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Resumo

O teorema de Miintz generaliza o teorema de Weierstrass sobre a densidade dos polindmios no espago das fungdes continuas com a norma do
supremo. Apresentamos a demonstracao desse teorema para a norma 2, calculando um determinante e um limite simples.

Palavras-chaves: Teorema de Mlintz, Norma 2, densidade de fungdes.

Abstract

Mintz theorem generalizes Weierstrass theorem on the density of the polynomial space within the space of continuous functions. Here we
present a proof of Mlintz theorem using the 2-norm by just computing a single determinant and a simple limit.

Keywords: Muntz theorem, 2-norm, density of functions.

1 Introducao

O Teorema de Weierstrass diz que o espaco vetorial dos polindbmios com coeficientes reais é denso no espaco
das fungdes reais continuas com dominio [0, 1] (denotado aqui por C]0,1]) usando a norma do supremo. Exis-
tem generalizagdes desse teorema como o Teorema de Stone-Weierstrass e como o Teorema de Mlntz (Veja as
referéncias (CAROTHERS, 2000; CAROTHERS, 1998; CHENEY e LIGHT, 2009; RUDIN, 1964)).

Esse Ultimo diz que o espaco real gerado pelo conjunto A = {t%0,t*1,¢*2,...}, onde 0 < zg < z1 < Za,..., €
denso em C[0, 1] com a norma do supremo, se eséd se, zg =0 e

2.

%)
=1

1
— = 0.
z;

O motivo de zq ser igual a zero nesse teorema é simples. Isso se deve ao fato de que se zg > 0 entdo todas as
funcdes de A se anulam no t = 0, consequentemente todas as funcdes do espaco gerado por A se anulariam no
t = 0, impedindo elas de se aproximarem com a norma do supremo de fungdes continuas que ndo se anulam no
t=0.

A razdo para a série acima divergir é um pouco mais complicada, mas envolve duas ideias lindas de Algebra
Linear e uma de Andlise que na nossa opinido deveriam ser conhecidas pelos estudantes de graduacao.

Para ndo tornar o texto completamente técnico, veremos a demonstracao da seguinte versdo mais fraca do
Teorema de Miintz, que diz que o espago vetorial real gerado pelo conjunto A é denso em C[0, 1] com a norma 2,
se e sé se,

O valor de zg é irrelevante com respeito a norma 2.
A norma 2, a que nos referimos, é aquela induzida pelo produto interno

2

(F(8), g(t)) = / f(Hg)dt st [If(E)]l: = / f(t)dt
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Agora, para todo f(t) € C[0, 1], vale que
£z < NF(E)lloo-

Essa desigualdade nos diz que se o espago gerado por A é denso em C[0, 1] com a norma do supremo entdo ele
também é denso com a norma 2. Se provarmos o Teorema de Miintz com a norma 2 e supormos que A é denso em
C10,1] com a norma do supremo entdo, pelo que dissemos acima, A é denso em C|[0, 1] com a norma 2 implicando
na divergéncia da série

pela versao do Teorema de Mintz com a norma 2.

Portanto, essa versao com a norma 2 é relevante e ja prova metade do Teorema de Mintz com a norma
do supremo. A outra metade pode ser lida na referéncia (CAROTHERS, 2009). Essa referéncia foi escrita pelo
matematico Neal Carothers, um dos melhores expositores de matematica que conhecemos. Em todos os seus
textos, as escolhas de incluir resultados interessantes e com demonstracdes diferentes, os tornam excepcionais.
Recomendamos também a leitura do seu livro mais famoso: Real Analysis (CAROTHERS, 2000). Esse livro é
praticamente uma apologia a Anélise.

Antes de descrevermos quais sd0 essas ideias de Algebra Linear e de Anélise que precisamos para a demons-
tracdo dessa versao mais fraca do Teorema de Miintz, é interessante notar que o Teorema de Mintz é falso em
C[-1,1] com a norma

2

17(t)]| = / f(t)%dt

e, portanto, também é falso com a norma do supremo.

Isso pode ser visto no fato que se f(t) é uma fungdo par e g(t) é uma fungdo impar em C[—1, 1] entédo

17() = gl = VIFOI? + [la@)]1,

e, portanto, a distancia entre f(t) e g(t) é maior ou igual a ||g(¢)||.

