho de (MELO FILHO et al., 2016) quando uma fonte de luz fixa em um círculo emite raios em

todas as direções, cada raio bate na superfície curva e é refletido seguindo a lei da reflexão (o ângulo de entrada

é igual ao de saída). Quando a luz é refletida no círculo, cada raio refletido é tangente a uma Cardioide invisível

dentro do círculo. O interessante é que, quando todos esses raios são refletidos, formam a curva Cardioide. Isso

ocorre porque os ângulos de reflexão fazem com que os raios se alinhem perfeitamente, como se a Cardioide fosse

um molde que todos os raios refletidos tocam. É como se a própria geometria do círculo escondesse essa forma

cardíaca, revelada apenas quando a luz é refletida de maneira organizada. Veja a Figura 18:

Figura 18: Reflexão Cardioide

Fonte: MELO FILHO et al. (2016)
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3.3 Aplicação da Curva Cardioide na Análise Morfológica de Sementes

A Cardioide é utilizada como ferramenta de análise morfológica no estudo de algumas espécies de sementes

(MARTÍN GÓMEZ, 2013). Este método geométrico permite avaliar com precisão a similaridade entre o contorno

das sementes e a forma Cardioide ideal por meio do índice de similaridade j. A análise realizada evidenciou que

sementes com maior similaridade à Cardioide, isto é, que apresentam valores elevados de j, têm uma maior

qualidade.

O índice de similaridade j é dado como:

j =
AC

AC + AD
100; (7)

onde AC representa a área da Cardioide e AD é a área entre a Cardioide e a semente. Essa comparação pode ser

feita por quadrantes como mostra a Figura 19.

Figura 19: Divisão da Cardioide em Quadrantes

Fonte: MARTÍN GÓMEZ (2013, p.127)

Um exemplo da aplicação com sementes de Arabidopsis, Lotus e Medicago pode ser vista na Figura 20.

Figura 20: Composição: à esquerda, semente de Arabidopsis; no centro, semente de Lotus; e à direita,
semente de Medicago, com as Cardioides que melhor se ajustam às suas formas

Fonte: MARTÍN GÓMEZ (2013, p.80)
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4 Conclusão

Do ponto de vista matemático, a Cardioide oferece uma rica oportunidade para integrar diferentes temas,

desde Coordenadas Polares e Cartesianas até conceitos de Cálculo Diferencial e Geometria Diferencial. Ao mesmo

tempo, sua análise proporciona uma conexão rica entre ideias matemáticas abstratas e aplicações concretas,

oferecendo um ponto de partida motivador para explorar como a matemática se manifesta no mundo ao nosso

redor.

Conclui-se, com base neste trabalho, que o estudo da curva Cardioide é relevante e apresenta potencial para

novas investigações. Durante a pesquisa teórica, foi possível encontrar aplicações interessantes da Cardioide,

destacando-se seu papel na acústica, em particular na reflexão de ondas sonoras em superfícies com formato de

Cardioide, frequentemente explorada em projetos de microfones direcionais e ambientes com controle acústico.

Em ótica, a Cardioide surge em fenômenos de reflexão de luz em espelhos curvos, revelando propriedades ge-

ométricas interessantes (MELO FILHO et al., 2016). Por fim, foi abordada sua utilização na análise morfológica

de sementes, onde a forma cardioidal serve como referência para a caracterização de estruturas naturais, contri-

buindo para a análise da qualidade de grãos (MARTÍN GÓMEZ, 2013). Essas aplicações ilustram como conceitos

da Geometria Diferencial transcendem o campo abstrato e se conectam a contextos reais e interdisciplinares.
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