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ABSTRACT 
The advance of the computational resources has encouraged the utilization of  optimization techniques in the solution of 
complex engineering problems. Thus, it is very attractive to consider the possibility of  joining  the feature of natural 
optimization methods to one algorithm which allows to work with small populations and to reduce computational time 
greatly. The Differential Evolution (DE) is a simple evolutionary algorithm which has these advantages. The most distinct 
feature of DE is to perturb individuals of a population by weighted difference among random population individuals. In this 
work, the theoretical formulation, the basic algorithm and an application are presented. The simplicity and efficiency of the 
algorithm in terms of easy implementation are demonstrated by an engineering problem. The results are compared with 
those obtained by using Genetic Algorithms. 
Keywords: Optimization, Evolutionary algorithm, Differential evolution, Multi-objective optimization. 
 

RESUMO 
O avanço dos recursos computacionais tem incentivado a utilização de técnicas de otimização na solução de problemas 
complexos de engenharia. Assim, torna-se muito atrativa a possibilidade de unir as características dos métodos naturais de 
otimização a um algoritmo que permita trabalhar com uma população pequena e uma grande redução do tempo 
computacional. A Evolução Diferencial (ED) é um algoritmo evolutivo simples que  possui estas vantagens. A 
característica mais importante da ED é perturbar os indivíduos de uma população por meio de uma diferença ponderada 
entre os indivíduos da população escolhidos aleatoriamente. Neste trabalho, são apresentados a formulação teórica do 
método, um algoritmo básico e uma aplicação. A simplicidade e eficiência do algoritmo em termos de sua fácil 
implementação são demonstrados através de um problema de engenharia.Os resultados são comparados com os obtidos 
usando Algoritmos Genéticos.     
Palavras-chave: Otimização, Algoritmos evolutivos, Evolução Diferencial, Otimização multi-objetivo. 
 
 

1 – INTRODUCTION 
 

During the last decades natural optimization methods, or 
stochastic algorithms, also known as adaptive random 
search methods have become an important tool in business, 
science, and engineering. It is possible to solve problems 
with hundreds or thousands of variables and many local  
optimal points. Most of the traditional optimization 
techniques based on gradient methods generate the 
possibility of getting trapped at local optimum depending 
upon the degree of non-linearity, non-differentiability and 
initial guess of the objective function [1]. Hence, these 
traditional optimization techniques do not ensure global 
optimum and have also limited applications. In this case, 
methods based on the principle of evolution, i.e. survival 
of the fitness individuals, as Genetic Algorithms [2], [3] 
and Evolution Strategies [4] have  been very useful. These 
methods are referred to as Evolutionary Algorithms or 
Evolutionary Computation methods. 

 Differential Evolution (DE) is an algorithm developed 
by Storn and Price [5] in 1995 that belongs to the class of 
evolutionary algorithms. The main idea is to generate new 
individuals by adding the weighted difference between two 
population individuals to a third individual. Among the 
DE’s advantages are its simple structure, easiness of use, 
speed and robustness, and greater probability of finding a 
function’s true global optimum. DE has been successfully 
applied to solving several complex problems such as 
system design [6], solution of the linear systems [7], robot 
manipulator design [8], and has been identified as a 
potential source for accurate and fast optimization.  
 Differential Evolution algorithm is a heuristic 
approach for minimizing nonlinear, non-differentiable, and 
multimodal cost functions. It is similar to Genetic 
Algorithms and it utilizes a population with Np n-
dimensional real parameter vectors, i.e. its overall structure 
resembles that of most other population based searches. In 
addition, to cope with computation intensive cost 