Agora, a sequéncia de funcdes 1,t2,t*,1%,. .., apesar de satisfazer a hipdtese do Teorema de Miintz, gera um
subespaco vetorial de fungdes pares de C[—1,1]. Cada funcdo desse espaco dista de qualquer fungdo impar ao
menos o valor da norma da fungéo impar, portanto esse espaco ndo é denso em C[—1,1].

Vejamos agora as ideias para demonstrar o Teorema de Miintz em C|[0, 1] com a norma 2.

A primeira ideia é uma férmula para distancia de vetor a subespaco que vale em qualquer espaco vetorial real
com produto interno. Seja V um espaco vetorial real com produto interno e v € V. Além disso, seja W subespaco

de V combase vy, ...,v, ev ¢ W. Considere a matriz de Gram de ordem n dos vetores linearmente independentes
Uly-.-,Unt
(vi,v1) (v1,v2) ... (v1,vn)
(va,v1)  (v2,v2) ... (vz,vp)
Gram(vy,...,v,) = ’ ’ o
(Un,v1) (Un,v2) ... (Un,Un)

Se d é a distancia de v a W entado

2 _ det(Gram(vy,...,v,,v))
det(Gram(vy,...,v,))

Uma demonstracao para essa formula pode ser vista no Lemma 10.3. da referéncia (CAROTHERS, 2009) ou no
artigo (CARIELLO, 2023), onde outras consequéncias dessa férmula sao obtidas.

O aparecimento da matriz de Gram nao é uma grande surpresa, pois o vetor de W mais préximo de v é a
projecdo de v em W e a matriz de Gram estd completamente relacionada com a projecao.
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Essa férmula nos d& que a distancia de t*, onde k = 0, 1, .. ., ao espaco gerado por t*, ..., ¢~ vale

det(Gram(t®, ..., t% t*)) :
det(Gram(t=1, ..., t%))

Portanto a nossa estratégia serd mostrar que para todo £ = 0,1,... temos

lim

det(Gram(t®,...,t%, t*)) : -0
n—oo B ’

det(Gram(t=1,...,t=))

se e sé se,

Isso mostra que as funcdes 1,¢,t2,... podem ser aproximadas por funcdes do espaco gerado por t%1,¢%2,... na
norma 2, se e somente se,

Portanto, quando essa série divergir, o espaco gerado por A se aproxima arbitrariamente na norma 2 de qualquer
polindmio. Mas os polindmios j& sdo densos em C10, 1] na norma 2, por Weierstrass, provando o Teorema de Miintz
para a norma 2.

Para mostrar que esse limite vale zero, precisamos calcular esses determinantes. Note que as matrizes envol-
vidas nos determinantes satisfazem

1

1
G‘I"am(txl Yoo vtxn)i’ twl twj /tm T g —
ml + m] + ].
0

A matriz de ordem n cuja posicao 7 é ocupada pelo nimero é um tipo de matriz de Cauchy, que sera

1
T, +x;+1
definida na secdo 2. E possivel mostrar utilizando apenas operacdes elementares que

(det(Gmm(tm,...,twn,tk)))5 B Ik —21]...|k — 2] 2

det(Gram(te1, ..., t%n)) Ck+zi 1kt T, +1)(2k+1)F
Finalmente, temos que mostrar que a expressao (2) converge a zero com n tendendo a infinito, se e sé se,
>2-
=1 Ti

Isso completa a versdo do Teorema de Miintz com a norma 2 e 0 nosso pequeno artigo.

2 O determinante da matriz de Cauchy

Nessa secdo obtemos uma férmula para o determinante da matriz de Cauchy. Isso s6 € possivel gracas ao
conhecimento de como as operacdes elementares nas linhas e colunas da matriz alteram o valor do determinante.

Definicao 2.1
Sejam z4,...,z, nUmeros positivos distintos. A matriz de Cauchy de ordem n é definida por

1
.’L’1‘+l‘j+1.

(Cn)ij =

Em particular, se escolhermos z; = ¢ — 1, obtemos a matriz de Hilbert.
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Para provar o préximo teorema precisamos recordar como as operacdes elementares nas linhas e colunas

afetam o determinante de uma matriz quadrada.

