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ABSTRACT 
The sequential life-testing approach is an attractive alternative to that of predetermined, fixed sample size hypothesis testing 
because of the fewer observations required for its use, especially when the underlying sampling distribution is the three-
parameter Weibull model. It happens that sometimes the amount of time available for testing could be considerably less 
than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative 
aimed at forcing components to fail by testing them at much higher-than-intended application conditions. One possible way 
to translate test results obtained under accelerated conditions to normal using conditions could be through the application of 
the “Maxwell Distribution Law.” In this work we will be life-testing a new industrial product. To estimate the three 
parameters of the Weibull model we will use a maximum likelihood approach for censored failure data. We will be 
assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under 
normal conditions for the underlying Weibull model we will apply to the expected normal failure times a sequential life 
testing using a truncation mechanism developed by De Souza [1]. An example will illustrate the application of this 
procedure. 
Keywords: Accelerated Models, Sequential Test, Acceleration, Maxwell Distribution Law, Maximum Likelihood.  
 

RESUMO 
O mecanismo de teste de vida seqüencial é uma alternativa plausível ao de um teste com tamanho de amostra pré-fixado, 
devido utilizar um número pequeno de observações, especialmente quando a distribuição de amostragem é o modelo 
Weibull de três parâmetros. Acontece que mesmo com o uso desse mecanismo seqüencial, algumas vezes o tempo 
disponível para a realização do teste poderá ser consideravelmente menor do que a vida esperada do componente. Para a 
solução desse problema, existe a alternativa de um teste de vida acelerado direcionado a forçar os componentes a falharem, 
submetendo-os a condições de teste muito mais severas do que as encontradas em condições normais de uso. Uma maneira 
de traduzirmos os resultados obtidos sob uma condição de aceleração para uma condição normal poderá ser através da 
aplicação da Lei de Distribuição de Maxwell. Neste trabalho, testaremos um novo produto industrial. Para estimarmos os 
três parâmetros do modelo Weibull, utilizaremos o estimador de Máxima Verossimilhança para uma condição de teste de 
vida truncado por falhas. Assumiremos uma condição de aceleração linear. Para avaliarmos a precisão dos valores dos 
parâmetros do modelo Weibull, obtidos em condições normais de uso, aplicaremos aos tempos esperados de falhas em 
condições normais um teste de vida seqüencial utilizando um mecanismo de truncagem desenvolvido por De Souza  [1]. 
Um exemplo ilustrará a aplicação desse procedimento. 
Palavras-Chave: Modelos Acelerados, Teste Seqüencial, Aceleração, Lei de Distribuição de Maxwell, Estimador de 
Máxima Verossimilhança. 
 
 

1 – INTRODUCTION 
 

The sequential life testing approach is an attractive 
alternative to that of predetermined, fixed sample size 
hypothesis testing because of the fewer observations 
required for its use, especially when the underlying 
sampling distribution is the three-parameter Weibull 
model. It happens that even with the use of a sequential 

life testing mechanism, sometimes the number of items 
necessary to reach a decision about accepting or 
rejecting a null hypothesis is quite large; see De Souza 
[2]. Then, a truncation mechanism for this life-testing 
situation was developed by De Souza [1] and an 
application of this mechanism was presented by De 
Souza [3]. But it happens that sometimes the amount of 
time available for testing could be considerably less than 
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the expected lifetime of the component. To overcome 
such a problem, there is the accelerated life-testing 
alternative aimed at forcing components to fail by 
testing them at much higher-than-intended application 
conditions. To go from the failure rate obtained at high 
stress to what a product or service is likely to experience 
at much lower stress, under use conditions, we will need 
additional modeling. These models are known as 
acceleration models. 
 One possible way to translate test results obtained 
under accelerated conditions to normal using conditions 
could be through the application of the “Maxwell 
Distribution Law.” In this work we will be life-testing a 
new industrial product. To estimate the three parameters 
of the Weibull model we will use a maximum likelihood 
approach for censored failure data, since the life-testing 
will be terminated at the moment the truncation point is 
reached. We will be assuming a linear acceleration 
condition. To evaluate the accuracy (significance) of the 
parameter values obtained under normal conditions for 
the underlying Weibull model we will apply to the 
expected normal failure times a sequential life testing 
using a truncation mechanism developed by De Souza 
[1]. An example will illustrate the application of this 
procedure. 
 