Ciência & Engenharia, v. 16, n. 1/2, p. 1 - 8, jan. - dez. 2007 1



Giovana Trindade Silva de Oliveira and Sezimária F. Pereira Saramago 

functions, DE uses a vector population where the 
stochastic perturbation of the population vectors can be 
done independently, resulting in a fast optimization. 
 Another very important feature of DE is its easy use, 
i.e. few control variables to steer the minimization. These 
variables should be robust and easy to choose as well, 
since the minimization method is self-organizing so that 
very little input is required from the user. DE borrows the 
idea from Nelder and Mead [9] of employing information 
from within the vector population to alter the search space. 
DE’s self-organizing scheme takes the difference vector of 
two randomly chosen population vectors to perturb an 
existing vector. This crucial idea is in contrast to the 
method used by traditional Evolution Strategies in which 
predetermined probability distribution functions define 
vector perturbations. 
 In this study, Differential Evolution is used to solve 
the environmental economic dispatch problem of electric 
power generation. This problem has been deserving the 
several researchers' attention [10, 11, 12]. In this 
application, the aim is to select the generating unit outputs 
so as to meet the load demand at minimum operating cost 
and minimum pollution by atmospheric emission while 
satisfying all unit and system constraints. The optimum are 
compared with those obtained using Genetic Algorithms 
and the results obtained by Coelho and  Mariani [13]. 

 
2 – GENETIC ALGORITHMS (GA) 

 
The genetic algorithms were introduced by Michalewicz 
[14] in 1995 and they can be understood as a process of 
directed random search. The main characteristics of this 
technique are: GA operates on a population of points and, 
differently from the conventional methods, they do not 
invest all the search effort on only one point; they operate 
in a space of coded solutions, and not in the search space 
directly; they do not require derivation, unimodality or any 
other function knowledge to operate - they only need the 
objective function value for each individual of the 
population; they use probabilistic transitions and not 
deterministic ones. This way, similarly to the evolution 
process in the search for the most adapted individuals 
throughout successive generations, the optimization 
procedure improves the solutions until the optimal one is 
found. 
 A simple genetic algorithm performs basically three 
operations: selection, crossover and mutation. The initial 
population made up of Np individuals is usually generated 
in a random way or through some heuristic process. As in 
the natural genetics, there is not evolution without variety, 
and, for this reason, it is important that the individuals 
have different adaptation degrees to the environment in 
which they live. This means that the initial population 
covers in the best possible way the search space. In the 
operation Selection a temporary population of Np 
individuals is generated considering the proportional 
probability of each individual with respect to its relative 
adaptability in the population. The individuals presenting 
low adaptability will have more chance to disappear. The  
operation Crossover works in the sense of selecting two 

individuals that will exchange genetic material. It is also a 
random process that occurs with probability fixed by the 
user. Mutation is, as in nature, an event of rare occurrence. 
Its purpose is to guarantee that important genetic material 
is not hopelessly lost [2]. 

 
3 – DIFFERENTIAL EVOLUTION (DE) 

 
Let the initial population chosen randomly consisting of 
Np individuals called vectors. This population should 
cover the entire search space. For a problem with n design 
variables each vector has n parameters. Generally, this 
population is created by a uniform probability distribution. 
In this way the population follows a natural evolution, but 
Np does not change during the minimization process.  
 The main idea of differential evolution is to generate 
new individuals, called mutated vector or donor vector, by 
adding the weighted difference between two random 
population individuals to a third individual. This operation 
is called mutation. The new donor individual’s parameters 
are then mixed with the parameters of another individual 
randomly chosen, denoted target vector or vector to be 
replaced, to yield the called trial vector. This process is 
often referred to as crossover in the evolutionary strategy 
community. If the trial vector cost yields a lower value 
than the target vector cost, then the trial vector replaces the 
target vector in the following generation. This last 
operation is called selection. 
 The process is ended when limiting the maximum 
number of generations or through the stagnation concept, 
i.e. when after several serial iterations no improvement in 
the population is observed. This methodology has great 
potential for the solution of optimization problems. 
 
3.1 Differential evolution operations 
 
The differential evolution operations are based on a natural 
evolution principle whose aim is to keep the population 
diversity. 
 