* Quando duas linhas (ou colunas) de uma matriz forem trocadas de lugar entdo o determinante da nova

matriz vale menos o determinante da matriz original.

* Se multiplicarmos a linha (ou coluna) de uma matriz por um nuimero diferente de zero entdo o determinante

da nova matriz vale esse nimero vezes o determinante da original.

* Se somarmos a uma linha (ou coluna) de uma matriz uma outra linha (ou coluna, respectivamente) multipli-

cada por um numero entdo o determinante da nova matriz é igual ao da original.

Teorema 2.1

Seja n um nUmero natural maior que 1 e C,, a matriz de Cauchy de ordem n definida acima utilizando os

numeros positivos distintos z;, .. .,

det(C,) =

z,. Entdo

(2 —21)% (2T — 22)? ... (T — Tn_1)?

Demonstracao: Considere a matriz

Passo 1: Denote as linhas da matriz porl,...

det(C,_1).
(21 + Tn + 1)2(22 + Tn + 1)2 .. (Tn_1 + Zp + 1)2(22, + 1) (Cn-s)
1 1 1
Tz, +21+1 T, +a5+1 1+ 2,1+ 1 21+ 2, +1
1 1 1
To+x1+1 Ty +x3+ 1 To+Tpn_1+1 To+xy +1
1 1 1
Tp_1+T1+1 zpi+z2+1 Tp_1+Tp1+1 Tpi1+z,+1
1 1 1
T, +21+1 Tp+20+1 Tp+2Tp_1+1 T, +z,+1

s6 contenha 1‘s. Para isso, faremos as seguintes operacoes

O valor do determinante é alterado pelo produto (z; + z, + 1)..

1)...(z, + z, + 1) para compensar. Assim,

det(Cp) =

1

det

(z14+2n+1)...(zn+2zn +1)

ll 4 ($1 +z, + 1)ll,l2 s (.’Bg +z, + 1)l2,

,ln. Multiplique as linhas de C,, de tal maneira que a Ultima coluna

Jn © (2 + 2n + D).

(zn + zn + 1). Vamos dividir por (z1 + z, +

Ty +z,+1 T+ 2z, +1 T1+z,+1 1
:r1+a:1+1 (L‘1+$2+1 $1+l‘n,1+1

Ty + 2, +1 Iy + 2, +1 o+ 2, +1
ZL‘2+JI1+1 IL‘2+$2+1 $2+$n_1+1
Tp1+Th+1 Tp1+zTp+1 Tp1+Tp+1 1
Tp1+21+1 zpg+zp+1 Tp_1+Tp_1+1

Ty t+T,+1 Ty, +T, +1 Thp +x, +1 1

T, +21+1 T, +27+1 Ty +2THh_1+1
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Passo 2: Subtraia a Ultima coluna das anteriores. Isso nao altera o valor do determinante, entdo

Tn — 1 Tn — T2 Tn — Tpn—-1
$1+$1+1 $1+$2+1 $1+$n,1+1
Tn — T1 Tn — T2 Tn — Tn—1
$2+$1+1 $2+$2+1 $2+$n_1+1
det(C.) ! det
€ = €
" (z1+zn+1)...(zp+zn+1)
ITn — 2T In — T2 Ipn —Tp—1
Tpn1+zT1+1 zTp_1+zo0+1 Tp1+Tp_g+1
Tn —T1 Tn — T2 Tn — Tpn—1
Typ +21+1 Tp +To+1 Ty +Tp_1 +1

Passo 3: Coloque os numeradores das fracdes das colunas em evidéncia para fora do determinante.

1 1 1
$1+$1+1 $1+CE2+1 $1+$n,1+1
1 1 1
ZL‘2+$1+1 ZL‘2+$2+1 ZL‘2+£L‘n_1+1
det(Cp) = —Fn=21) (@ = Bna) g
" (z14+zn+1)...(zpn+zn+1)
1 1 1
Zpna1tzi+1l zp1taz2+1 Tpo1+2Zpg1t+1
1 1 1
Ty +21+1 Ty +To+1 Ty +Tp_q1 +1
Passo 4: Denote as colunas da matriz por ¢y, ..., c,. Multiplique as colunas da matriz de tal maneira que a ultima

linha sé contenha 1's. Para isso, faremos as seguintes operacdes
1o (@ t+zi+ Ve, 00 (@ +2o+Dea, o1 © (T + 21 + 1)en 1.

