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Resumo

A indutância constitui um parâmetro de extrema relevância no estudo e dimensionamento de linhas de transmissão de energia elétrica, impac-
tando diretamente o desempenho dos sistemas elétricos de potência tanto em regime permanente quanto durante fenômenos transitórios.
Este trabalho tem como objetivo formular expressões matemáticas generalizadas para o cálculo da indutância em linhas de transmissão tri-
fásicas, fundamentando-se nos princípios dos campos eletromagnéticos. A abordagem proposta considera diferentes configurações físicas
dos condutores, bem como a disposição espacial das fases, permitindo o desenvolvimento de equações aplicáveis a diversas topologias de
linhas. A pesquisa visa, assim, fornecer uma ferramenta analítica robusta e versátil, capaz de auxiliar tanto no projeto quanto na otimização
de sistemas de transmissão de energia elétrica, contribuindo para o aprimoramento da modelagem de suas características elétricas.

Palavras-chaves: Indutância. Linhas de transmissão. Sistemas elétricos de potência. Campos eletromagnéticos.

Abstract

Inductance is a highly significant parameter in the study and design of power transmission lines, directly influencing the performance of electric
power systems in both steady-state and transient conditions. This work aims to formulate generalized mathematical expressions for the
calculation of inductance in generic three-phase transmission lines, based on the principles of electromagnetic fields. The proposed approach
considers different physical configurations of the conductors, as well as the spatial arrangement of the phases, enabling the development
of equations applicable to various line topologies. Thus, the research seeks to provide a robust and versatile analytical tool capable of
assisting both in the design and optimization of power transmission systems, contributing to the enhancement of their electrical characteristics
modeling.

Keywords: Inductance. Transmission lines. Electric power systems. Electromagnetic fields.

1 Introdução

A análise e o estudo de linhas de transmissão são essenciais para o projeto e operação eficiente de sistemas

de energia elétrica. Dentre os diversos parâmetros elétricos que influenciam o desempenho de uma linha de

transmissão, a indutância desempenha um papel crucial (MONTICELLI, 2011). A indutância afeta diretamente o

comportamento da linha, influenciando o fluxo de potência, a queda de tensão e as perdas energéticas, além de

impactar a estabilidade do sistema, especialmente em situações de transitórios e falhas.

A indutância de uma linha de transmissão está relacionada à formação de campos magnéticos em torno dos

condutores à medida que correntes elétricas os percorrem. De acordo com a Lei de Biot-Savart, quando uma cor-

rente I flui em um condutor, ela gera um campo magnético
�!
H ao redor desse condutor. Esse campo magnético,

por sua vez, dá origem ao fluxo magnético �, que é a medida do campo magnético que passa através de uma su-

perfície e está diretamente associado à corrente elétrica que gera esse campo (SADIKU, 2018). Matematicamente,

o fluxo magnético é definido como a integral do produto escalar do vetor densidade de fluxo magnético �o
�!
H e do

vetor de área
�!
dS de uma superfície S:

� =

ZZ
S

�o
�!
H �
�!
dS: (1)
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No caso da presença de múltiplos condutores carregados, como é o caso das linhas de transmissão reais, esse

fluxo magnético gerado por um condutor pode influenciar os outros condutores adjacentes, o que caracteriza o

fenômeno de fluxo concatenado. Assim, o fluxo magnético concatenado com um condutor em particular considera

de soma de todos os campos magnéticos que atravessam a superfície delimitada pelo condutor analisado.

O fluxo concatenado com o condutor está então relacionado com a corrente que flui nele. Assim, em meios

lineares, o fluxo magnético � gerado por uma corrente I é diretamente proporcional a essa corrente, sendo a

constante de proporcionalidade dada pela indutância L:

� = L � I: (2)

O cálculo da indutância em uma linha de transmissão pode ser feito determinando-se o fluxo concatenado

com cada condutor por unidade de corrente, conforme Equação (2), dependendo basicamente da geometria do

condutor e da permeabilidade magnética do meio ao redor. Assim, a indutância está relacionada à distribuição do

campo magnético em torno dos condutores e à forma como o fluxo magnético se comporta dentro e fora de um

condutor, levando em consideração a geometria do arranjo da linha e os efeitos de proximidade e agrupamento

dos condutores na mesma.

A determinação da indutância envolve então o cálculo do fluxo magnético produzido tanto no interior do con-

dutor quanto externamente ao ele. Para simplificação da análise matemática de linhas de transmissão, utiliza-se o

conceito de raio reduzido dos condutores. O condutor com raio reduzido (que corresponde a uma fração do raio do

condutor original) representa um condutor idealizado com campo magnético totalmente externo, mas equivalente

ao condutor real em termos de fluxo (ZANETTA, 2006). Esse conceito facilita os cálculos do campo magnético e da

indutância, pois elimina a necessidade de considerar a complexa distribuição de campo magnético no interior do

condutor, permitindo uma modelagem mais simples e eficiente.

A indutância influencia diretamente a reatância série XL = 2�fL, que, por sua vez, determina as perdas de

energia e as quedas de tensão em uma linha de transmissão (WEDHWA, 2017). Ela impacta tanto a transmis-

são de energia quanto a resposta do sistema a variações de carga e falhas. Em linhas de transmissão longas,

especialmente, valores elevados de indutância podem resultar em maiores quedas de tensão e perdas. Por esse

motivo, em distâncias superiores a mil quilômetros, as linhas de transmissão em corrente contínua se mostram

mais viáveis economicamente, pois, na corrente contínua, não ocorre variação temporal da corrente e, consequen-

temente, não há geração de fluxo magnético, eliminando os efeitos da indutância (MONTICELLI, 2011). O ponto

de transição em que a corrente contínua se torna mais vantajosa do que a corrente alternada varia ao longo do

tempo, sendo influenciado por diversos fatores, incluindo os avanços tecnológicos nos conversores CA/CC, cujos

custos dependem da evolução das soluções implementadas.

