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Resumo

O teorema de Müntz generaliza o teorema de Weierstrass sobre a densidade dos polinômios no espaço das funções contínuas com a norma do
supremo. Apresentamos a demonstração desse teorema para a norma 2, calculando um determinante e um limite simples.

Palavras-chaves: Teorema de Müntz, Norma 2, densidade de funções.

Abstract

Müntz theorem generalizes Weierstrass theorem on the density of the polynomial space within the space of continuous functions. Here we
present a proof of Müntz theorem using the 2-norm by just computing a single determinant and a simple limit.

Keywords: Muntz theorem, 2-norm, density of functions.

1 Introdução

O Teorema de Weierstrass diz que o espaço vetorial dos polinômios com coeficientes reais é denso no espaço

das funções reais contínuas com domínio [0; 1] (denotado aqui por C[0; 1]) usando a norma do supremo. Exis-

tem generalizações desse teorema como o Teorema de Stone-Weierstrass e como o Teorema de Müntz (Veja as

referências (CAROTHERS, 2000; CAROTHERS, 1998; CHENEY e LIGHT, 2009; RUDIN, 1964)).

Esse último diz que o espaço real gerado pelo conjunto A = ftx0 ; tx1 ; tx2 ; : : :g, onde 0 � x0 < x1 < x2; : : :, é

denso em C[0; 1] com a norma do supremo, se e só se, x0 = 0 e

1X
i=1

1

xi
=1:

O motivo de x0 ser igual a zero nesse teorema é simples. Isso se deve ao fato de que se x0 > 0 então todas as

funções de A se anulam no t = 0, consequentemente todas as funções do espaço gerado por A se anulariam no

t = 0, impedindo elas de se aproximarem com a norma do supremo de funções contínuas que não se anulam no

t = 0.

A razão para a série acima divergir é um pouco mais complicada, mas envolve duas ideias lindas de Álgebra

Linear e uma de Análise que na nossa opinião deveriam ser conhecidas pelos estudantes de graduação.

Para não tornar o texto completamente técnico, veremos a demonstração da seguinte versão mais fraca do

Teorema de Müntz, que diz que o espaço vetorial real gerado pelo conjunto A é denso em C[0; 1] com a norma 2,

se e só se,
1X
i=1

1

xi
=1:

O valor de x0 é irrelevante com respeito a norma 2.

A norma 2, a que nos referimos, é aquela induzida pelo produto interno

hf(t); g(t)i =

1Z
0

f(t)g(t)dt isto é kf(t)k2 =

0
@ 1Z

0

f(t)2dt

1
A

1
2

:
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Agora, para todo f(t) 2 C[0; 1], vale que

kf(t)k2 � kf(t)k1:

Essa desigualdade nos diz que se o espaço gerado por A é denso em C[0; 1] com a norma do supremo então ele

também é denso com a norma 2. Se provarmos o Teorema de Müntz com a norma 2 e supormos que A é denso em

C[0; 1] com a norma do supremo então, pelo que dissemos acima, A é denso em C[0; 1] com a norma 2 implicando

na divergência da série
1X
i=1

1

xi

pela versão do Teorema de Müntz com a norma 2.

Portanto, essa versão com a norma 2 é relevante e já prova metade do Teorema de Müntz com a norma

do supremo. A outra metade pode ser lida na referência (CAROTHERS, 2009). Essa referência foi escrita pelo

matemático Neal Carothers, um dos melhores expositores de matemática que conhecemos. Em todos os seus

textos, as escolhas de incluir resultados interessantes e com demonstrações diferentes, os tornam excepcionais.

Recomendamos também a leitura do seu livro mais famoso: Real Analysis (CAROTHERS, 2000). Esse livro é

praticamente uma apologia a Análise.

Antes de descrevermos quais são essas ideias de Álgebra Linear e de Análise que precisamos para a demons-

tração dessa versão mais fraca do Teorema de Müntz, é interessante notar que o Teorema de Müntz é falso em

C[�1; 1] com a norma

kf(t)k =

0
@ 1Z
�1

f(t)2dt

1
A

1
2

e, portanto, também é falso com a norma do supremo.

