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RESUMO

Neste trabalho é introduzida uma distribuição com cinco parâmetros, denominada

distribuição hipergeométrica confluente Pareto. Essa nova distribuição gerada a par-

tir de uma variável aleatória hipergeométrica confluente inclui, como casos especi-

ais, algumas importantes distribuições, como a beta Pareto, a Pareto exponenciada

e a Pareto. Algumas das principais propriedades dessa distribuição são deduzidas,

incluindo o momento de ordem n, média, variância, coeficiente de assimetria, coe-

ficiente de curtose e a entropia de Rényi. A estimação dos parâmetros utilizando o

método da máxima verossimilhança e o método dos momentos também é discutida.

ABSTRACT

In this note, is introduced a five-parameter distribution, so-called the Pareto conflu-

ent hypergeometric distribution. This new distribution generated from a confluent

hypergeometric random variable includes some important distributions as special

case, such as beta Pareto, Pareto exponentiated and Pareto. Some of the main pro-

perties of this distribution are derived, including, nth moment, mean, variance, skew-

ness, kurtosis and Rényi entropy. The estimation of parameters using the methods

of moments and maximum likelihood is also discussed.

Palavras-chave: Distribuição Gama, distribuição beta, entropia de Rényi.

1 INTRODUCTION

The Pareto distribution is widely used in various areas of applied sciences, including,

survival analysis, hydrology, telecommunications.

In recent years, several authors have proposed generalizations of existing distributions.

This is justified because the traditional distributions often do not provide good fit in relation

to the real data set studied. For example, Mudholkar [10] studied the exponentiated Weibull

distribution. Eugene [5] introduced and studied the beta normal distribution. Nadarajah

[11] proposed the beta Gumbel distribution. Nadarajah [12] studied the beta exponential

distribution. Ali [3] presented the exponentiated Pareto distribution. Lee [9] proposed the

beta Weibull distribution. Akinsete [2] introduced the beta Pareto distribution. Khan [8]

proposed the beta inverse Weibull distribution. Silva [16] studied the beta modified Weibull
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distribution. Pascoa [15] introduced the Kumaraswamy generalized gamma distribution

and Paranaíba [14] presented the beta Burr XII.

In this article, is presented a new five-parameter distribution, so-called the Pareto con-

fluent hypergeometric distribution. Some of the main properties of this distribution are

derived.

The paper is organized as follows. In Section 2 is defined the Pareto confluent hyperge-

ometric distribution and some special sub-models are discussed. The nth moment, mean,

variance, skewness and kurtosis are derived in Section 3. In Section 4 is derived the Rényi

entropy. Finally, in Section 5, the estimation of parameters using the methods of moments

and maximum likelihood is discussed.

The calculations of this note involve the gamma function defined by

Γ(a) =

∞
ˆ

0

ta−1 exp(−t)dt (1)

the incomplete gamma function defined by

γ(a, x) =

x
ˆ

0

ta−1 exp(−t)dt (2)

the beta function defined by

B (a, b) =

ˆ 1

0
ta−1 (1− t)b−1 dt (3)

and the confluent hypergeometric function defined by

1F1 (a; c;x) =

∞
∑

j=0

(a)j
(c)jj!

xj (4)

where (x)j = (x) (x+ 1) . . . (x+ j − 1) denotes the Pochhammer symbol. The properties of

these special functions are given by Oldham [13].

We also need the following important lemmas.

Lemma 1: (Equation (3.381.1), Gradshteyn [7]). For ν > 0,

ˆ u

0
xν−1 exp (−µx)dx = µ−νγ (ν, µu) .

Lemma 2: (Equation (3.383.1), Gradshteyn [7]). For µ > 0 and ν > 0,

ˆ u

0
xν−1 (u− x)µ−1 exp (βx) dx = B (µ, ν)uµ+ν−1

1F1 (ν;µ+ ν;βu) .

2 THE MODEL

The confluent hypergeometric distribution presented by Gordy [6] has probability den-

sity function (pdf) defined by

f (x) =
xa−1 (1− x)b−1 exp (−cx)

B(a, b) 1F1 (a; a+ b;−c)
(5)

where 1 > x > 0, a > 0, b > 0 and +∞ > c > −∞.
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The works of Rodrigues [1] and Cordeiro [4] can be used to construct a new class of

generalized distribution: If G denotes the cumulative distribution (cdf) of a random variable,

then a generalized class of distribution can be defined by

F (x) =
1

B(a, b) 1F1 (a; a+ b;−c)

ˆ G(x)

0
ta−1 (1− t)b−1 exp (−ct) dt (6)