Mutation: For the purpose of obtaining the mutated vector 
V(q+1), let the vectors Xα, Xβ and Xγ mutually different and 
randomly chosen from the population with Np individuals, 
so that Np ≥ 4. The random indexes α, β, γ ∈{1,…, Np} 
are integer mutually different. In generation q one pair of 
vectors (Xβ, Xγ) defines a difference vector (Xβ – Xγ). F 
multiplies this difference named weighted difference, and 
it is used to perturb the third vector Xα or the best vector 
Xbest. F is a real and constant factor ∈[0,2] which controls 
the amplification of the difference vector. This process that 
yields the mutated vector V(q+1) can be mathematically 
written as: 
 
            (1) )( )()()()1( qqqq XXFXV γβα −+=+

 
 Figure 1 shows a two-dimensional function that 
illustrates the different vectors which to take part in the 
generation of mutated vector. 
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Figure 1 – The process for generating V(q+1) for a two-
dimensional function. 
 
Crossover: Consider that for each target vector Xs

(q), 
s∈{1,..., Np}, different from indexes α, β, γ, a mutated 
vector V(q+1) was generated. The crossover is introduced in 
order to increase the diversity of the perturbed individuals. 
Thus, as represented in Figure (2)-a, the trial vector U(q+1) 
is formed by: 
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where ri is ith-evaluation of a uniform random number 
generator ∈[0, 1], Pc∈[0, 1] is the crossover probability 
and it must be supplied by user. Pc represents the 
probability of the new trial vector to inherit the variable 
values from mutated vector. When Pc = 1, for example, all 
trial vector variables will come from mutated vector V(q+1). 
On the other hand, if Pc = 0, all trial vector variables will 
come from the target vector Xs

(q). 
 
 This crossover, developed by Storn and Price [5], is 
called binomial crossover operator, due to independent 
binomial experiments, which is executed whenever a 
randomly picked number r is lower than the Pc crossover 
probability. 
 Some years later, Storn and Price [15] developed more 
strategies using exponential crossover operator, in which 
the crossover is executed on the n variables while the 
random number r is lower than the Pc crossover 
probability. The exponential crossover can be  observed in 
Figure 2 –(b). In this case, the first time a randomly picked 
number is bigger than the Pc the crossover operator is 
stopped, i.e: 
 
while ,  ) .    Pcri ≤

1()1( )()( ++ = qq iviu
     (3) 

if , then ,  j = (i+1),..., n. Pcri > )()1( )()( q
s

q jxju =+

 
An example is illustrated in Figure 2 - (a) and (b) which 
show the binomial crossover  process and exponential 
crossover process, respectively, both with seven design 
variables. 
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Figure 2 – (a). Illustration of the binomial crossover 
 
 After the crossover, if one or more trial vector 
variables are out of search space then it can be brought in 
the bound range as following: 
 
If  , then ;      min)()( ixiu < min)()( ixiu =
  (4) 

If  , then , i = 1,..., n. max)()( ixiu > max)()( ixiu =
 
where x(i)min and x(i)max are the lower and upper limits, i. e. 
the side constraints, respectively. 
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Figure 2 – (b). Illustration of the exponential crossover 
 
Selection: The selection is the process of producing better 
offspring. Unlike many other evolutionary algorithms, the 
DE does not use ranking and proportional selection. 
Instead, the cost of each trial vector U(q+1) is worked out 
and compared with the cost of target vector Xs

(q). If the cost 
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or of target vector is lower than that of trial vector, the target 
is allowed to advance for the next generation q+1. 
Otherwise, the trial vector replaces the target vector in the 
following generation. In other words this process can be 
written as: 

)()( )()()()()()1( qqqqq
best

q XXFXXFXV δγβρ −+−+=+        (7) 
 
with random integer indexes α, β, γ, ρ, δ∈{1,…, Np} 
mutually distints, so that Np ≥ 6. According to crossover 
adopted, the Eq. (6) can be written as DE/rand/2/bin or 
DE/rand/2/exp. In a similar way, the Eq. (7) can be 
classified as DE/best/2/bin or DE/best/2/exp. 

 
if  then ; )()( )()1( q

s
q XfUf ≤+ )1()1( ++ = qq

s UX
                                                                             (5) 

 There are two other strategies where the mutated 
vector has contributions of the best population individual, 
Xbest, and some previous generation individual, Xold, and the 
following weighted differences: 

if  then . )()( )()1( q
s

q XfUf >+ )()1( q
s

q
s XX =+

 
 Usually, the DE algorithm performance depends 
mainly on the Np population size, search space, and 
crossover probability.  