Isso pode ser visto no fato que se f(t) é uma função par e g(t) é uma função ímpar em C[�1; 1] então

kf(t)� g(t)k =
p
kf(t)k2 + kg(t)k2;

e, portanto, a distância entre f(t) e g(t) é maior ou igual a kg(t)k.

Agora, a sequência de funções 1; t2; t4; t6; : : :, apesar de satisfazer a hipótese do Teorema de Müntz, gera um

subespaço vetorial de funções pares de C[�1; 1]. Cada função desse espaço dista de qualquer função ímpar ao

menos o valor da norma da função ímpar, portanto esse espaço não é denso em C[�1; 1].

Vejamos agora as ideias para demonstrar o Teorema de Müntz em C[0; 1] com a norma 2.

A primeira ideia é uma fórmula para distância de vetor a subespaço que vale em qualquer espaço vetorial real

com produto interno. Seja V um espaço vetorial real com produto interno e v 2 V . Além disso, seja W subespaço

de V com base v1; : : : ; vn e v =2W . Considere a matriz de Gram de ordem n dos vetores linearmente independentes

v1; : : : ; vn:

Gram(v1; : : : ; vn) =

0
BBBB@
hv1; v1i hv1; v2i : : : hv1; vni

hv2; v1i hv2; v2i : : : hv2; vni
...

...
. . .

...

hvn; v1i hvn; v2i : : : hvn; vni

1
CCCCA :

Se d é a distância de v a W então

d2 =
det(Gram(v1; : : : ; vn; v))

det(Gram(v1; : : : ; vn))
:

Uma demonstração para essa fórmula pode ser vista no Lemma 10.3. da referência (CAROTHERS, 2009) ou no

artigo (CARIELLO, 2023), onde outras consequências dessa fórmula são obtidas.

O aparecimento da matriz de Gram não é uma grande surpresa, pois o vetor de W mais próximo de v é a

projeção de v em W e a matriz de Gram está completamente relacionada com a projeção.
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Essa fórmula nos dá que a distância de tk, onde k = 0; 1; : : :, ao espaço gerado por tx1 ; : : : ; txn vale

�
det(Gram(tx1 ; : : : ; txn ; tk))

det(Gram(tx1 ; : : : ; txn))

� 1
2

: (1)

Portanto a nossa estratégia será mostrar que para todo k = 0; 1; : : : temos

lim
n!1

�
det(Gram(tx1 ; : : : ; txn ; tk))

det(Gram(tx1 ; : : : ; txn))

� 1
2

= 0;

se e só se,
1X
i=1

1

xi
=1:

Isso mostra que as funções 1; t; t2; : : : podem ser aproximadas por funções do espaço gerado por tx1 ; tx2 ; : : : na

norma 2, se e somente se,
1X
i=1

1

xi
=1:

Portanto, quando essa série divergir, o espaço gerado por A se aproxima arbitrariamente na norma 2 de qualquer

polinômio. Mas os polinômios já são densos em C[0; 1] na norma 2, por Weierstrass, provando o Teorema de Müntz

para a norma 2.

Para mostrar que esse limite vale zero, precisamos calcular esses determinantes. Note que as matrizes envol-

vidas nos determinantes satisfazem

Gram(tx1 ; : : : ; txn)ij = htxi ; txj i =

1Z
0

txi+xjdt =
1

xi + xj + 1
:

A matriz de ordem n cuja posição ij é ocupada pelo número 1
xi+xj+1

é um tipo de matriz de Cauchy, que será

definida na seção 2. É possível mostrar utilizando apenas operações elementares que

�
det(Gram(tx1 ; : : : ; txn ; tk))

det(Gram(tx1 ; : : : ; txn))

� 1
2

=
jk � x1j : : : jk � xnj

jk + x1 + 1j : : : jk + xn + 1j(2k + 1)
1
2

: (2)

Finalmente, temos que mostrar que a expressão (2) converge a zero com n tendendo a infinito, se e só se,

1X
i=1

1

xi
=1:

Isso completa a versão do Teorema de Müntz com a norma 2 e o nosso pequeno artigo.