Além disso, a indutância desempenha um papel crucial na limitação das correntes de curto-circuito, sendo

essencial para a coordenação de sistemas de proteção. Ela influencia situações de operação transiente, como ma-

nobras de chaveamento ou curtos-circuitos, onde variações rápidas de corrente geram surtos de tensão indutiva,

afetando a proteção e a integridade da linha.

Desse modo, modelos precisos de indutância são fundamentais para análises de fluxo de carga, estabilidade de

tensão e para o dimensionamento de equipamentos como disjuntores e transformadores. O impacto acumulado

da indutância ao longo de uma linha de transmissão pode ser significativo, influenciando significativamente a

eficiência do sistema.

A subseção seguinte detalhará o procedimento matemático geral para a determinação da indutância em li-

nhas de transmissão, com ênfase na generalização da matriz de indutância para configurações com múltiplos

condutores por fase. O ponto de partida será uma linha monofásica com dois condutores, que servirá como base

para estender o modelo a configurações mais complexas, permitindo uma análise mais precisa para sistemas de

transmissão

26 J. F. X. P. Lima
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1.1 Indutância de Linha Monofásica Bifilar

Na prática, as linhas de transmissão são constituídas por dois ou mais condutores e, em geral, a soma das

correntes nesses fios é nula. Como consequência, o campo magnético é relativamente mais fraco em pontos mais

afastados da linha (MONTICELLI, 2011).

A Figura 1 apresenta a seção reta de uma linha bifilar monofásica de comprimento infinito. Para o estudo e cál-

culo da indutância da linha considera-se aqui os condutores com raios reduzidos de modo que, portanto, só serão

analisados os fluxos externos, ou seja, para distâncias do eixo maiores que o raio do condutor correspondente.

O ponto P, indicado na figura, está posicionado de forma arbitrária ao longo do eixo entre os condutores,

externo a eles.

i2i1

1 2
P

x D � x

D

�!
H1

�!
H2

R1 R2

Figura 1: Representação de uma linha de transmissão monofásica bifilar

Uma primeira análise para determinação da indutância consiste em trabalhar com os vetores de campo mag-

nético gerados no ponto P pelas correntes que circulam nos condutores da linha (SADIKU, 2018). A corrente no

primeiro condutor produz um vetor campo magnético
�!
H1 na direção vertical bj e a corrente no segundo condutor,

que flui no sentido oposto a do primeiro (soma das correntes nulas), gera um vetor campo magnético
�!
H2 também

na direção vertical bj, conforme representado na Figura 1.

Os vetores campo magnético
�!
H1 e

�!
H2 são calculados seguindo-se a Lei de Ampère (KRISHNA, 2011), a qual

possibilita calcular o campo magnético a partir de uma distribuição de densidade de corrente elétrica J ou de uma

corrente elétrica i, sendo ambas estacionárias (independentes do tempo):

I

1

�!
H1 �

�!
dl1 =

ZZ
S1

�!
J1 �

��!
dS1; (3)

I

2

�!
H2 �

�!
dl2 =

ZZ
S2

�!
J2 �

��!
dS2; (4)

em que 
1 e 
2 são contornos ampèrianos, nesse caso definidos como circunferências de raios x e D � x, res-

pectivamente, centralizadas, nessa ordem, nos centros dos condutores 1 e 2. S1 e S2 são as superfícies abertas

definidas por esses contornos. Considerando então as densidades de corrente J1 e J2 uniformes nos condutores

(desprezando-se aqui o efeito skin para 60 Hz), e a definição mencionada de 
1, 
2, S1 e S2, de forma que os

vetores diferenciais de área são paralelos às densidades de corrente, assim como os vetores diferenciais de com-
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primento e os respectivos campos magnéticos, as integrais em (3) e (4) podem ser resolvidas, determinando-se,

assim, os vetores
�!
H1 e

�!
H2:

H1

I

1

dl1 = J1

ZZ
S1

dS1 ) H1 � (2�x) = J1 � (�x
2) = i1 )

�!
H1 =

i1
2�x

bj; (5)

H2

I

2

dl2 = J2

ZZ
S2

dS2 ) H2 � (2�(D � x)) = J2 � �(D � x)2 = i2 )
�!
H2 =

i2
2�(D � x)

bj: (6)

O fluxo magnético � gerado pelos condutores é então determinado, seguindo-se a Equação (1) como:

� =

ZZ
S

�o
�!
H �
�!
dS =

ZZ
Sl1

�o
�!
H1 �

��!
dSl1 +

ZZ
Sl2

�o
�!
H2 �

��!
dSl2 : (7)

Os elementos de área são definidos, a partir de um retângulo infinitesimal de lados l (comprimento da linha)

e dx, como
���!
dSl1;2 = ldxbj. Nesse caso, o fluxo é calculado somente devido aos campos magnéticos externos aos

condutores, já que se considera na análise, os seus raios reduzidos R1 e R2. Utilizando-se então as expressões

desses vetores de campo magnético externo aos condutores
�!
H1 e

�!
H2 determinadas nas Equações (5) e (6), su-

pondo ainda R1 = R2 = R e considerando i1 � i2 = 0 (de modo que i1 = i2 = i), tem-se que as integrais da

Equação (7) torna-se:

� =

Z D�R

R

�oi

2�x
dx+

Z D�R

R

�oi

2�(D � x)
dx; (8)

que determina o fluxo total concatenado por unidade de comprimento.