2 – THE ACCELERATING CONDITION 
 
When only thermal stresses are significant, an empirical 
model, known as the Arrhenius model, has been used 
with relative success as an accelerated model. The 
Arrhenius model is given by Equation 1 below: 
 

rateR  = CKTE ne +−                             (1) 
 

Here, Rrate is the rate of reaction, E represents the 
energy of activation of the reaction, K the gas constant 
(1.986 cal/ (mol.Kelvin), Tn the temperature in degrees 
Kelvin (273.16 plus the degrees Centigrade) at normal 
condition of use, and C a constant. 
The acceleration factor AF2/1 (or the ratio of the specific 
rates of reaction R2/R1), at two different stress 
temperatures, T2 and T1, will be given by: 
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Applying natural logarithm to both sides of this 

equation and after some arithmetical manipulation, we 
will obtain: 
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How does such a relationship come about? Maybe it 

can be related to the “Maxwell Distribution Law.” This 
law, which expresses the distribution of kinetic energies 
of molecules, is given by the following equation: 
 

TEM  = totM  KTEe−                          (4) 

Here, MTE represents the number of molecules at a 
particular absolute Kelvin temperature T with kinetic 
energy greater than the energy of activation of the 
reaction E. The term Mtot represents the total number of 
molecules present. Equation 4 expresses the probability 
of a molecule having energy in excess of E. 
The ratio of the number of molecules having energy E at 
two different temperatures will be given by 
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From Equation 3 we can estimate the term E/K by 
testing at two different stress temperatures and 
computing the acceleration factor on the basis of the 
fitted distributions. Then; 
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The acceleration factor AF2/1 will be given by the 

relationship θ1/θ2, with θi representing a scale parameter 
or a percentile at a stress level corresponding to Ti. Once 
the term E/K is determined, the acceleration factor AF2/n 
to be applied at the normal stress temperature is obtained 
from Equation 2 by replacing the stress temperature T1 
with the temperature at normal condition of use Tn. 
Then: 
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De Souza [4] has shown that under a linear 

acceleration assumption, if a three-parameter Inverse 
Weibull model represents the life distribution at one 
stress level, a three-parameter Inverse Weibull model 
also represents the life distribution at any other stress 
level. The same reasoning applies to the three-parameter 
Weibull model. We will be assuming a linear 
acceleration condition. 
In general, the scale parameter and the minimum life can 
be estimated by using two different stress levels 
(temperature or cycles or miles, etc.), and their ratios 
will provide the desired value for the acceleration 
factors AFθ and AFϕ. So, we will have: 

 

AFθ = 
a
n
θ
θ                                                  (7) 

AFϕ = 
a
n

ϕ
ϕ                                                  (8) 
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Here, φn represents the minimum life or location 
parameter at normal using condition of the three-
parameter Weibull sampling distribution, and φn is the 
minimum life at accelerated using conditions. θn is the 
scale parameter at normal using condition and θa is the 
parameter at accelerated using conditions. Again, based 
on the paper by De Souza [4], for the Weibull model the 
cumulative distribution function at normal testing 
condition Fn(tn−ϕn) for a certain testing time t = tn, will 
be given by:  
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In this paper, the terms βa and βn represent, respectively, 
the shape parameter of the three-parameter Weibull 
model at accelerated and normal using conditions. 
Equation 9 tells us that, under a linear acceleration 
assumption, if a three-parameter Weibull model 
represents the life distribution at one stress level, a 
three-parameter Weibull model also represents the life 
distribution at any other stress level. The shape 
parameter remains the same while the accelerated scale 
parameter and the accelerated minimum life parameter 
are multiplied by the acceleration factor. The equal 
shape parameter is a necessary mathematical 
consequence of the other two assumptions; that is, 
assuming a linear acceleration model and a three-
parameter Weibull sampling distribution. If different 
stress levels yield data with very different shape 
parameters, then either the three-parameter Weibull 
sampling distribution is the wrong model for the data or 
we do not have a linear acceleration condition. 
Again, since Rn(tn−ϕn) =1 − Fn(tn−ϕn), we will have: 
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3 – MAXIMUM LIKELIHOOD ESTIMATION FOR 
THE WEIBULL MODEL FOR CENSORED TYPE II 