Now consider the Pareto distribution with cdf defined by

G (x) = 1−
(x

s

)

−k
(7)

where x ≥ s, k > 0 and s > 0. Inserting the cdf (7) in (6), we obtain the cdf of Pareto

confluent hypergeometric (PCH) distribution

F (x) =
1

B(a, b) 1F1 (a; a+ b;−c)

ˆ 1−( x

s
)
−k

0
ta−1 (1− t)b−1 exp (−ct) dt (8)

for x ≥ s, a > 0, b > 0, +∞ > c > −∞, k > 0 and s > 0. The pdf and hazard rate functions

associated with (8) are

f (x) =
ksbkx−(bk+1)

[

1− (x/s)−k
]a−1

exp
[

c (x/s)−k
]

exp(c)B(a, b) 1F1 (a; a+ b;−c)
(9)

and

λ (x) =
ksbkx−(bk+1)

[

1− (x/s)−k
]a−1

exp
{

−c
[

1− (x/s)−k
]}

B(a, b) 1F1 (a; a+ b;−c)−

ˆ 1−(x/s)−k

0
ta−1 (1− t)b−1 exp (−ct) dt

(10)

If | z |< 1 and b > 0 is real non-integer, we have the series representation

(1− z)b−1 =

∞
∑

j=0

(−1)jΓ(b)zj

Γ(b− j)j!
(11)

Using (1) and the Lemma 1, the cdf of Pareto confluent hypergeometric distribution (8)

can be written as

F (x) =
Γ(b)

B(a, b) 1F1 (a; a+ b;−c)

∞
∑

j=0

(−1)j γ
(

a+ j, c
[

1− (x/s)−k
])

ca+jΓ(b− j)j!
(12)

When b > 0 is a interger, the above sum stops at b− 1.
The Pareto confluent hypergeometric distribution represents a generalization of some

well-known distributions. Clearly, the Pareto distribution is a sub-model when a = b = 1
and c = 0. For c = 0, (9) is referred to as beta Pareto distribution, see Akinsete [2]. If b = 1
and c = 0 the reduced model becomes the exponentiated Pareto distribution intorduced by

Ali [3].

Some of the possible shapes of the PCH density (9) and hazard rate function (10) are

illustrated in Figure 1.

3 MOMENTS

Theorem 1: If X has the PCH pdf (9), then its nth moment can be written as

E (Xn) =
snB

(

a, b−
n

k

)

1F1

(

a; a+ b−
n

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
(13)

for n ≥ 1 and b >
n

k
.
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FIGURA 1: Plots of the PCH density and hazard rate function for selected parameter values.

Proof:

E (Xn) =

ˆ

∞

s

ksbkxn−(bk+1)
[

1− (x/s)−k
]a−1

exp
[

c (x/s)−k
]

exp(c)B(a, b) 1F1 (a; a+ b;−c)
dx (14)

substituting t = (x/s)−k, the integral (14) can be rewritten as

E (Xn) =
sn

exp(c)B(a, b) 1F1 (a; a+ b;−c)

ˆ

∞

s
tb−1−n

k (1− t)a−1 exp (ct) dt (15)

If b > n/k, the direct application of Lemma 2 shows that (15) can be rewritten as

E (Xn) =
snB

(

a, b−
n

k

)

1F1

(

b−
n

k
; a+ b−

n

k
; c
)

exp (c)B (a, b) 1F1 (a; a+ b;−c)
(16)

The result of the theorem follows by direct application of Kummer’s relation

1F1 (c− a; c; z) = exp (c) 1F1 (a; c;−z) (17)

�

In particular,

E (X) =

sB

(

a, b−
1

k

)

1F1

(

a; a+ b−
1

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
(18)

E
(

X2
)

=

s2B

(

a, b−
2

k

)

1F1

(

a; a+ b−
2

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
(19)

E
(

X3
)

=

s3B

(

a, b−
3

k

)

1F1

(

a; a+ b−
3

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
(20)
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E
(

X4
)

=

s4B

(

a, b−
4

k

)

1F1

(

a; a+ b−
4

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
(21)

The variance, skewness, and kurtosis measures can now be calculated using the relati-

ons

V ar (X) = E
(

X2
)

− E2 (X) (22)

Skewness (X) =
E
(

X3
)

− 3E (X)E2 (X) + 2E3 (X)

V ar3/2 (X)
(23)

Kurtosis (X) =
E
(

X4
)

− 4E (X)E3 (X) + 6E
(

X2
)

E2 (X)− 3E4 (X)

V ar2 (X)
(24)

4 ENTROPY

An entropy of a random variable X is a measure of variation of the uncertainty. Rényi

entropy is defined by

Hα (X) =
1

1− α
log

[
ˆ

fα(x)dx

]

(25)

for α > 0 and α 6= 1.