2 O determinante da matriz de Cauchy

Nessa seção obtemos uma fórmula para o determinante da matriz de Cauchy. Isso só é possível graças ao

conhecimento de como as operações elementares nas linhas e colunas da matriz alteram o valor do determinante.

Definição 2.1

Sejam x1; : : : ; xn números positivos distintos. A matriz de Cauchy de ordem n é definida por

(Cn)ij =
1

xi + xj + 1
:

Em particular, se escolhermos xi = i� 1, obtemos a matriz de Hilbert.
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Para provar o próximo teorema precisamos recordar como as operações elementares nas linhas e colunas

afetam o determinante de uma matriz quadrada.

• Quando duas linhas (ou colunas) de uma matriz forem trocadas de lugar então o determinante da nova

matriz vale menos o determinante da matriz original.

• Se multiplicarmos a linha (ou coluna) de uma matriz por um número diferente de zero então o determinante

da nova matriz vale esse número vezes o determinante da original.

• Se somarmos a uma linha (ou coluna) de uma matriz uma outra linha (ou coluna, respectivamente) multipli-

cada por um número então o determinante da nova matriz é igual ao da original.

Teorema 2.1

Seja n um número natural maior que 1 e Cn a matriz de Cauchy de ordem n definida acima utilizando os

números positivos distintos x1; : : : ; xn. Então

det(Cn) =
(xn � x1)

2(xn � x2)
2 : : : (xn � xn�1)

2

(x1 + xn + 1)2(x2 + xn + 1)2 : : : (xn�1 + xn + 1)2(2xn + 1)
det(Cn�1):

Demonstração: Considere a matriz

Cn =

0
BBBBBBBBBBBBBBBBBBBBBB@

1

x1 + x1 + 1

1

x1 + x2 + 1
: : :

1

x1 + xn�1 + 1

1

x1 + xn + 1

1

x2 + x1 + 1

1

x2 + x3 + 1
: : :

1

x2 + xn�1 + 1

1

x2 + xn + 1

...
...

. . .
...

...

1

xn�1 + x1 + 1

1

xn�1 + x2 + 1
: : :

1

xn�1 + xn�1 + 1

1

xn�1 + xn + 1

1

xn + x1 + 1

1

xn + x2 + 1
: : :

1

xn + xn�1 + 1

1

xn + xn + 1

1
CCCCCCCCCCCCCCCCCCCCCCA

Passo 1: Denote as linhas da matriz por l1; : : : ; ln. Multiplique as linhas de Cn de tal maneira que a última coluna

só contenha 1‘s. Para isso, faremos as seguintes operações

l1 $ (x1 + xn + 1)l1; l2 $ (x2 + xn + 1)l2; : : : ; ln $ (xn + xn + 1)ln:

O valor do determinante é alterado pelo produto (x1 + xn + 1) : : : (xn + xn + 1). Vamos dividir por (x1 + xn +

1) : : : (xn + xn + 1) para compensar. Assim,

det(Cn) =
1

(x1 + xn + 1) : : : (xn + xn + 1)
det

0
BBBBBBBBBBBBBBBBBBBBBB@

x1 + xn + 1

x1 + x1 + 1

x1 + xn + 1

x1 + x2 + 1
: : :

x1 + xn + 1

x1 + xn�1 + 1
1

x2 + xn + 1

x2 + x1 + 1

x2 + xn + 1

x2 + x2 + 1
: : :

x2 + xn + 1

x2 + xn�1 + 1
1

...
...

. . .
...