DATA (FAILURE CENSORED) 
 
The standard maximum likelihood method for 
estimating the parameters of the three-parameter 
Weibull model can have problems since the regularity 
conditions are not met; see Murthy, et al. [5]; Blischke 
[6]; Zanakis and Kyparisis [7]. To overcome the 
resulting “no regularity” problem above mentioned, we 
will apply a modification proposed by Cohen et al. [8]. 
De Souza [4] presents a complete discussion of this 
matter for use with the three-parameter Inverse Weibull 

model. The same reasoning applies to the three-
parameter Weibull model. 

The likelihood function for the shape, scale and 
minimum life parameters of a Weibull sampling 
distribution for censored Type II data (failure censored) 
will be given by: 
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The log likelihood function L = ( )[ ]ϕθβ ;;Lln  will 

be given by: 
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To find the value of θ, β and ϕ that maximizes the 

log likelihood function, we take the θ, β and ϕ 
derivatives and make them equal to zero. Then, applying 
some algebra, we will have: 
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From Equation 12 we obtain: 
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Notice that, when β = 1, Equation 15 reduces to the 

maximum likelihood estimator for the two-parameter 
exponential distribution. Using Equation 15 for θ in 
Equations 13 and 14 and applying some algebra, 
Equations 13 and 14 reduce to: 
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To overcome the “no-regularity problem,” one of 

the approaches proposed by Cohen et al. [8] is to replace 
Equation 17 with the equation 
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Here, t1 is the first order statistic in a sample of size 

n. In solving the maximum likelihood equations, we will 
use this approach proposed by Cohen et al. [8]. 
Appendix 1 shows the derivation of Equation 18. 
 

4 –THE SEQUENTIAL TESTING 
 
The three-parameter Weibull density function is given 
by: 
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The hypothesis testing situations were given by 

Kapur and Lamberson [9], and De Souza [2]: 
 

1.   For the scale parameter θ:  H0: θ ≥ θ0;   H1: θ  < 
θ0 
The probability of accepting H0 will be set at (1-α) if θ = 
θ0. Now, if θ = θ1 where θ1 < θ0, then the probability of 
accepting H0 will be set at a low level γ. 

2.   For the shape parameter β: H0: β ≥ β0;   H1: β < 
β0 
The probability of accepting H0 will be set at (1-α) if β 
= β0. Now, if β = β1 where β1 < β0, then the probability 
of accepting H0 will be also set at a low level γ. 

3.   For the location parameter ϕ: H0: ϕ ≥ ϕ0;  H1: ϕ 
< ϕ0 
Again, the probability of accepting H0 will be set at (1-
α) if ϕ = ϕ0. Now, if ϕ = ϕ1 where ϕ < ϕ0, then the 
probability of accepting H0 will be once more set at a 
low level γ. The sequential probability ratio (SPR) will 
be given by SPR = L1,1,1,n / L0,0,0,n. According to De 
Souza [1], for the three-parameter Weibull model we 
will have: 
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5 – EXPECTED SAMPLE SIZE OF A SEQUENTIAL 

LIFE TESTING FOR TRUNCATION PURPOSE 
 
According to Mood and Graybill [10], an approximate 
expression for the expected sample size E(n) of a 
sequential life testing for truncation purposes will be 
given by: 
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According to De Souza [1], for the three-parameter 

Weibull model we will have: 
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The solution of each component of Equation 22 can 

be found in De Souza  [1] and De Souza [3]. 
 

