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ABSTRACT 

Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden 
equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to 
dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using 
LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein 
for the condition of a state observer. An example is presented to illustrate the methodology discussed. 
Keywords: State observers, Decay rate, Performance index, Faults detection, LMI. 

 
RESUMO 

Hoje em dia, uma das mais importantes preocupações para muitas empresas é manter o funcionamento dos seus sistemas sem 
interrupções. Devido a isso, novas técnicas de detecção de falhas e localização em sistemas mecânicos sujeitos a cargas 
dinâmicas têm sido desenvolvidas. Este artigo estuda a influência da taxa de decaimento no projeto de observadores de estado 
usando LMI para detecção de falhas em sistemas mecânicos. Essa influência é analisada pelo índice de desempenho proposto por 
Huh e Stein para a condição de um observador de estado. Um exemplo é apresentado para ilustrar a metodologia discutida.  
Palavras-chave: Observador de estado, Taxa de decaimento, Índice de desempenho, Detecção de falhas, LMI. 

 
 

1 – INTRODUCTION 
 

Nowadays, one of the concerns of many companies is to 
maintain the operation of their systems without sudden and 
unplanned stoppages. Because of this, new techniques for 
fault detection and location in mechanical systems 
submitted to dynamic loads have been developed.  

Since the introduction of the state observer by 
Luenberger (1964), many methodologies have been 
proposed for condition monitoring of the machines using 
this technique (GE and FANG, 1987; ELMAS and DE LA 
PARRA, 1996). However, state observers have been used 
mainly to solve control problems and to detect possible 
faults in sensors and instruments (CLARK, 1978; 
WATANABE and HIMMELBLAU, 1982). Moreover, 
much work has been theoretical, with little experimental 
verification (PARK, SHIN and CHUNG, 2001; TRINH 
and ALDEEN, 1998; FRANK and SELIGER, 1991). 

The main focus of the following literature review is 
the detection and location of mechanical system faults. 
Theories which are related to state observers, fault 
detection and state observers using LMI have been taken 
into account. State-of-the-art theories are presented in 
chronological order, with the most significant works being 
selected. 

Luenberger (1964) states that the major part of the 
theory of modern control is based on the assumption that 
the state vector of the system to be controlled is available 
for direct measurement. However, in many practical 
situations, only a few states are available. The author 
shows how the inputs and outputs that are available can be 
used to build an estimate observer, or just an observer. 
This work describes the fundamental theory of the state 
observer. 

Luenberger (1966) proposed that for a linear system, 
its state vector can be approximately reconstructed by 
means of a designed observer. The “n” order state vector 
with “m” independent outputs can be reconstructed, 
building the remaining states from differential conditions. 
He also proved that the design of an observer with “m” 
outputs can be reduced to an “m” order observer as if they 
were simple output subsystems simplifying the complexity 
of the observer. 

Luenberger (1971) used a methodology for 
reconstructing states using state observers and discussed 
topics about identity and reduced order observers. 

Clark (1978) introduced the concept of the robust 
observer, designing state estimation filters for instruments 
default detection, robust enough to withstand the 
uncertainties. The base for the filters was the separation of 
the effects of faults from the uncertainties. 
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Watanabe and Himmelbleau (1982) presented a 
method to detect faults in instruments in nonlinear time 
dependent processes, including uncertainties such as 
modeling errors, parameter ambiguity and input and output 
noise. The main goal of their work was the development of 
state estimator filters with minimum sensitivity to 
uncertainties and maximum sensitivity to instrument faults. 

Ge and Fang (1987) described a novel concept for the 
detection of components under failure by robust 
observation, considering a mathematical model 
corresponding to “m” components coupled by non-
estimated states. They determined the design of devices to 
monitor the operation of “n” components and fault 
detection. In the case of an observable system, some first 
order components can be monitored for the purpose of 
diagnosis without information of possible faults modes. 
Due to the observer robustness, the authors analyzed some 
reactions such as linearization and measurement errors, 
noise presence, numerical errors, etc. 

Huh and Stein (1994) proposed a simple performance 
index to quantify the condition of the state observers. This 
index is the condition number of an eigenvector matrix in 
terms of the L2 norm. 

Choy, Liang and Xu (1995) described a methodology 
based on vibration theory which could be used for the 
detection of faults in systems modeled by finite elements 
using beam elements supported by an elastic foundation. 

Faitakis, Tthapliyal and Kantor (1998) proposed a new 
approach for selecting alarm thresholds in a simple fault 
detection system. Bounds were computed on the 
magnitudes of the minimum detectable fault and the 
maximum non-detectable fault. The use of the norm for 
this calculation results in a linear matrix inequality (LMI) 
problem. An example was presented and a filter design 
was proposed that enhances the ability to distinguish 
between a fault and a disturbance. 

Mohiuddin and Khulief (1999) described, using finite 
elements, the dynamic model of a rotor-bearing system, 
considering the gyroscopic effect and the combination 
between the deformations of torsion and bending. They 
carried out a modal transformation using complex models 
and then, obtained a model of reduced order, which was 
validated numerically. 