Empregando-se técnicas de integração em (8) e considerando D � R, obtém-se:

� =
�oi

�
ln

�
D �R

R

�
�

�oi

�
ln

�
D

R

�
: (9)

A indutância L da linha, por unidade de comprimento, pode ser obtida a partir da expressão determinada para

o fluxo � na Equação (9) acima, seguindo-se a Equação (10):

L =
�

i
=

�o
�

ln

�
D

R

�
: (10)

Uma segunda análise pode ser feita, definindo-se um ponto P arbitrário fora da linha imaginária que une os

centros, e que dista d1P do centro do condutor 1 e d2P do centro do condutor 2. O fluxo então que se concatena

com a corrente i1 tem duas componentes, sendo uma delas devido à própria corrente i1 (�11) e outra devido à

corrente no condutor 2, i2 (�12).

O fluxo �11 é calculado pela Equação (1), considerando
�!
H1 = i1

2�x1
c'1 e

��!
dS1 = ldx1c'1, em que c'1 é o versor

perpendicular à linha imaginária que liga o centro do condutor 1 ao ponto P :

�11 =

ZZ
S

�0
�!
H1 �

��!
dS1 =

Z d1P

R1

�0i1
2�x1

dx1 =
�0i1
2�

ln

�
d1P
R1

�
: (11)

O fluxo �12 é calculado igualmente pela Equação (1), considerando
�!
H2 = i1

2�x2
c'2 e

��!
dS2 = ldx2c'2, em que c'2 é

o versor perpendicular à linha imaginária que liga o centro do condutor 2 ao ponto P:

�12 =

ZZ
S

�o
�!
H2 �

��!
dS2 =

Z d2P

D

�oi2
2�x2

dx2 =
�oi2
2�

ln

�
d2P
D

�
: (12)

A integração em (12) é feita considerando a distância D como o limite inferior, pois é a partir dessa distância

medida do eixo do condutor 2, que o fluxo produzido pela corrente i2 passa a se concatenar com o condutor 1 no

qual flui corrente i1.

O fluxo �1 concatenado com o condutor 1 é então calculado, considerando i1 + i2 = 0:
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�1 = �11 + �12 =
�0i1
2�

ln

�
d1P
R1

�
+
�oi2
2�

ln

�
d2P
D

�
;

�1 =
�oi1
2�

�
ln

�
D

R1

�
+ ln

�
d1P
d2P

��
: (13)

Considerando o ponto P muito afastado dos condutores, P ! 1, de modo que d1P =d2P ! 1 tem-se que a

Equação (13) é reduzida a:

�1 =
�oi1
2�

ln

�
D

R1

�
: (14)

Por analogia com a Equação (14), o fluxo �2 concatenado com o condutor 2 é escrito como:

�2 =
�oi2
2�

ln

�
D

R2

�
: (15)

Desse modo, considerando ainda R1 = R2 = R, a indutância L da linha, por unidade de comprimento, é dada

pela Equação (16) seguinte:

L =
�1
i1

+
�2
i2

=
�o
�

ln

�
D

R

�
: (16)

2 DESENVOLVIMENTO

2.1 Indutância de Linha Trifásica a Três Condutores

Com a apresentação, na Introdução, dos principais aspectos relacionados ao eletromagnetismo e o subse-

quente procedimento de cálculo desenvolvido para a determinação da indutância de uma linha monofásica bifilar,

buscou-se, a partir de um arranjo simplificado, proporcionar uma compreensão inicial do processo de análise ma-

temática de campos e fluxos magnéticos em linhas de transmissão. Esse entendimento pode então ser estendido

para a análise de arranjos trifásicos de condutores na linha por meio de uma abordagem análoga, inicialmente con-

siderando uma linha trifásica trifilar e posteriormente generalizando os resultados para uma linha de transmissão

trifásica com qualquer configuração de condutores.

A Figura 2 mostra uma linha trifásica com três condutores, um em cada fase, de raios reduzidos Rx; Ry; Rz. Um

ponto P arbitrário é definido, e dista dxP , dyP e dzP dos centros dos condutores das Fases X, Y e Z, respectivamente.

ix

iy

iz

Rz

Rx

Ry

P
dxP

dyP

dzP

dxy

dxz

dyz

Figura 2: Arranjo de condutores em uma linha de transmissão trifásica
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O mesmo procedimento executado para a linha monofásica bifilar na subseção anterior pode ser utilizado para

a linha trifásica da Figura 2. Assim, de forma análoga, o fluxo que se concatena com a corrente ix tem três

componentes, sendo uma delas devido à própria corrente ix (�xx), outra devido à corrente no condutor y, iy (�xy)

e outra devido à corrente no condutor z, iz (�xz).

O fluxo �xx é calculado pela Equação (1), considerando
�!
Hx = ix

2�xx
c'x e

��!
dSx = ldxxc'x, em que c'x é o versor

perpendicular à linha imaginária que liga o centro do condutor x ao ponto P :

�xx =

ZZ
S

�0
�!
Hx �

��!
dSx =

Z dxP

Rx

�0ix
2�xx

dxx =
�0ix
2�

ln

�
dxP
Rx

�
: (17)

A componente do fluxo �xy é calculada também pela Equação (1), sendo
�!
Hy =

iy
2�xy

c'y e
��!
dSy = ldxyc'y, em que

'y é o versor perpendicular à linha imaginária que liga o centro do condutor y ao ponto P . A integral da Equação

(1) é realizada variando-se os seus limites de integração de dxy, distância do eixo do condutor y até o ponto onde

o fluxo de iy se conecta ao condutor x, até dyP , a distância entre o condutor y e o ponto P . Assim, o cálculo de �xy

é realizado conforme a expressão:

�xy =

ZZ
S

�o
�!
Hy �

��!
dSy =

Z dyP

dxy

�oiy
2�xy

dxy =
�oiy
2�

ln

�
dyP
dxy

�
: (18)

De forma semelhante, a expressão matemática para o cálculo do fluxo �xz pode ser determinada seguindo-se

a integração:

�xz =

ZZ
S

�o
�!
Hz �

��!
dSz =

Z dzP

dxz

�oiz
2�xz

dxz =
�oiz
2�

ln

�
dzP
dxz

�
: (19)

Assim, o fluxo total concatenado com o condutor da fase X é dado por:

�x = �xx + �xy + �xz =
�0ix
2�

ln

�
dxP
Rx

�
+
�oiy
2�

ln

�
dyP
dxy

�
+
�oiz
2�

ln

�
dzP
dxz

�
: (20)

Separando os termos de �x, obtém-se:

�x =
�0ix
2�

ln

�
1

Rx

�
+
�oiy
2�

ln

�
1

dxy

�
+
�oiz
2�

ln

�
1

dxz

�
+
�0ix
2�

ln (dxP ) +
�0iy
2�

ln (dyP ) +
�0iz
2�

ln (dzP ) : (21)

Definindo-se,

� =
�0ix
2�

ln (dxP ) +
�0iy
2�

ln (dyP ) +
�0iz
2�

ln (dzP ) ;

tomando-se também P ! 1, de modo que dxP =dyP ! 1, dyP =dzP ! 1, dxP =dzP ! 1 e utilizando-se a relação

ix + iy + iz = 0, tem-se:

� =
�0
2�

[�iy ln(dxP )� iz ln(dxP ) + iy ln(dyP ) + iz ln(dzP )];

� =
�0
2�

�
iy ln

�
dyP
dxP

�
+ iz ln

�
dzP
dxP

��
= 0: (22)

Com o valor de � = 0, a expressão da Equação (21) que determina o fluxo concatenado com a fase X torna-se:

�x =
�0
2�

�
ix ln

�
1

Rx

�
+ iy ln

�
1

dxy

�
+ iz ln

�
1

dxz

��
: (23)

Analogamente, determina-se as expressões dos fluxos concatenados com as fases Y e Z, �y e �z, respectiva-

mente, conforme apresentado nas Equações (24) e (25):

�y =
�0iy
2�

�
ix ln

�
1

Ry

�
+ iy ln

�
1

dxy

�
+ iz ln

�
1

dyz

��
; (24)
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�z =
�0iz
2�

�
ix ln

�
1

Rz

�
+ iy ln

�
1

dxz

�
+ iz ln

�
1

dyz

��
: (25)

Com isso, uma equação matricial que relaciona os fluxos concatenados e as correntes nas respectivas fases

pode ser escrita como: 264�x�y
�z

375 =

264Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

375
264ixiy
iz

375 ; (26)

em que os elementos da matriz de indutância da linha de transmissão trifásica (por unidade de comprimento) são

expressos como:

Lxx =
�o
2�

ln

�
1

Rx

�
; (27)

Lyy =
�o
2�

ln

�
1

Ry

�
; (28)

Lzz =
�o
2�

ln

�
1

Rz

�
; (29)

Lxy = Lyx =
�o
2�

ln

�
1

dxy

�
; (30)

Lxz = Lzx =
�o
2�

ln

�
1

dxz

�
; (31)

Lyz = Lzy =
�o
2�

ln

�
1

dyz

�
: (32)

Se a linha trifásica for equilátera, de modo que dxy = dyz = dxz = D, a matriz de indutância será uma matriz

diagonal, com o primeiro elemento da diagonal principal Lxd , o segundo Lyd e o terceiro Lzd , respectivamente,

iguais a:

Lxd =
�o
2�

ln

�
D

Rx

�
; (33)

Lyd =
�o
2�

ln

�
D

Ry

�
; (34)

Lzd =
�o
2�

ln

�
D

Rz

�
: (35)

Em linhas de transmissão reais, é comum a presença de mais de um condutor por fase, diferentemente do

modelo trifilar analisado. Além das cargas em movimento que produzem as correntes elétricas nos condutores

de uma linha, podem haver cargas excedentes que geram uma tensão entre os condutores (MONTICELLI, 2011).

Essas cargas excedentes, por sua vez, concentram-se na superfície dos condutores e produzem um campo elétrico

intenso, que pode causar o efeito corona, que consiste na ruptura dielétrica ao redor do condutor. Esse efeito surge

principalmente em sistemas de alta tensão e ocorre quando a intensidade do campo elétrico excede o valor crítico

de ionização do ar, geralmente em torno de 30 kV/cm. Como resultado, o ar ao redor dos condutores se torna

eletricamente condutivo, provocando perdas de energia e podendo resultar em interferências eletromagnéticas.

Visando mitigar esse efeito, utiliza-se a ideia da gaiola de Faraday, aplicando múltiplos condutores por fase, o

que cria um campo elétrico menor ao redor do conjunto, já que o campo nas regiões internas aos condutores que

consistuem uma fase são anulados, havendo apenas campos externos, reduzindo, assim, sua intensidade, o que

diminiu a chance de ocorrênia do efeito corona (MONTICELLI, 2011).

Assim, torna-se comum a utilização de um ou mais condutores em cada fase da linha de transmissão e por

isso a necessidade de se generalizar essa modelagem realizada para a linha trifásica, obtendo-se então uma

matriz de indutância (Equação (26)) com coeficentes que permitam o cálculo da indutância em qualquer arranjo
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de condutores na linha.

Para calcular o fluxo concatenado com cada condutor de uma respectiva fase, deve-se seguir o mesmo procedi-

mento utilizado, separando-se o fluxo em três componentes, uma que contém a influência, no fluxo concatenado,

dos próprios condutores da fase (além da influência do condutor analisado em si), e outras duas que expressam a

influência dos condutores das demais fases.

Assim, o fluxo total concatenado com o condutor será a soma dessas contribuições, de modo que o fluxo total

concatenado com a fase será a média dos fluxos concatenados com os condutores que compõe a respectiva fase

(MONTICELLI, 2011).