...

xn�1 + xn + 1

xn�1 + x1 + 1

xn�1 + xn + 1

xn�1 + x2 + 1
: : :

xn�1 + xn + 1

xn�1 + xn�1 + 1
1

xn + xn + 1

xn + x1 + 1

xn + xn + 1

xn + x2 + 1
: : :

xn + xn + 1

xn + xn�1 + 1
1

1
CCCCCCCCCCCCCCCCCCCCCCA
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Passo 2: Subtraia a última coluna das anteriores. Isso não altera o valor do determinante, então

det(Cn) =
1

(x1 + xn + 1) : : : (xn + xn + 1)
det

0
BBBBBBBBBBBBBBBBBBBBB@

xn � x1
x1 + x1 + 1

xn � x2
x1 + x2 + 1

: : :
xn � xn�1

x1 + xn�1 + 1
1

xn � x1
x2 + x1 + 1

xn � x2
x2 + x2 + 1

: : :
xn � xn�1

x2 + xn�1 + 1
1

...
...

. . .
...

...

xn � x1
xn�1 + x1 + 1

xn � x2
xn�1 + x2 + 1

: : :
xn � xn�1

xn�1 + xn�1 + 1
1

xn � x1
xn + x1 + 1

xn � x2
xn + x2 + 1

: : :
xn � xn�1

xn + xn�1 + 1
1

1
CCCCCCCCCCCCCCCCCCCCCA

Passo 3: Coloque os numeradores das frações das colunas em evidência para fora do determinante.

det(Cn) =
(xn � x1) : : : (xn � xn�1)

(x1 + xn + 1) : : : (xn + xn + 1)
det

0
BBBBBBBBBBBBBBBBBBBBBB@

1

x1 + x1 + 1

1

x1 + x2 + 1
: : :

1

x1 + xn�1 + 1
1

1

x2 + x1 + 1

1

x2 + x2 + 1
: : :

1

x2 + xn�1 + 1
1

...
...

. . .
...

...

1

xn�1 + x1 + 1

1

xn�1 + x2 + 1
: : :

1

xn�1 + xn�1 + 1
1

1

xn + x1 + 1

1

xn + x2 + 1
: : :

1

xn + xn�1 + 1
1

1
CCCCCCCCCCCCCCCCCCCCCCA

Passo 4: Denote as colunas da matriz por c1; : : : ; cn. Multiplique as colunas da matriz de tal maneira que a última

linha só contenha 1‘s. Para isso, faremos as seguintes operações

c1 $ (xn + x1 + 1)c1, c2 $ (xn + x2 + 1)c2, : : :, cn�1 $ (xn + xn�1 + 1)cn�1.

O valor do determinante é alterado pelo produto (xn + x1 + 1) : : : (xn + xn�1 + 1). Vamos dividir por (xn + x1 +

1) : : : (xn + xn�1 + 1) para compensar. Logo,

det(Cn) =
(xn � x1) : : : (xn � xn�1)

(xn + x1 + 1)2 : : : (xn + xn�1 + 1)2(xn + xn + 1)
�

det

0
BBBBBBBBBBBBBBBBBBBB@

xn + x1 + 1

x1 + x1 + 1

xn + x2 + 1

x1 + x2 + 1
: : :

xn + xn�1 + 1

x1 + xn�1 + 1
1

xn + x1 + 1

x2 + x1 + 1

xn + x1 + 1

x2 + x2 + 1
: : :

xn + xn�1 + 1

x2 + xn�1 + 1
1

...
...

. . .
...

...

xn + x1 + 1

xn�1 + x1 + 1

xn + x1 + 1

xn�1 + x2 + 1
: : :

xn + xn�1 + 1

xn�1 + xn�1 + 1
1

1 1 : : : 1 1

1
CCCCCCCCCCCCCCCCCCCCA
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Passo 5: Subtraia a última linha das anteriores. Isso não altera o valor do determinante, então

det(Cn) =
(xn � x1) : : : (xn � xn�1)

(xn + x1 + 1)2 : : : (xn + xn�1 + 1)2(xn + xn + 1)
�

det

0
BBBBBBBBBBBBBBBBBBBB@

xn � x1
x1 + x1 + 1

xn � x1
x1 + x2 + 1

: : :
xn � x1

x1 + xn�1 + 1
0

xn � x2
x2 + x1 + 1

xn � x2
x2 + x2 + 1

: : :
xn � x2

x2 + xn�1 + 1
0

...
...