O valor do determinante é alterado pelo produto (z, + 1 + 1)...(zn + zn—1 + 1). Vamos dividir por (z, + z; +
1)...(zn + zn—1 + 1) para compensar. Logo,

(zn —21) - - (T — Tp—1)

det(C,) = X
(Cn) (zn+2z1+1)2...(2n + @1+ 1) (zp +Tn + 1)
z,+x1+1 T, +To+1 Tp+Tp_1+1
$1+$1+1 (L‘1+£L‘2+1 .’E1+£L‘n,1+1
z,+x1+1 z,+x1+1 Ty +Tp_1+1
CL‘2+$1+1 $2+$2+1 :L‘2—|-$n_1+1
det
Ty, +21+1 Typ +21+1 Ty +Tp_1+1
Tp1+21+1 zp_i+z3+1 Tp_1+Tp_1+1
1 1 1

D. Cariello




Revista Eletronica Matematica e Estatistica em Foco

Passo 5: Subtraia a Ultima linha das anteriores. Isso nao altera o valor do determinante, entdo

(zn —21) .- (T — Tp—1)

det(C,) = X
(Cn) (zn+z1+1)2.. . (2n +Zpo1 + D) (zp + 20 + 1)
Ty — 1 Ty — 21 Ty — 1 0
(D1+IB1~|—1 $1+$2~|—1 $1+.’Dn_1+1
Ty — Io Ty — To Ty — Io 0
$2+$1+1 $2+$2+1 $2+l‘n_1+1
det
Tp —Tp—1 Tp —Tp—1 Tp — Tp—1 0
Tpn1+T1+1 Tp1+zo+1 Tp 1+ Tp1+1
1 1 1 1
Passo 6: Coloque os numeradores das fragdes das linhas em evidéncia para fora do determinante.
Tp —21)? ... (T — Tp1)?
det(Cy) = ( - )" (2 ”21) x
(zn+z1+1)2.. . (2n+2po1+1)%(zp + 20+ 1)
1 1 1 0
$1+.’B1+1 $1+.’B2+1 $1+l‘n_1+1
1 1 1 0
(D2+IB1~|—1 $2+$2~|—1 $2+.’Dn_1+1
det
1 1 1 0
Tpn1+tT1+1 Tp1+z2+1 Tp 1+ Tp1+1
1 1 1 1
Passo 7: Apligue a expansao de Laplace na Ultima coluna e obtenha
(zn —21)2... (T — Tp_1)?
det(C,) = det(C,_1).
(Cn) (zp+z1+1)2. .. (2 +2p1+1) (2 +2,+ 1) (Cn1)
Corolario 2.1
O determinante de C,, é positivo quando zi,...,z, sdo nimeros positivos distintos.
Demonstracao: Segue por inducao em n utilizando o teorema anterior e lembrando que C; = (ﬁ), portanto
Corolario 2.2
Sejam z1,...,z, nimeros positivos distintos. A distancia de t* ao subespaco gerado por t*1, ..., t*~ utili-

zando a norma 2 da integral discutida na introducao vale

|k — z1||k — 22 ... |k — zp]
lk+z +1k+zo+1]... [k + 2z, + 1|(2k + 1)2

(3)
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Demonstracao: Basta notar que Gram(t®1,...,t*» t*) = C, 41, onde z,,1 = k, e que Gram(t®,...,t%") = C,.
Pelo corolério anterior, det(Gram(t*:,...,t%")) = det(C,) > 0. Assim, se um t* fosse combinacdo linear dos
outros t*s, a linha 1 de Gram(t*1,...,t*") seria combinacao linear das outras, o que ndo pode pois o determinante
é diferente de zero. Portanto, ¢t*1,...,¢*" sdo linearmente independentes.

det(C,H_l)

Pela férmula (1) temos que a distancia de t* ao espaco cuja base é t1, ...t~ vale
det(C»)

. Pelo teorema

2.1, isso vale
|k — z1||k — 22 ... |k — zp]

k+z +1k+zo+1]...[k+ 2z, + 1|2k +1)2

3 O limite converge a zero

Para finalizar, agora o nosso objetivo é determinar quando

lim |k — z1||k — 22| ... |k — zp]
n—oo |k 4z 4+ 1||k+ 22 + 1| ... |k + 2zn + 1|2k + 1)2

Essa informacdo é dada no seguinte teorema.