Essa abordagem facilita a extensão da análise para sistemas complexos com múltiplos condutores e diferentes

arranjos espaciais, o que é fundamental para o projeto de redes de transmissão de energia eficientes e confiáveis.

Ao generalizar essas expressões de indutância, o modelo pode abranger geometrias não uniformes e configu-

rações assimétricas de condutores, ampliando sua aplicabilidade para cenários reais. Essa estrutura fundamental

apoia técnicas avançadas de simulação, permitindo que engenheiros prevejam e otimizem o desempenho eletro-

magnético dos sistemas de energia sob diversas condições operacionais, contribuindo assim para a melhoria da

estabilidade do sistema e a redução de interferências eletromagnéticas.

Assim, na subseção seguinte será desenvolvido esse procedimento visando a determinação dos elementos da

matriz de indutância de uma linha de transmissão com um arranjo genérico de condutores.

2.2 Indutância de Linha Trifásica Genérica

A partir do desenvolvimento matemático da matriz de indutância para linhas de transmissão trifásicas trifilar

realizado na subseção anterior, a análise pode ser generalizada para uma linha trifásica com n condutores na Fase

X, m condutores na Fase Y e p condutores na Fase Z, representada na Figura 3.

Fase X

Fase Y

Fase Z

x1

x2

x3

xn

y1

y2

ym

z1
z2

z3
zp

dx1x3

dx2y1

Figura 3: Linha trifásica genérica

Nesse caso, a corrente total na fase X é ix de modo que a corrente em cada condutor será a mesma, sendo

escrita como ix=n. Raciocínio análogo é desenvolvido para as outras fases, de modo que a corrente elétrica em

cada condutor das fases Y e Z são, respectivamente, iy=m e iz=p. A soma fasorial das correntes totais de cada

fase, ix, iy e iz é nula.

Assim, inicialmente, pode-se calcular o fluxo concatenado com cada condutor de cada fase. Seguindo-se o

mesmo procedimento matemático adotado nas subseções anteriores, tem-se que o fluxo concatenado com o
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condutor x1 da fase X, �x1 , por exemplo, é dado pela expressão:

�x1 = �0

 ZZ
Sx1

��!
Hx1 �

��!
dSx1 +

ZZ
Sx1x2

��!
Hx2 �

����!
dSx1x2 + � � �+

ZZ
Sx1xn

��!
Hxn �

����!
dSx1xn +

ZZ
Sx1y1

��!
Hy1 �

����!
dSx1y1 + � � �+

+

ZZ
Sx1ym

��!
Hym �

����!
dSx1ym +

ZZ
Sx1z1

��!
Hz1 �

����!
dSx1z1 + � � �+

ZZ
Sx1zp

��!
Hzp �

����!
dSx1zp

!
: (36)

Utilizando-se o mesmo raciocínio da subseção anterior para determinação dos campos magnéticos, tem-se que

a expressão da Equação (36) torna-se:

�x1 =

Z dx1P

Rx1

�0ix
2�nxx1

dxx1 +

Z dx2P

dx1x2

�0ix
2�nxx2

dxx2 + � � �+

Z dxnP

dx1xn

�0ix
2�nxxn

dxxn +

Z dy1P

dx1y1

�0iy
2�mxy1

dxy1 + � � �+

+

Z dymP

dx1ym

�0iy
2�mxym

dxym + � � �+

Z dzpP

dx1zp

�0iz
2�pxzp

dxzp : (37)

Resolvendo-se as integrações de (37), tem-se:

�x1 =
�o
2�
�

"
ix
n

ln

�
dx1P
Rx1

�
+
ix
n

ln

�
dx2P
dx1x2

�
+ � � �+

ix
n

ln

�
dxnP
dx1xn

�
+

iy
m
� ln

�
dy1P
dx1y1

�
+

iy
m

ln

�
dy2P
dx1y2

�
+ � � �+

+
iy
m

ln

�
dymP
dx1ym

�
+
iz
p
ln

�
dz1P
dx1z1

�
+
iz
p
ln

�
dz2P
dx1z2

�
+ � � �+

iz
p
ln

�
dzpP

dx1zp

�#
: (38)

Nesse caso, P é um ponto no espaço arbitrariamente escolhido, no qual são calculados os vetores de campos

magnéticos associados aos fluxos magnéticos de cada condutor da linha. O resultado final da matriz de indutância

da linha de transmissão independe desse ponto P , conforme será demonstrado.

Para um condutor j da fase X, a expressão do fluxo concatenado �xj é então, utilizando-se a notação de

somatório, generalizada como:

�xj =
�o
2�
�

264 ix
n

ln

�
dxjP

Rxj

�
+
ix
n

nX
i=1
i 6=j

ln

�
dxiP
dxjxi

�
+

iy
m

mX
i=1

ln

�
dyiP
dxjyi

�
+
iz
p

pX
i=1

ln

�
dziP
dxjzi

�375 : (39)

O fluxo total médio concatenado com a corrente ix, �x, é então escrito como:

�x =
1

n

 
nX
i=1

�xi

!
=

�o
2�n

"
ix
n

nX
i=1

ln

�
dxiP
Rxi

�
+
ix
n

nX
i=2

ln

�
dx1P
dx1xi

�
+ � � �+

ix
n

nX
i=1
i 6=j

ln

�
dxjP

dxjxi

�
+ � � �+

ix
n

n�1X
i=1

ln

�
dxnP
dxnxi

�

+
iy
m

mX
i=1

ln

�
dyiP
dx1yi

�
+ � � �+

iy
m

mX
i=1

ln

�
dyiP
dxjyi

�
+ � � �+

iy
m

mX
i=1

ln

�
dyiP
dxnyi

�
+
iz
p

pX
i=1

ln

�
dziP
dx1zi

�
+ � � �+

+
iz
p

pX
i=1

ln

�
dziP
dxjzi

�
+ � � �+

iz
p

pX
i=1

ln

�
dziP
dxnzi

�#
: (40)
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Utilizando-se as propriedades do logaritmo e a notação de produtório, a Equação (40) pode ser reescrita como:

�x =
�o
2�n

264 ix
n

ln

 
nY
i=1

dxiP
Rxi

!
+
ix
n

ln

 
nY
i=2

dx1P
dx1xi

!
+ � � �+

ix
n

ln

0B@ nY
i=1
i 6=j

dxjP

dxjxi

1CA+ � � �+
ix
n

ln

 
n�1Y
i=1

dxnP
dxnxi

!