6 – EXAMPLE 
 
We are trying to determine the values of the shape, scale 
and minimum life parameters of an underlying Weibull 
model, representing the life cycle of a new electronic 
component. Once a life curve for this component is 
determined, we will be able to verify if new units 
produced will have the necessary required 
characteristics by using sequential life testing. It 
happens that the amount of time available for testing is 
considerably less than the expected lifetime of the 
component. So, we will have to rely on an accelerated 
life testing procedure to obtain failure times used in the 
parameters estimation procedure. The electronic 
component has a normal operating temperature of 298 K 
(about 25 degrees Centigrade). Under stress testing at 
460 K, 10 electronic components were subjected to 
testing, with the testing being truncated at the moment 
of occurrence of the eighth failure. Table 1 shows these 
failure time data (hours). Now, under stress testing at 
520 K, 10 electronic components were again subjected 
to testing, with the testing being truncated at the moment 
of occurrence of the eighth failure. Table 2 shows these 
failure time data (hours). 
 
Table 1. Failure times (hours) of electronic parts tested under 
accelerated temperature conditions (460 K). 

673.3 836.4  561.3 
688.4 625.6 720.2 
702.5 746.2 – 

 
Table 2. Failure times (hours) of electronic parts tested under 
accelerated temperature conditions (520 K). 

591.1 546.2 641.8  
562.8 526.5 583.5 
669.9 606.0 – 

 
The data shown is Tables 1 and 2 were obtained 

from a life-test facility. Using the maximum likelihood 
estimator approach for the shape parameter β for the 
scale parameter θ and for the minimum life ϕ of the 
Weibull model for censored Type II data (failure 
censored), we obtain the following values for these three 
parameters under accelerated conditions of testing. 

 
At 460 K.  β1 = βn = β = 7.8;    θ1 = 623.4 hours;  ϕn1 = 
117.0 hours 
 
At 520 K.  β2 = βn = β = 7.78 ≈ 7.8   θ2 = 529.6 hours;  
ϕ2 = 82.5 hours 
 
The shape parameter did not change with β ≈ 7.8. 
 
The acceleration factor for the scale parameter AFθ2/1 
will be given by: 
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2
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θ
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 = 
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Using Equation 5, we can estimate the term E/K. 

Then 
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 = 650.1 

 
Using now Equation 6, the acceleration factor for 

the scale parameter to be applied at the normal stress 
temperature AFθ2/n will be: 
 

n/2AF  = 
⎥
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11.650exp  = 2.54 

 
The acceleration factor for the minimum life 

parameter AFφ2/1 will be given by: 
 

12AFϕ  = 
2
1

ϕ
ϕ

 = 
8.98
0.117  

 
Again applying Equation 5, we can again estimate 

the term E/K. Then 
 

K
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 = 674.1 

 
Using once more Equation 6, the acceleration factor 

for the minimum life parameter to be applied at the 
normal stress temperature AFφ2/n will be: 
 

n/2AF  = 
⎥
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Then, as we expected, AFθ = AFϕ = AF ≈ 2.60 
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Finally, the scale parameter and the minimum life 
parameter of the component at normal operating 
temperatures is estimated to be: 
 

nθ  = n/2AF  × θ2 = 2.60 × 529.6 = 1,377.0 hours 

nϕ  = n/2AF  × φ2 = 2.60 × 98.8 = 256.9 hours 
Then, the electronic component life when operating 

at normal use conditions could be represented by a 
three-parameter Weibull model having a shape 
parameter β of 7.8; a scale parameter θ of 1,377.0 hours 
and a minimum life φ of 256.9 hours. 