)XX(F)XX(FXV )q()q()q(
old

)q(
best

)q(
old

)1q(
δγ

+ −+−+=               (8)  
3.2 Differential evolution strategies   
  The Eq. (8) can be represented by strategies DE/rand-

to-best/2/bin or DE/rand-to-best/2/exp, it depends on  
crossover type. 

DE different strategies can be obtained altering the way to 
obtain the mutation operator. In the most used strategies, 
the mutation can vary according to: the type of individual 
(Xα) to be modified in the process of formation of mutated 
vector; the number of difference vectors considered; and 
the type of crossover to be used. 

 Summarizing, all the strategies can be described 
according to Table 1. 
 It is worthwhile to note that a strategy that works well 
for a given problem may not to work well when applied to 
a different problem. Also, the strategy to be adopted for a 
problem is determined by trial and error. 

 To classify the different variations, Storn and Price [5] 
have introduced the following notation: DE/a/b/c, where 
the symbol a specifies the vector to be perturbed which 
currently can be “rand” (a randomly chosen population 
vector) or “best” (the vector of lowest cost from the current 
population), b is the number of difference vectors used for 
perturbation of vector a, and c denotes the crossover type 
(bin: binomial; exp: exponential). 

 
3.3 Differential evolution for constraint multicriterion 
optimization problems 
 
A multicriterion optimization problem can be formulated 
as finding a vector of decision variable X = [X1, X2,…, Xn]T 
which  optimizes a vector function whose elements 
represent the objective functions and satisfy the inequality, 
equality, and side constraints. The problem can be written 
as follows: 

 Using this notation and supposing binomial crossover, 
the Eq. (1) can be classified as DE/rand/1/bin. 
 If the population vectors number Np is high enough, 
the population diversity can be improved using two 
difference vectors to perturb an existing vector, i.e. five 
distinct vectors are chosen randomly from the current 
population, the weighted difference uses two pairs of 
difference vectors and is used to perturb the fifth vector, Xα 
(or the best vector Xbest), of current population q. This 
process can be written as: 

 
Minimize f(X) = [f1(X), f2(X),..., fk(X)] ,     X ∈          (9) nℜ
 

Subject to  (10) 
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                        Table 1 - Representation of differential evolution strategies 
Number Mutation Notation 

1 )( )()()()1( qqqq XXFXV γβα −+=+  ED/rand/1/bin  

2 )( )()()()1( qqq
best

q XXFXV γβ −+=+  ED/best/1/bin 

3 )( )()()()()()1( qqqqqq XXXXFXV δγβλα −+−+=+  ED/rand/2/bin  

4 )( )()()()()()1( qqqqq
best

q XXXXFXV δγβα −+−+=+  ED/best/2/bin 

5 )( )()()()()()1( qqq
old

q
best

q
old

q XXXXFXV δγ −+−+=+  ED/rand-to-best/2/bin 

6 )( )()()()1( qqqq XXFXV γβα −+=+  ED/rand/1/exp  

7 )( )()()()1( qqq
best

q XXFXV γβ −+=+  ED/best/1/exp 

8 )( )()()()()()1( qqqqqq XXXXFXV δγβλα −+−+=+  ED/rand/2/exp  

9 )( )()()()()()1( qqqqq
best

q XXXXFXV δγβα −+−+=+  ED/best/2/exp 

10 )( )()()()()()1( qqq
old

q
best

q
old

q XXXXFXV δγ −+−+=+  ED/rand-to-best/2/exp 
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 In this work, the weighting objectives method is used 
to change the multicriterion optimization problem to a 
scalar optimization problem [16] by creating one function 
of the form:  
 ∑