+
iy
m

ln

 
mY
i=1

dyiP
dx1yi

!
+ � � �+

iy
m

ln

 
mY
i=1

dyiP
dxjyi

!
+ � � �+

iy
m

ln

 
mY
i=1

dyiP
dxnyi

!
+
iz
p
ln

 
pY
i=1

dziP
dx1zi

!
+ � � �

+
iz
p
ln

 
pY
i=1

dziP
dxjzi

!
+ � � �+

iz
p
ln

 
pY
i=1

dziP
dxnzi

!#
: (41)

A expressão da Equação (41) é então reescrita de forma otimizada, com o uso de produtórios e somatórios,

conforme a Equação (42) seguinte

�x =
�o
2�n

264 ix
n

ln

 
nY
i=1

dxiP
Rxi

!
+
ix
n

nX
j=1

ln

0B@ nY
i=1
i6=j

dxjP

dxjxi

1CA+
iy
m

nX
j=1

ln

 
mY
i=1

dyiP
dxjyi

!
+
iz
p

nX
j=1

ln

 
pY
i=1

dziP
dxjzi

!375 : (42)

Os termos da Equação (42) independentes e dependentes do ponto P arbitrariamente definido, são separados

na Equação (43):

�x =
�o
2�n

8><>: ix
n

264ln nY
i=1

1

Rxi

!
+

nX
j=1

ln

0B@ nY
i=1
i 6=j

1

dxjxi

1CA
375+

iy
m

nX
j=1

ln

 
mY
i=1

1

dxjyi

!
+
iz
p

nX
j=1

ln

 
pY
i=1

1

dxjzi

!9>=>;
+

�o
2�n

"
ix
n

nX
i=1

ln

 
nY
i=1

dxiP

!
+

iy
m

nX
i=1

ln

 
mY
i=1

dyiP

!
+
iz
p

nX
i=1

ln

 
pY
i=1

dziP

!#
: (43)

Definindo-se então

� =
ix
n

nX
i=1

ln

 
nY
i=1

dxiP

!
+

iy
m

nX
i=1

ln

 
mY
i=1

dyiP

!
+
iz
p

nX
i=1

ln

 
pY
i=1

dziP

!
; (44)

considerando-se também P !1, de modo que as distâncias dx1P ; dx2P ; � � � ; dxnP ! dxjP ; dy1P ; dy2P ; � � � ; dynP !

dyjP ; dz1P ; dz2P ; � � � ; dznP ! dzjP e utilizando-se a relação ix + iy + iz = 0, tem-se:

� =
ix
n

ln
�
dn

2

xjP

�
+

iy
m

ln
�
dmn
yjP

�
+

�
�ix � iy

p

�
ln
�
d
np
zjP

�
;

� = nix ln

�
dxjP

dzjP

�
+ niy ln

�
dyjP

dzjP

�
= 0: (45)

uma vez que dxjP =dzjP ! 1 e dyjP =dzjP ! 1

A Equação (43) do fluxo �x é então simplificada resultando na Equação (46):

�x =
�o
2�n

2664 ixn ln

0BB@ nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dxjxi

1CCA+
iy
m

ln

0@ nY
j=1

mY
i=1

1

dxjyi

1A+
iz
p
ln

0@ nY
j=1

pY
i=1

1

dxjzi

1A
3775 : (46)
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Ou ainda, rescreve-se (46) como:

�x =
�o
2�

2664ix ln
0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dxjxi

1CCA+ iy ln

0@ nm

vuut nY
j=1

mY
i=1

1

dxjyi

1A+ iz ln

0@ np

vuut nY
j=1

pY
i=1

1

dxjzi

1A
3775 : (47)

Por procedimento análogo, determinam-se as expressões dos fluxos concatenados �y e �z associados às fases

Y e Z respectivamente, as quais são escritas conforme registrado nas Equações (48) e (49):

�y =
�o
2�

2664iy ln
0BB@ m2

vuuut mY
i=1

1

Ryi

mY
j=1
j 6=i

1

dyjyi

1CCA+ ix ln

0@ nm

vuut mY
j=1

nY
i=1

1

dyjxi

1A+ iz ln

0@ mp

vuut mY
j=1

pY
i=1

1

dyjzi

1A
3775 ; (48)

�z =
�o
2�

2664iz ln
0BB@ p2

vuuut pY
i=1

1

Rzi

pY
j=1
j 6=i

1

dzjzi

1CCA+ ix ln

0@ np

vuut pY
j=1

nY
i=1

1

dzjxi

1A+ iy ln

0@ mp

vuut pY
j=1

mY
i=1

1

dzjyi

1A
3775 : (49)

A matriz de indutância da linha de transmissão trifásica genérica (por unidade de comprimento) pode então

ser escrita como:

264�x�y
�z

375 =

264Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

375
264ixiy
iz

375 ; (50)

em que,

Lxx =
�o
2�

ln

0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dxjxi

1CCA ; (51)