Valer (1999) established control systems design using 
state observers. Also, he revised the principal types of 
observers, and used modern techniques of robust control to 
improve the robustness properties of the control system. 

Bara et al. (2001) investigated the design of a 
parameter-dependent state observer that allows the 
estimation of the state of an affine linear parameter-
varying (LPV) system. The observer has the property to be 
parameter-dependent since the corresponding state space 
matrices are scheduled using an interpolation method. 
Moreover, the stability of the estimation error is based on 
the existence of an affine parameter-dependent Lyapunov 
function. The main contribution of this paper is that the 
problem of the observer design and the existence of such a 
Lyapunov function are interpreted as a flexible LMI 
feasibility condition. 

Jiang and Li (2004) focused on the problem of robust 
stabilization for a class of linear systems with uncertain 
parameters and time varying delays in states, using LMI to 
determine the gain of the state observers and controllers. 

Lemos and Melo (2004) presented state observer 
methodology for detection and location of faults in rotary 
systems, taking into account their foundations. According 
to them, state observer methodology is able to reconstruct 
non-measured states or estimated values arising from 
difficult access locations in the system. In fact, those faults 
can be detected without the need for a direct measurement. 

Morais et al. (2005) used the Kalman filter as a 
stochastic state observer for the detection of faults in 
mechanical systems in the presence of aleatoric noises and 
non linear inputs. 

Yaz, Jeong and Yaz (2006) addressed the important 
problem of stochastic resilience of a discrete-time 
Luenberger observer, which is the maintenance of 
convergence and/or performance when the observer is 
erroneously implemented. A common LMI framework was 
presented to address the stochastic resilient design problem 
for various performance criteria in the implementation 
based on the knowledge of an upper bound on the variance 
of the random error in the observer gain. 

Jiang and Tang (2006) proposed a new approach for 
the synchronization of complex dynamical networks based 
on a state observer design. Some conditions for 
synchronization, in the form of an inequality, were 
established based on the Lyapunov stability theory 

Fernandes, Koroishi and Melo (2007) used state 
observers for diagnosis of faults in mechanical systems 
with dynamic vibration absorbers (DVAs). 

Abbaszadeh and Marquez (2008) proposed a new 
approach for the design of robust H  observers for a class 
of Lipchitz nonlinear systems with time-varying 
uncertainties based on LMI. 

Park, Jung and Park (2008) studied the design problem 
of a state estimator for a class of discrete-time neural 
networks. A delay-independent LMI criterion for the 
existence of the estimator is derived by using the 
Lyapunov method. 

Fault detection technique employing state observers 
can reconstruct non measured states or values of difficult 
access locations. In this case, faults can be detected and 
monitored without measurements. The technique consists 
of the development of a system model and comparing the 
estimated output with the measured output. The main aim 
of this work is to study the influence of the decay rate in 
obtaining well-conditioned state observers for fault 
detection in mechanical systems. These observer designs 
are described using LMI. For analysis of this influence, the 
performance index proposed by Huh and Stein (1994) was 
used to obtain a well-conditioned state observer. 
 

2 – STATE OBSERVER FORMULATION 
 
Consider a linear time invariant system described by: 

 
( ) [ ] ( ) [ ] ( ){ } { } { }x t A x t B u t= +&

 
(1a) 
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( ){ } [ ] ( ){ } [ ] ( ){ }tuDtxCty me +=     (1b) 
 
where: 
 nxnRA ∈][  is the dynamical matrix; 

 [ ] nxpRB ∈ is the input matrix; 

 [ ] kxn
me RC ∈ is the measurement matrix; 

 [ ] kxpRD ∈  is the matrix of direct inputs; 
n is the order of the system, p the number of 

inputs{ }( )u t , k the number of outputs{ }( )y t .  
 
One of the advantages of this type of representation is 

that the state vector { }( )x t  contains enough information to 
completely describe the latest behavior of the system, and 
the future behavior is governed by a simple first order 
differential equation. 

A state observer for the system described by Eq. (1) is 
defined by: 

 

{ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }( )( )x t A x t B u t L y t y t= + + −&
 

                                                                            (2a) 
( ){ } [ ] ( ){ }txCty me=    (2b) 

 
where:  
[ ]L  is the observer matrix; 

{ })(ty  is the output of the observer; 

{ })(tx  is the state vector of the observer; 
  
 The estimation error of the state is: 
( ){ } ( ){ } ( ){ }txtxte −=                                   (3) 

 
and the estimation error on the output (residue) is 

given by: 
 

( ){ } ( ){ } ( ){ }tytyt −=ε  (4) 
 

2.1 State Observer Methodology 
 

Many control systems are based on the supposition that the 
full state vector is available for direct measurement, but in 
practice, all the variables are not always available, and the 
variables that are unavailable for direct measurement must 
be estimated. 

Therefore, control systems using state observers can 
reconstruct the non-measured states or estimate the values 
of difficult access points in the system. However, the 
necessary condition for this reconstruction is that all the 
states should be observable (LUENBERGER, 1964; 
D’AZZO and HOUPIS, 1988). 