. . .
...

...

xn � xn�1
xn�1 + x1 + 1

xn � xn�1
xn�1 + x2 + 1

: : :
xn � xn�1

xn�1 + xn�1 + 1
0

1 1 : : : 1 1

1
CCCCCCCCCCCCCCCCCCCCA

Passo 6: Coloque os numeradores das frações das linhas em evidência para fora do determinante.

det(Cn) =
(xn � x1)

2 : : : (xn � xn�1)
2

(xn + x1 + 1)2 : : : (xn + xn�1 + 1)2(xn + xn + 1)
�

det

0
BBBBBBBBBBBBBBBBBBBB@

1

x1 + x1 + 1

1

x1 + x2 + 1
: : :

1

x1 + xn�1 + 1
0

1

x2 + x1 + 1

1

x2 + x2 + 1
: : :

1

x2 + xn�1 + 1
0

...
...

. . .
...

...

1

xn�1 + x1 + 1

1

xn�1 + x2 + 1
: : :

1

xn�1 + xn�1 + 1
0

1 1 : : : 1 1

1
CCCCCCCCCCCCCCCCCCCCA

Passo 7: Aplique a expansão de Laplace na última coluna e obtenha

det(Cn) =
(xn � x1)

2 : : : (xn � xn�1)
2

(xn + x1 + 1)2 : : : (xn + xn�1 + 1)2(xn + xn + 1)
det(Cn�1):

■

Corolário 2.1

O determinante de Cn é positivo quando x1; : : : ; xn são números positivos distintos.

Demonstração: Segue por indução em n utilizando o teorema anterior e lembrando que C1 = ( 1
2x1+1

), portanto

det(C1) =
1

2x1+1
> 0. ■

Corolário 2.2

Sejam x1; : : : ; xn números positivos distintos. A distância de tk ao subespaço gerado por tx1 ; : : : ; txn utili-

zando a norma 2 da integral discutida na introdução vale

jk � x1jjk � x2j : : : jk � xnj

jk + x1 + 1jjk + x2 + 1j : : : jk + xn + 1j(2k + 1)
1
2

: (3)
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Demonstração: Basta notar que Gram(tx1 ; : : : ; txn ; tk) = Cn+1, onde xn+1 = k, e que Gram(tx1 ; : : : ; txn) = Cn.

Pelo corolário anterior, det(Gram(tx1 ; : : : ; txn)) = det(Cn) > 0. Assim, se um txi fosse combinação linear dos

outros txj , a linha i de Gram(tx1 ; : : : ; txn) seria combinação linear das outras, o que não pode pois o determinante

é diferente de zero. Portanto, tx1 ; : : : ; txn são linearmente independentes.

Pela fórmula (1) temos que a distância de tk ao espaço cuja base é tx1 ; : : : ; txn vale

s
det(Cn+1)

det(Cn)
. Pelo teorema

2.1, isso vale
jk � x1jjk � x2j : : : jk � xnj

jk + x1 + 1jjk + x2 + 1j : : : jk + xn + 1j(2k + 1)
1
2

:

■

3 O limite converge a zero

Para finalizar, agora o nosso objetivo é determinar quando

lim
n!1

jk � x1jjk � x2j : : : jk � xnj

jk + x1 + 1jjk + x2 + 1j : : : jk + xn + 1j(2k + 1)
1
2

= 0:

Essa informação é dada no seguinte teorema.