=

=
K

k k

k
k f

Xf
wXf

1
0

)(
)(                                     (11) 

 
where the weighting coefficients wk  are usually assumed 
as: 

                                                        (12) 1
1

=∑
=

K

k
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 In the Eq. (11), the vector function is normalized by 
using the ideal solution fk

0, which is determined by 
obtaining attainable minima for all the objective functions 
separately. In others words, 
 

                        (13) 
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⎧ ==
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,...,1),(min0 KkXff kk

 
 The Differential Evolution was developed to 
unconstraint problems. So, in the case of constrained 
optimization problems, it is necessary to introduce 
modifications in this method. This work uses the concept 
of Penalty Function [1]. In this technique, the problems 
with constrains are transformed in unconstrained problems 
adding a penalty function P(X) to the original objective 
function to limit constraint violations. This new objective 
function, called pseudo-objective function, is penalized, 
according to a factor, every time that meets an active 
constraint. Let the pseudo-objective function be given in 
the form: 
 
                                 (14) )()()( XPrXfX p+=Φ

 

[ ]{ } [ ] ⎥
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where f(X) is the original objective function given in the 
Eq. (11), P(X) is an imposed penalty function given by Eq. 
(15), gj are the inequality constraints, hl are the equality 
constraints. The scalar rp is a multiplier that quantifies the 
magnitude of the penalty. For the efficiency of the method, 
a large value of the penalty factor rp should be used to 
ensure near satisfaction of all constraints. 
 

4 – NUMERICAL APPLICATION 
 
In this paper, all the strategies describe in Table 1 were 
used for the solution of two environmental economic 
dispatch problem (considering power outputs of the 6 and 
13 generators). The obtained results were compared. The 
computational code was implemented in MATLAB®. The 
optimal results obtained by using differential evolution 
were compared with the obtained results using genetic 
algorithms. The program Genetic Algorithms Optimization 
Toolbox (GAOT) developed by Houck et al. [17] has been 

used to perform the GA, adopting Np = 80 individuals. The 
parameters used for DE were: number of population vector 
Np = 15; multiplier of the difference vector F = 0.8; 
constant probability crossover CR = 0.5; stopping criterion 
itermax = 200 generations; penalty factor rp=1000, and 
weighting coefficients w1 = w2 = 0.5.  
 
Case 1: environmental economic dispatch considering the 
minimum operating cost and minimum pollution (6 
generators) 
 
The aim of environmental economic dispatch of electric 
power generation is to select the generating unit outputs. 
Hence to meet the load demand at minimum operating cost 
and minimum pollution by atmospheric emission while 
satisfying all unit and system constraints. Thus, the 
objective is to minimize two competing objective 
functions, fuel cost and emission, while satisfying equality 
and side constraints. The vector of real power outputs of 
the n generators is  represented by X = [X1, X2,..., Xn]T,  
where Xi, i=1,…, n  are the design variables. 
 The generator cost curves Fc(X) are represented by 
quadratic functions. Thus, the total $/h fuel cost can be 
expressed as: 

                       (16) 2

1
)( iiii

n

i
ic XcXbaXF ++= ∑

=

 
where n is the number of generators, ai, bi, and ci, are the 
cost coefficients of the ith-generator and Xi is the real 
power output of the ith-generator. 
 
 The total ton/h emission Fe(X) of atmospheric 
pollutants such as sulphur oxides SOx and nitrogen oxides 
NOx caused by fossil-fueled thermal units can be expressed 
as: 

 ( ) )(

1

2210)( ii X
i

n

i
iiiiie eXXXF λξγβα +++=∑

=

−    (17) 

 
where αi, βi, γi, ξi and λi are emission characteristics 
coefficients of the ith-generator. 
 