To evaluate the accuracy (significance) of the three-
parameter values obtained under normal conditions for 
the underlying Weibull model we will apply to the 
expected normal failure times a sequential life testing 
using a truncation mechanism developed by De Souza 
[1]. These expected normal failure times will be 
acquired by multiplying the nine failure times obtained 
under accelerated testing conditions at 520 K given by 
Table 2, by the accelerating factor AF of 2.6. It was 
decided that the value of α was 0.05 and γ was 0.10. In 
this example, the following values for the alternative and 
null parameters were chosen: alternative scale parameter 
θ1 = 1,200 hours, alternative shape parameter β1 = 7.0 
and alternative location parameter ϕ1 = 200 hours; null 
scale parameter θ0 = 1,377 hours, null shape parameter 
β0 = 7.8 and null minimum life parameter ϕ0 = 255 
hours. Now electing P(θ,β,ϕ) to be 0.01, we can 
calculate the expected sample size E(n) of this 
sequential life testing under analysis. Using Equation 22 
and the expression for the expected sample size of the 
sequential life testing for truncation purpose E(n), we 
will have: 
 

( )wE  =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

β

θ
×

θ

β
β

β
0

0
0

1
1

1ln  + ( )11 −β  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
ϕ− 1tlnE − 

– ( )10 −β ( ) ⎥
⎦

⎤
⎢
⎣

⎡
ϕ− 0tlnE

1
1

1
β
θ

−  ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ϕ−

β1
1tE + 

       + 
0

0

1
β
θ

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ϕ−

β 0
0tE  

 
Solving the above equation we obtain: 

 
( )wE  = 6.637 + 6 × 5.512128 – 6.8 × 5.532708 – 2.519 

+ 1.0 = 0.568 
 

Now, with ( )ϕβθ ,,P  = 0.01, ( )Bln  = ( )
⎥⎦
⎤

⎢⎣
⎡

α
γ−1ln  = 

( )
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⎤
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⎡ −

05.0
10.01ln  = 2.890 and also with  
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1
ln  = ⎟

⎠
⎞

⎜
⎝
⎛

− 05.01
10.0ln = −2.2513, we have: 

( ) ( ) ( )[ ] ( )Bln,P1Aln,P βθ−+βθ  =  
            = 8904.299.02513.201.0 ×+×−  = ≈ 2.839 

 

Then: ( )nE  = ( ) ( )[ ]
( )wE

Bln,P1Aln,P βθ−+βθ  = 
568.0
839.2  

( )nE  = 4.99 ≈ 5 items 
 

So, we could make a decision about accepting or 
rejecting the null hypothesis H0 after the analysis of 
observation number 5. Using Equations 9 and 10 and the 
nine failure times obtained under accelerated conditions 
at 520 K given by Table 2, multiplied by the 
accelerating factor AF of 2.6, we calculate the sequential 
life test limits. Figure 1 below shows the sequential life-
testing for the three-parameter Weibull model. 
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Figure 1. Sequential life-testing for the three-parameter 
Weibull model. 
 

According to Kapur and Lamberson [9], when the 
truncation point is reached, a line partitioning the 
sequential graph can be drawn as shown in Figure 1. 
This line is drawn through the origin of the graph 
parallel to the accept and reject lines. The decision to 
accept or reject H0 simply depends on which side of the 
line the final outcome lies. Obviously this procedure 
changes the levels of α and γ of the original test; 
however, the change is slight if the truncation point is 
not too small. As we can see in Figure 1, the null 
hypothesis H0 should be accepted since the final 
observation (observation number 5) lies on the side of 
the line related to the acceptance of H0.  
 

7 – CONCLUSIONS 
 
There are two key limitations to the use of the Arrhenius 
equation: first, at all the temperatures used, linear 
specific rates of change must be obtained. This requires 
that the rate of reaction, regardless of whether it is 
measured or represented, must be constant over the 
period of time at which the aging process is evaluated. 
Now, if the expected rate of reaction should vary over 
the time of the test, then one would not be able to 
identify a specific rate that is assignable to a specific 
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temperature. If the mechanism of reaction at higher or 
lower temperatures should differ, this, too, would alter 
the slope of the curve.  