Theorem 2: If X has the PCH pdf (9), then its Rényi entropy is given by

Hα (X) = log s− log k +
cα

α− 1
+

α

α− 1
logB(a, b) +

1

1− α
logB

(

αa− α+ 1, αb +
α

k
−

1

k

)

+
α

α− 1
log 1F1 (a; a+ b;−c) +

1

α− 1
log 1F1

(

αb+
α

k
−

1

k
;αa+ αb− α+ 1 +

α

k
−

1

k
; cα

)

(26)

for α (bk + 1) > 1 and α (a− 1) > −1.

Proof: One can express

ˆ

fα(x)dx =

ˆ

∞

s

kαsbkαx−α(bk+1)
[

1− (x/s)−k
]α(a−1)

exp
[

cα (x/s)−k
]

exp(cα)Bα(a, b) 1Fα
1 (a; a+ b;−c)

dx (27)

substituting t = (x/s)−k, the integral (27) can be rewritten as

ˆ

fα(x)dx =
kα−1s1−α exp(−cα)

Bα(a, b)1Fα
1 (a; a+ b;−c)

ˆ

∞

s
tbα+

α

k
−

1

k
−1(1− t)α(a−1)exp(cαt)dt (28)

If α (bk + 1) > 1 and α (a− 1) > −1, the direct application of Lemma 2 shows that (28) can

be rewritten as

ˆ

fα(x)dx =
kα−1s1−αB

(

αa− α+ 1, αb+ α
k − 1

k

)

exp (cα)Bα (a, b) 1Fα
1 (a; a+ b;−c)

1F1

(

αb+
α

k
−

1

k
;αa+ αb− α+ 1 +

α

k
−

1

k
; cα

)

(29)

The result of the theorem follows by substituting equations (29) into (25).

�
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5 ESTIMATION

In this section, we consider estimation of the five parameters by method of moments

and the maximum likelihood of the PCH distribution. Let x1, . . . , xn be a random sample

of size n from the PCH distribution given by (9). Under the method of moments, equating

E
(

Xj
)

with the corresponding sample moment,

Mj =
1

n

n
∑

i=1

xji , j = 1, . . . , 5 (30)

respectively, one obtains the system of equations

sjB

(

a, b−
j

k

)

1F1

(

a; a+ b−
j

k
;−c

)

B (a, b) 1F1 (a; a+ b;−c)
=Mj, j = 1, . . . , 5 (31)

which can be solved simultaneously to give estimates for a, b, c, k and s.

The log-likelihood for a random sample x1, . . . , xn from the PCH distribution given by (9)

is:

logL (a, b, c, k, s) = n log k + nbk log s− nc− n logB(a, b)− n log 1F1 (a; a+ b;−c) + c

n
∑

i=0

(xi
s

)

−k

−(bk + 1)

n
∑

i=0

log xi + (a− 1)

n
∑

i=0

log

[

1−
(xi
s

)

−k
]

(32)

The derivatives of this log-likelihood with respect to a, b, c, k, and s are:

∂ logL

∂a
= nψ(a+ b)− nψ(a) +

n
∑

i=0

log

[

1−
(xi
s

)

−k
]

−
n

1F1 (a; a+ b;−c)

∂ 1F1 (a; a+ b;−c)

∂a
(33)

∂ logL

∂b
= nk log s+ nψ(a+ b)− nψ(b)− k

n
∑

i=0

log xi −
n

1F1 (a; a+ b;−c)

∂ 1F1 (a; a+ b;−c)

∂b
(34)

∂ logL

∂c
= sk

n
∑

i=0

x−k
i −

n

1F1 (a; a+ b;−c)

∂ 1F1 (a; a+ b;−c)

∂c
− n (35)

∂ logL

∂k
= nb log s+ csk log s

n
∑

i=0

x−k
i − csk

n
∑

i=0

x−k log xi − b
n
∑

i=0

log xi + sk(1− a) log s
n
∑

i=0

1

xk − sk

+
n

k
+ sk(a− 1)

n
∑

i=0

log xi
xk − sk

(36)

∂ logL

∂s
=

nbk

s
+ cksk−1

n
∑

i=0

x−k
i + ksk−1(1− a)

n
∑

i=0

1

xk − sk
(37)

where ψ(x) = d log Γ(x)/dx is the digamma function. Setting these expressions to zero and

solving them simultaneously yields the maximum-likelihood estimates of the five parame-

ters.
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