 For stable operation, real power output of each 
generator is restricted by lower and upper limits (side 
constraints) as follows:  
 
 Xi

min ≤ Xi ≤ Xi
max,   i = 1,...,n.                           (18) 

 
 The total power generation must cover the total 
demand PD and the real power loss in transmission lines 
Ploss. Hence,  

                                           (19)lossD

n

i
i PPX +=∑

=1
 
 Let n=6 generators, the cost coefficients and emission 
characteristics coefficients given in Tables 2 and 3 
according to Abido [18].  
 Let PD + Ploss = 290 MW and consider that the equality 
constraint given by Eq. (19) is written as two unequality 
constraints (Eq.21). 
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 The problem can be mathematically formulated as a 
non-linear constrained multi-objective optimization 
problem, according to the Eqs.  (9) to (15), as follows: 

Table 3 - Emission characteristics coefficients for 6 generators. 
 G1 G2 G3 G4 G5 G6

α 4.091 2.543 4.258 5.426 4.258 6.131 
β - 5.554 - 6.047 - 5.094 - 3.550 - 5.094 - 5.555
γ 6.490 5.638 4.586 3.380 4.586 5.151 
ξ 2×10-4 5×10-4 1×10-6 2×10-3 1×10-6 1×10-5

λ 2.857 3.333 8.000 2.000 8.000 6.667 

 
 Minimize                 (20) )()()( XPrXfX p+=Φ

  Subject to: 
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Table 4 - Cost and emission coefficients (13 generators). 

where  
0
e

e
20

c

c
1

F
)X(Fw

F
)X(Fw)X(f +=                          (22) 

and   (23) [ ]{ } [ ]{ }2
2

2
1 )(,0max)(,0max)( XgXgXP +=

G Pi
min Pi

max a b c e f 
1 0 680 0.00028 8.10 550 300 0.035 
2 0 360 0.00056 8.10 309 200 0.042 
3 0 360 0.00056 8.10 307 150 0.042 
4 60 180 0.00324 7.74 240 150 0.063 
5 60 180 0.00324 7.74 240 150 0.063 
6 60 180 0.00324 7.74 240 150 0.063 
7 60 180 0.00324 7.74 240 150 0.063 
8 60 180 0.00324 7.74 240 150 0.063 
9 60 180 0.00324 7.74 240 150 0.063 
10 40 120 0.00284 8.60 126 100 0.084 
11 40 120 0.00284 8.60 126 100 0.084 
12 55 120 0.00284 8.60 126 100 0.084 
13 55 120 0.00284 8.60 126 100 0.084 

 
 The constraints given by (21) are considered in the 
objective function by using a penalty function defined in 
Eq. (23). The ideal solution was calculated using the Eq. 
(13) and the best results obtained using all the DE-
strategies were Fc

0 = 550.1248 $/h and Fe
0 = 0.1952 ton/h. 

 
Table 2 - Cost coefficients for 6 generators. 

 G1 G2 G3 G4 G5 G6

a 10 10 20 10 20 10 
b 200 150 180 100 180 150 
c 100 120 40 60 40 100 

  
                                Table  5. Environmental economic dispatch optimization results for Problem 1, when w1 = w2 = 0.5. 

 f(X) Fc ($/h) Fe (ton/h) g1 (MW) g2 (MW) 
1 1.0712 617.0532 0.1992 -0.0823 -0.0177 
2 1.0626 606.1748 0.1997 -0.0994 -0.0006 
3 1.1146 646.4563 0.2058 -0.0187 -0.0813 
4 1.0920 567.2400 0.2250 -0.2999 0.1999 
5 1.0621 609.1248 0.1985 -0.1002 0.0002 
6 1.0760 607.8273 0.2044 -0.0712 -0.0288 
7 1.0625 611.3541 0.1979 -0.1000 -0.00 
8 1.0831 613.0314 0.2053 -0.0737 -0.0263 
9 1.0823 607.0605 0.2071 -0.0963 -0.0037 

 
 
 