Teorema 3.1

Sejam x1; x2; : : : números positivos tais que 0 < x1 < x2 < : : :. Então,

limn!1

jk � x1jjk � x2j : : : jk � xnj

jk + x1 + 1jjk + x2 + 1j : : : jk + xn + 1j(2k + 1)
1
2

= 0; para todo k = 0; 1; 2; : : :,

se e só se,
1X
i=1

1

xi
=1:

Demonstração: É claro que esse limite vale zero se k for igual a algum dos xi`s , independente se a série

divergir ou não. Entretanto o teorema pede para o limite ser zero para todos os k = 0; 1; : : : e como todos os

xi`s são positivos, existe ao menos um k diferente de todos os xi`s, o k = 0. Então podemos supor, sem perda

de generalidade, que estamos trabalhando com um k diferente de todos os xi`s. Como (xi)i2N é uma sequência

crescente de números positivos, vamos supor primeiramente que o seu limite é um número positivo L e, depois,

vamos supor que seu limite é infinito. No primeiro caso temos

jk � xij

jk + xi + 1j

i!1
�!

jk � Lj

jk + L+ 1j
< 1:

Portanto existe 0 < B < 1 e m 2 N tal que se i > m então

jk � xij

jk + xi + 1j
� B:

Assim para n > m  
nY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 �

 
mY
i=1

jk � xij

jk + xi + 1j

!
Bn�m(2k + 1)�

1
2 :

Como 0 < B < 1, pela última desigualdade, temos

lim
n!1

 
nY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 = 0: (4)
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Agora suponha que lim
i!1

xi =1. Então existe � > 0 e m 2 N tal que se i > m temos

� < 1�
k

xi
< 1 +

k + 1

xi
< 2:

Pelo teorema do valor médio, quando i > m, temos que

ln

�
1�

k

xi

�
� ln

�
1 +

k + 1

xi

�
=
�2k � 1

xiai
; (5)

onde � < 1� k
xi

< ai < 1 + k+1
xi

< 2.

Logo,

�2k � 1

�xi
<
�2k � 1

xiai
<
�2k � 1

2xi
: (6)

Assim, pelas equações (5) e (6), temos

�
�2k � 1

�

�
1

xi
< ln

0
BB@

1�
k

xi

1 +
k + 1

xi

1
CCA <

�
�2k � 1

2

�
1

xi
;

o que implica em

e(
�2k�1

� ) 1
xi <

1�
k

xi

1 +
k + 1

xi

< e(
�2k�1

2 ) 1
xi :

Portanto, segue que

e

�2k�1
�

 
nP

i=m+1

1
xi

!
<

nY
i=m+1

1�
k

xi

1 +
k + 1

xi

=

nY
i=m+1

jk � xij

jk + xi + 1j
(7)

e
nY

i=m+1

jk � xij

jk + xi + 1j
=

nY
i=m+1

1� k
xi

1 + k+1
xi

< e
�2k�1

2
(
Pn

i=m+1
1
xi
)
: (8)

Se supormos que
1X
i=1

1

xi
=1;

temos duas possibilidades:

(i) lim
i!1

xi = L e, pela equação (4), temos que

lim
n!1

 
nY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 = 0:

(ii) lim
i!1

xi =1 e, pela equação (8), segue que

 
mY
i=1

jk � xij

jk + xi + 1j

! 
nY

i=m+1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 �

 
mY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 e
�2k�1

2
(
Pn

i=m+1
1
xi
)
:

Portanto,

lim
n!1

 
nY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 = 0:
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Agora, se supormos que
1X
i=1

1

xi
<1;

então pela equação (7) temos que

 
mY
i=1

jk � xij

jk + xi + 1j

! 
nY

i=m+1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 >

 
mY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 e
�2k�1

�
(
Pn

i=m+1
1
xi
)
>

 
mY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 e
�2k�1

�
(
P
1

i=m+1
1
xi
)
> 0:

Logo,

lim
n!1

 
nY
i=1

jk � xij

jk + xi + 1j

!
(2k + 1)�

1
2 6= 0;

o que finaliza a prova. ■
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