Teorema 3.1
Sejam z1,z3, ... nUmeros positivos tais que 0 < z; < z5 < .... Entao,
|k — z1||k — 22| ... |k — zp]

lim
Tk +zy k4o + 1. |k + 2+ 1 (2k+1)3

=0, paratodok =0,1,2,...,

se e sb se,

21
D.g =

i=1 ¢

Demonstracdo: E claro que esse limite vale zero se k for igual a algum dos z;‘s , independente se a série
divergir ou nao. Entretanto o teorema pede para o limite ser zero para todos os £ = 0,1,... e como todos os
z;‘s sdo positivos, existe ao menos um k diferente de todos os z;‘s, 0 k = 0. Entao podemos supor, sem perda
de generalidade, que estamos trabalhando com um k diferente de todos os z;‘s. Como (z;):;cn € uma sequéncia
crescente de nimeros positivos, vamos supor primeiramente que o seu limite € um ndmero positivo L e, depois,
vamos supor que seu limite é infinito. No primeiro caso temos

k-2 ime |k-Lf

— <1
|k + z; + 1] |k + L+ 1]

Portanto existe 0 < B < 1 e m € Ntal que se: > m entao

M<B.
|k +z;+ 1] —

Assim paran > m

= k_mi _1 i k_:rz n—m 1
(HM>(2’“+D 25<H|k|+w.+|1|>3 (2% +1)7%.
- 7 i %

. $1| -1
lim <H |k+m1+1|>(2k+1) 2 =0. (4)
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Agora suponha que lim z; = co. Entao existe e > 0 e m € N tal que se : > m temos
71— 00

k E+1
e<l—— <1+
T, T,

< 2.

Pelo teorema do valor médio, quando ¢ > m, temos que

1n<1—k> —1n(1+k+1> = _2k_1,
Z; Z; T;a;

ondee<1—§<ai<1+%<2.
Logo,

—2k-1 —-2k-1 —-2k-1
< < .

€x; ;0 2z;
Assim, pelas equacdes (5) e (6), temos
1 k
(—2k—1>1<1 oz, ( 2k—1>1
— n
kE+1 !
€ z; 14 + 2 z;
z;
0 que implica em
k
( 2k 1)1 1_;1 (_Zk_l)i
€ z; P z;
e < T+l <e
1+
Ty

Portanto, segue que

—2Ic 1( ) n 1—£ n |k—$|
R e | e

zm+11+k+1 +1|k2+$1+1|
z;
€ k
n n
|k_$z| H 1—; —2k=1(5=n 1,
H o K < e i=m+41 z; 7,
. kt1
1=m-+1 |k+$1+1| 1=m—+1 1+Tz
Se supormos que
(o)
1
> =
o1 L

temos duas possibilidades:

(i) lim z; = L e, pela equagao (4), temos que
71— 00

(ii) lim z; = oo e, pela equagdo (8), segue que
71— 00

—2k—1 n 1 )

n
zi| |k — ;] -1 zi| -1 il B
—— | (2k+1) 2k +1 2 i=mtl e/
<H|k+xz+1|> <_H |k + z; + 1 (2k+1)72 H|k+$z+1| (2k+1) e
1=m-+1
Portanto,
. $z| -1
J;n;o@ |k+$z+1|>(2k“> F=o
8 D. Cariello
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Agora, se supormos que
ii
— Z;
entao pela equacao (7) temos que
|k — | e L ;
—— | (2k+1
<H|k+xz+1| H+1|k+:ni+1| (2k+1)72
L T i 2)
H|k+w+1| (2k + 1) 2e >
k2
;| _1
2k +1
<H|k+mz+1|>( +1)

—2k—1
€

CZmi ) 5 0.

Logo,
. $1| _1
| 2k+1 0
n;ﬁ;(l—[w”ﬁ”)( 1)k 4o,
o que finaliza a prova. |
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