DE 
Strategy 

10 1.0626 607.2288 0.1994 -0.0995 -0.0005 
GAOT 1.1174 643.2788 0.2118 -1.2095 1.1095 

 
                              Table 6.  Optimal power output (MW) of each generator for Problem 1, when w1 = w2 = 0.5. 

 x1 x2 x3 x4 x5 x6
1 25.43 40.89 68.71 52.56 46.45 47.74 
2 26.73 39.05 56.66 62.33 51.12 44.17 
3 37.39 41.97 90.34 45.40 30.24 42.79 
4 14.97 31.29 82.25 65.07 51.84 44.52 
5 31.60 41.22 53.68 60.61 48.71 44.16 
6 22.68 38.47 66.10 70.93 46.12 38.58 
7 32.44 40.10 47.36 57.93 54.50 47.67 
8 28.94 45.71 29.62 71.69 66.42 40.26 
9 10.88 48.95 56.58 64.07 66.44 35.45 

 
 
 

DE 
Strategy 

10 30.02 41.80 50.08 63.12 53.23 41.80 
GAOT 58.00 44.23 23.98 82.02 47.78 24.78 
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 It is a multicriterion optimization problem, so the best 
solution depends on designer’s interest. In  Case 1, the 
weighting coefficients were assumed equals (w1 = w2 = 0.5) 
that represents the same priority for the two competing 
objective functions: fuel cost and emission of atmospheric 
pollutants. Thus, the strategies 2, 5, 6, 9, and 10 are a good 
solution because represent a reasonable compromise 
solution between the two objective functions (Tables 5 and 
6). In this case, the worst result was obtained by using the 
strategy 3. 
 
Case 2: environmental economic dispatch considering the 
total fuel cost (13 generators) 
 
The objective of this economic dispatch problem is to 
minimize the total fuel cost at thermal power plants 
subjected to the operating constraints of a power system. A 
cost function is obtained based on the ripple curve for 
more accurate modeling. This curve contains higher order 
nonlinearity and discontinuity due to the valve point effect 
and should be refined by a sine function. Therefore, the 
objective function can be modified as: 

|))PP(fsin(e|)P(Ffmin i
mim
iiic −+=  (24) 

 

where ei and fi are constants of the valve point effect of the 
generators given in Table 4, and Fc is given in Eq.(16). 
 
 In the power balance criterion, an equality constraint 
must be satisfied, as shown in (19). The generated power 
should be the same as the total load demand plus total line 
losses. In this case, is imposed that PD + Ploss = 1800 MW. 
The generating power of each generator should lie between 
maximum and minimum limits represented by (18).  
 Summarizing, the optimization problem is formulated 
as minimizing the objective function and constraints, 
represented in (24), (18), and (19).  
 The Tables 7 to 9 show the optimal results by using  
all the Differential Evolution strategies,  Genetic 
Algorithms, and results obtained by Coelho and Mariani 
[13]. The worst result was obtained by GAs. The DE 
strategies 2 and 7 found  similar results  of [13]. 
 In all the strategies the constraints were obeyed while 
in Genetic Algorithms the constraint g2 was active. 
 The population of ED is very small, so the 
computational cost is lower. It is the main advantage of 
this methodology. 
 

Table 7 - Best results (50 runs) of 13 generating units with the Valve Point and PD=1800 MW. 
 Fc ($/h) g1 (MW) g2 (MW) Time (s) 

1 18269.4740 -11.1351 -8.8649 0.0267 
2 18153.9451 -7.6019 -2.3980 0.0271 
3 18272.5078 -8.0942 -1.9057 0.0260 
4 18308.0523 -3.1728 -6.8272 0.0060 
5 18267.7663 -8.7871 -1.2128 0.0250 
6 18263.0732 -9.5152 -0.4848 0.0271 
7 18125.6291 -9.8908 -0.1092 0.0167 
8 18326.4323 -9.1687 -0.8313 0.0283 
9 18312.7824 -9.4686 -0.5313 0.0274 

 
 
 

DE 
Strategy 

10 18311.7688 -8.3747 -1.6252 0.0166 
GAOT 19131.7068 -19133.0 19123.0852 0.0172 

DEC(1)-SQP(1) [13] 17938.9521 - - 0.50 
 
                   Table 8 - Optimal power output (MW) of generators P1 to P6, for Problem 2. 