Lyy =
�o
2�

ln

0BB@ m2

vuuut mY
i=1

1

Ryi

mY
j=1
j 6=i

1

dyjyi

1CCA ; (52)

Lzz =
�o
2�

ln

0BB@ p2

vuuut pY
i=1

1

Rzi

pY
j=1
j 6=i

1

dzjzi

1CCA ; (53)

Lxy = Lyx =
�o
2�

ln

0@ nm

vuut nY
j=1

mY
i=1

1

dxjyi

1A ; (54)

Lxz = Lzx =
�o
2�

ln

0@ np

vuut nY
j=1

pY
i=1

1

dxjzi

1A ; (55)

Lyz = Lzy =
�o
2�

ln

0@ mp

vuut mY
j=1

pY
i=1

1

dyjzi

1A : (56)
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A matriz de indutância apresentada na Equação (50) para uma linha de transmissão trifásica genérica não

é uma matriz diagonal. A existência de elementos não nulos fora da diagonal principal na matriz de indutância

em linhas de transmissão de energia elétrica pode trazer uma série de desvantagens operacionais e impactos

negativos no desempenho do sistema elétrico (GLOVER et al., 2017). Essa assimetria ocasiona desequilíbrios

de corrente, pois as diferentes indutâncias entre as fases geram diferentes impedâncias, além de resultar no

desbalanceamento de potência reativa, o qual pode causar oscilações de tensão que se propagam por grandes

distâncias na rede, comprometendo a confiabilidade do sistema.

Visando, assim, se obter uma matriz de indutância diagonal para a linha de transmissão, é realizada a técnica

de transposição dos condutores. Esse procedimento envolve permutar periodicamente as posições dos condutores

das fases em seções específicas da linha, de forma que, assim, cada condutor ocupe todas as possíveis posições

relativas aos outros condutores e ao solo em algum ponto da linha. Nesse caso então, garante-se que, em média,

cada condutor ocupe todas as posições relativas aos outros condutores e ao solo, minimizando os efeitos de

assimetrias geométricas que afetam as propriedades elétricas das fases, já que as indutâncias e capacitâncias

associadas a cada fase se equilibram.

A transposição em geral é realizada em intervalos regulares, podendo ser feita em estações de chaveamento,

sendo necessário que as torres de transmissão sejam projetadas de modo a permitir a troca física dos condutores

sem comprometer a integridade mecânica e a segurança da linha.

Para a determinação da matriz de indutância resultante da transposição, considera-se uma linha trifásica se-

melhante à da Figura 3 mas nesse caso com o mesmo número de condutores n em cada fase. Supõe-se também

que os condutores ficam em cada uma das posições por 1/3 do comprimento total da linha.

No primeiro terço, os condutores estão posicionado nas posições padrões de suas respectivas fases, da mesma

maneira apresentada na Figura 3.

No segundo terço do percurso, ocorre a primeira permuta entre as fase. Nesse caso, por exemplo, o condutor

x1 da fase X ocupa a posição do condutor y1 da fase Y durante o primeiro terço do seu percurso; o condutor x2

ocupa a posição de y2; ao mesmo tempo, o condutor y1 ocupa a posição antes preenchida pelo condutor z1, o qual

ocupa a posição deixada pelo condutor x1. Em resumo, os condutores da Fase X, ocupam as posições onde antes

alocavam-se os condutores da fase Y, os quais agora preenchem as posições deixadas pelos condutor da fase Z,

passando esses a preencherem as posições dos condutores de X.

No último terço então, os condutores da fase X, ocupam as posições deixadas pelos condutores da fase Z, os

quais preenchem as posições anteriormente ocupada pelos da fase Y e, por fim, os condutores da fase Y passam

a preencher as posições dos condutores de X.

Fase X

Fase Y

Fase Z

ix

iy

iz

iz

ix

iy

iy

iz

ix

l=3 l=3 l=3

Figura 4: Transposição dos condutores

Nesse caso, o fluxo total concatenado com a fase X, considerando a transposição, �xT , é calculado a partir da

matriz de indutância da Equação (50), no primeiro terço do percurso. No segundo terço, os condutores da fase X

ocupam as posições dos condutores da fase Y, de modo que o fluxo concatenado com a fase X é calculado agora

considerando a segunda linha da equação matricial (50), modificando-se apenas as expressões das indutâncias

como será descrito. No último terço de percurso, por fim, os condutores da fase X ocupam as posições dos

condutores da fase Z, sendo então o fluxo concatenado com a fase X nesse trecho determinado utilizando a terceira

linha da equação matricial (50), modificando-se apenas as expressões das indutâncias como será descrito.
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Com isso, o fluxo �xT , por unidade de comprimento, é escrito como:

�xT = �x1=3 + �x2=3 + �x3=3 ; (57)

�xT =
1

3
(Lxxix + Lxyxiy + Lxzxiz) +

1

3
(Lyxxiz + Lyyxix + Lyzxiy) +

1

3
(Lzxxiy + Lzyxiz + Lzzxix) : (58)

A indutância Lxx é a mesma escrita na Equação (51). As expressões de Lyyx , Lzzx , Lxyx , Lxzx e Lyzx são

escritas, respectivamente, como:

Lyyx =
�o
2�

ln

0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dyjyi

1CCA ; (59)

Lzzx =
�o
2�

ln

0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dzjzi

1CCA ; (60)

Lxyx = Lyxx =
�o
2�

ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjyi

1A ; (61)

Lxzx = Lzxx =
�o
2�

ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjzi

1A ; (62)

Lyzx = Lzyx =
�o
2�

ln

0@ n2

vuut nY
j=1

nY
i=1

1

dyjzi

1A : (63)

Separando a expressão do fluxo na fase X com a transposição da Equação (58), nos termos com ix, iy e iz,

tem-se:

�xT = �xxT + �xyT + �xzT =
ix
3

(Lxx + Lyyx + Lzzx) +
iy
3

(Lxyx + Lyzx + Lzxx) +
iz
3
(Lxzx + Lyxx + Lzyx) ; (64)

em que �xxT , �xyT e �xzT representam, respectivamente, as contribuições para o fluxo total transposto na fase X,

geradas pelas correntes que fluem nas fases X, Y e Z, dadas as interações indutivas entre as fases.