Second, it is necessary that the energy activation be 
independent of temperature, that is, constant over the 
range of temperatures of interest. It happens that, 
according to Chornet and Roy [11], “the apparent energy 
of activation is not always constant, particularly when 
there is more than one process going on.” Further 
comments on the limitations of the use of the Arrhenius 
equation could be found in Feller [12]. 

In this work we life-tested a new industrial product 
using an accelerated mechanism. We assumed a linear 
acceleration condition. To estimate the parameters of the 
three-parameter Weibull model we used a maximum 
likelihood approach for censored failure data, since the 
life-testing will be terminated at the moment the 
truncation point is reached. The shape parameter 
remained the same while the accelerated scale parameter 
and the accelerated minimum life parameter were 
multiplied by the acceleration factor. The equal shape 
parameter is a necessary mathematical consequence of 
the other two assumptions; that is, assuming a linear 
acceleration model and a three-parameter Weibull 
sampling distribution. If different stress levels yield data 
with very different shape parameters, then either the 
three-parameter Weibull sampling distribution is the 
wrong model for the data or we do not have a linear 
acceleration condition. 

In order to translate test results obtained under 
accelerated conditions to normal using conditions we 
applied some reasoning given by the “Maxwell 
Distribution Law.” To evaluate the accuracy 
(significance) of the three-parameter values estimated 
under normal conditions for the underlying Weibull 
model we employed, to the expected normal failure 
times, a sequential life testing using a truncation 
mechanism developed by De Souza [1]. These expected 
normal failure times were acquired by multiplying the 
nine failure times obtained under accelerated testing 
conditions at 520 K given by Table 2, by the 
accelerating factor AF of 2.6. As we saw in Figure 1, we 
accept the hypothesis that the electronic component life 
when operating at normal use conditions could be 
represented by a three-parameter Weibull model having 
a shape parameter β of 7.8; a scale parameter θ of 1,377 
hours and a minimum life φ of 255 hours. 
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APPENDIX 1: DETERMINING AN INITIAL 
ESTIMATE TO THE MINIMUM LIFE ϕ 
 
The pdf of t1, the first failure time, will be given by: 
 

( )1tf  = n ( )[ ] 1n

1tF1
−

− ( )1tf , or, since  
 
( )1tF  = 1− ( )1tR , we will have: 

 

( )1tf  = n ( )[ ] 1n

1tR
− ( )1tf  

 
For the three-parameter Weibull sampling distribution, 
we will have: 
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The expected value of t1 is given by: 
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td  = 
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As  t → ∞;   U → ∞;   Now,  as t → ϕ;   U → 0.   Then: 
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The expected value of t1 is given by ( )1tE  = 
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estimated by 
 

( )ϕE  = nϕ  = 1t − 
β

θ
1

n

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

β
Γ 11                   (18) 

 
BIOGRAPHIC DATA 
 
Daniel I. De Souza Jr. was born in Três Lagoas, MS in 1944. 
He received his B.S. in Industrial Metallurgical Engineering 
from Fluminense Federal University in Brazil in 1971, an M.S. 
in Operations Research from Florida Institute of Technology, 
USA in 1976 and a Ph.D. in Industrial Engineering from 
Wayne State University, MI, USA in 1987. He has been three 
times at University of Florida, Gainesville, FL, USA, as a 
research scholar, where he taught each time the course 
Industrial Quality Control and wrote several technical articles 
and an Industrial Quality Control workbook. He also did some 
research at Pennsylvania State University, USA. His research 
interests include life testing and Weibull and Inverse Weibull 
reliability estimation. His publications have appeared in IIE 
Transactions, ASQC Transactions, Elsevier Science 
Proceedings, Balkema Proceedings, Comadem Procedings 
(UK), ESREL Proceedings and in several Brazilian journals.

 
 
 
 