 P1 P2 P3 P4 P5 P6

1 637.2263 281.9363 147.2529 155.79410 60.0000 60.0000 
2 627.1577 360.0000 160.1155 160.1249 60.0000 60.0000 
3 627.8123 360.0000 0 60.0000 107.5155 152.7215 
4 455.7318 294.9726 360.0000 157.5792 60.0000 60.0000 
5 539.9624 296.0688 355.8903 63.9895 60.0000 60.0000 
6 447.0375 298.6173 255.7359 60.0000 156.2771 62.9757 
7 629.0954 0 309.5622 60.0000 60.0000 60.0000 
8 538.7812 252.0971 217.4743 60.0000 60.0000 111.9255 
9 538.8759 227.2284 144.3009 114.3049 118.0862 60.0000 

 
 
 

DE 
Strategy 

10 539.3783 0.3502 353.4283 62.6085 110.1435 161.8711 
GAOT 586.0267 84.1941 148.6262 94.9364 113.6072 65.4708 

DEC(1)-SQP(1) [13] 526.1823 252.1857 257.9200 78.2586 84.4892 89.6198 
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           Table 9 - Optimal power output (MW) of generators P7 to P13, for Problem 2. 
 P7 P8 P9 P10 P11 P12 P13

1 60.0000 60.0000 76.6329 110.0224 40.0000 55.0000 55.0000 
2 60.0000 60.0000 60.0000 40.0000 40.0000 55.0000 55.0000 
3 60.0000 109.4299 60.0000 40.0000 109.4265 55.0000 55.0000 
4 100.4930 60.0000 60.0000 40.0000 43.0506 55.0000 55.0000 
5 60.0000 60.0000 60.0000 55.6556 40.000 55.000 89.64612
6 60.0000 164.3779 40.0000 43.0128 40.0000 92.4506 55.0000 
7 165.3751 160.3488 160.7276 40.0000 40.0000 55.0000 55.0000 
8 60.0000 60.0000 160.5766 44.9765 120.000 55.0000 55.0000 
9 156.0000 102.1931 106.1117 40.0000 43.7679 55.0000 89.6623 

 
 
 

DE 
Strategy 

10 109.2903 158.2069 60.0000 40.0000 42.9316 102.9889 55.4277 
GAOT 156.3092 82.1289 129.3438 109.0419 82.3186 56.0643 95.5535 

DEC(1)-SQP(1) [13] 88.0880 101.1571 132.0983 40.0007 40.0000 55.0000 55.0000 
 

5 – CONCLUSIONS 
 
This work presented a differential evolution algorithm 
theory as well as two applications in engineering well 
known in literature as Environmental Economic Dispatch. 
In Case 1 the aim is to select the generating unit outputs so 
as to meet the load demand at minimum operating cost and 
minimum pollution by atmospheric emission while 
satisfying all system constraints. In Case 2, the problem is 
to minimize the total fuel cost at thermal power plants 
subjected to the operating constraints of a power system 
with the valve point effect. All the Differential Evolution 
Strategies presented results better than Genetic Algorithms 
did. In Case 2, only the strategies 2 and 7 presented next 
results of [13]. The best result of ED was obtained by 
strategy ED/best/1/bin. In all the strategies the constraints 
were obeyed while in Genetic Algorithms the constraint g2 
was active.  This technique can be represent a powerful 
tool in complex, multimodal optimization problems or 
when a lot of design variables are considered. It is strongly 
recommended that the user tests all the strategies and 
compare the obtained optimal results. This procedure is 
very simple, once all the strategies are available in the 
program and the operational cost is low. 
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