Com isso, a partir dos termos definidos na Equação (64) e das expressões estabelecidas para as indutâncias

nas Equações (59) a (63), pode-se calcular primeiramente �xxT :

�xxT =
ix
3

(Lxx + Lyyx + Lzzx) ;

�xxT =
�oix
6�

2664ln
0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dxjxi

1CCA+ ln

0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dyjyi

1CCA+ ln

0BB@ n2

vuuut nY
i=1

1

Rxi

nY
j=1
j 6=i

1

dzjzi

1CCA
3775 ;

�xxT =
�oix
6�

ln

0BB@ n2

vuuut nY
i=1

�
1

Rxi

�3 nY
j=1
j 6=i

1

dxjxidyjyidzjzi

1CCA : (65)

Por outro lado, uma expressão para a componente do fluxo, �xyT , é obtida como:

�xyT =
iy
3

(Lxyx + Lyzx + Lzxx)
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�xyT =
�oiy
6�

24ln
0@ n2

vuut nY
j=1

nY
i=1

1

dxjyi

1A+ ln

0@ n2

vuut nY
j=1

nY
i=1

1

dyjzi

1A+ ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjzi

1A35 ;

�xyT =
�oiy
6�

ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjyidyjzidxjzi

1A ; (66)

E, por fim, a componente do fluxo, �xzT , pode ser calculada como:

�xzT =
iz
3
(Lxzx + Lyxx + Lzyx) ;

�xzT =
�oiz
6�

24ln
0@ n2

vuut nY
j=1

nY
i=1

1

dxjyi

1A+ ln

0@ n2

vuut nY
j=1

nY
i=1

1

dyjzi

1A+ ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjzi

1A35 ;

�xzT =
�oiz
6�

ln

0@ n2

vuut nY
j=1

nY
i=1

1

dxjyidyjzidxjzi

1A : (67)

Utilizando-se as Equações (65), (66) e (67) e considerando-se ainda ix + iy + iz = 0 pode-se calcular �xT , a

partir da Equação (64), obtendo-se a expressão:

�xT =
�oix
6�

ln

0BBB@ n2

vuuuut
Qn

i=1

�
1

Rxi

�3Qn
j=1
j 6=i

1

dxjxidyjyidzjziQn

j=1

Qn

i=1
1

dxjyidyjzidxjzi

1CCCA : (68)

Utilizando-se procedimento análogo, tem-se que as expressões dos fluxos concatenados com as fases Y e Z,

considerando a transposição, �yT e �zT são escritas, respectivamente, como:

�yT =
�oiy
6�

ln

0BBB@ n2

vuuuut
Qn

i=1

�
1

Ryi

�3Qn
j=1
j 6=i

1

dxjxidyjyidzjziQn

j=1

Qn

i=1
1

dxjyidyjzidxjzi

1CCCA ; (69)

�zT =
�oiz
6�

ln

0BBB@ n2

vuuuut
Qn

i=1

�
1

Rzi

�3Qn
j=1
j 6=i

1

dxjxidyjyidzjziQn

j=1

Qn

i=1
1

dxjyidyjzidxjzi

1CCCA : (70)

A matriz de indutância (por unidade de comprimento) da linha de transmissão trifásica genérica com n con-

dutores por fase e considerando a transposição, pode então ser escrita como um matriz diagonal na Equação

(71):

264�xT�yT

�zT

375 =

264LxT 0 0

0 LyT 0

0 0 LzT

375
264ixiy
iz

375 ; (71)

sendo, se os raios reduzidos de todos condutores forem iguais a R,

LxT = LyT = LzT =
�o
6�

ln

0BB@ n2

vuuutQn

i=1

�
1

R

�3Qn
j=1
j 6=i

1

dxjxidyjyidzjziQn

j=1

Qn

i=1
1

dxjyidyjzidxjzi

1CCA : (72)
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3 Conclusão

O estudo apresentado neste trabalho demonstrou a formulação de expressões matemáticas para o cálculo de

indutância em linhas de transmissão trifásicas genéricas, com enfoque na análise de diferentes arranjos e con-

figurações de condutores. Com base em princípios de eletromagnetismo, o desenvolvimento analítico abordou

desde casos simples de linhas monofásicas até configurações complexas de linhas trifásicas com múltiplos con-

dutores por fase. A generalização dessas expressões permite uma aplicabilidade mais ampla, servindo como uma

ferramenta analítica robusta para o projeto e a otimização de sistemas de transmissão de energia.

Os resultados obtidos possibilitam uma modelagem mais precisa das características elétricas das linhas, con-

tribuindo para o aumento da confiabilidade e da eficiência operacional dos sistemas de potência. A introdução

da técnica de transposição dos condutores revelou-se essencial para minimizar desequilíbrios e assegurar uma

matriz de indutância simétrica, fator determinante para o desempenho do sistema.

Além das contribuições práticas, o estudo também abre caminho para futuras pesquisas, sugerindo, por exem-

plo, o desenvolvimento de modelos computacionais que automatizem o cálculo de indutância em linhas com

diferentes configurações e que possam integrar esses cálculos em simulações complexas, como nos modelos de

linha longa e modelo � para sistemas de alta tensão, onde a consideração adequada da indutância é essencial para

prever o desempenho da linha sob carga e pequenas variações nesses parâmetros podem ter impacto significativo

na confiabilidade e eficiência do sistema, aumentando a complexidade da análise.
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