Figure (1) shows a logical diagram for faults detection 
and location in mechanical systems using the state 
observer technique. 

 

 
Figure 1 – Observation System. 
 
In the system shown in Figure (1), when a certain 

component begins to fail, the state observer is capable of 
quickly detecting the influence of this fault, because the 
observer is quite sensitive to any incipient irregularity that 
appears in the system. The state observer is a group of 
ordinary first-order differential equations that represents 
the same response as that of the real system, when it is 
working property. Therefore, the idea is to use this effect 
for the state observer to detect and locate possible faults in 
a mechanical system.  

In this set of observers, the role of the global observer 
is to verify if the system is working properly, without any 
indications of faults, because this observer uses the same 
system matrix of the mechanical system analysis. Thus, the 
global observer can detect a possible system fault or 
irregularity in the analysis if the system’s response is not 
coincident with the global observer's response. 

If a possible fault is detected, the next step would be to 
locate such fault, and that is why robust observers are used. 
The robust observers are projected by partly removing the 
parameters subject to faults in their dynamic matrix.  

Therefore, the robust observer response that 
approaches the response of the faulty system will be the 
observer responsible for the location of this possible 
system fault. 

There are still possibilities for one or more parameters 
to fail at the same time. In this case, the solution would be 
to design robust state observers to all parameters subject to 
failures. 

Finally, it is the Unit of Logical Decision (ULD) that 
collects and analyzes the difference between the real 
system and the designed state observers, in order to detect 
and locate faults or irregularities in the system. This unit 
also analyzes the progression of possible system faults, and 
activates, when necessary, an alarm system. This alarm 
system can be ready to be activated when a determined 
variation occurs in a certain parameter. 

 
2.2 Performance Index 

 
According to Huh and Stein (1994) an ill-conditioned state 
observer means that the transient performance and 
permanent regime of the observer can become more 
sensitive at ill conditioning factors such as an unknown 
initial estimation, unknown change in the monitoring 
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machine and errors in the instrumentation and sensors 
(Huh and Stein, 1994). 

An ill-conditioned state observer works well when the 
conditions are exactly equal as those assumed initially (for 
example without bias errors, and perfect model), but works 
more precariously when these conditions do not occur. 
Huh and Stein (1995), Huh, Jung and Hong (2003) 
quantitatively investigated the transient and the stationary 
state input of the observer by considering the error due to 
ill conditioning factors. 

Huh and Stein (1994) proposed a simple performance 
index to quantify the condition of the state observers. This 
index is the condition number of eigenvector’s matrix in 
terms of the L2 norm. 
 

2

1
22 )( −= PPPk

 
(5) 

 
where P is the eigenvector matrix of state observer. 

 
3 – LINEAR MATRIX INEQUALITIES 

 
The history of LMI in the analysis of dynamical systems 
goes back more than 100 years to 1890, when Aleksandr 
Mikhailovich Lyapunov presented his work, introducing 
the Lyapunov Theory (Boyd et al., 1994). He showed that 
the differential equation: 

 
)()( tAxtx =&  (6) 

 
is stable (all the trajectories converge to zero), if and only 
if there is a positive-definite matrix P such that: 

 
0>+ PAPAT

 (7) 
 
The inequality in Eq. (7) is known as the Lyapunov 

inequality. 
Currently, LMI have been the object of study by many 

researchers: control of continuous and discrete systems in 
time (GHAOUI and NICULESCU, 2000), optimal control 
and robust control (VAN ANTWERP, and BRAATZ, 
2000; SILVA and LOPES, 2004), model reductions 
(Assunção, 2000), control of nonlinear systems, theory of 
robust filters (Palhares, 1998), system identification, 
control with variable structures (TEIXEIRA, 
PIETROBOM and ASSUNÇÃO, 2000), control using 
Fuzzy model (TEIXEIRA, LORDELO and ASSUNÇÃO, 
2000), detection, location and quantification of faults 
(ABDALLA, ZIMMERMAN and GRIGORIADIS, 1999; 
ABDALLA, ZIMMERMAN and GRIGORIADIS, 2000; 
WANG and LAM, 2007).  

 
3.1 Linear Differential Equation 
 
A Linear Differential Equation (LDI) is defined by (Boyd 
et al., 1994): 

 

0)0(, xxxx =Ω∈&  (8) 
 

where Ω  is a subset of  . The LDI given by Eq. (8) 
can be interpreted as a set of linear time-varying systems. 
Every trajectory of the LDI satisfies: 

 

0( ) ,     (0)x A t x x x= =&  (9) 
 

for some , for any , the solution 
of Eq. (9) is a trajectory of the LDI given by Eq. (8). In 
control theory, the LDI, given by Eq. (8) could be 
described as an “uncertain time-varying linear system”, 
with the set  describing the “uncertainty” in the matrix 

( )A t . 
A generalization of LDI can be obtained for linear 

systems with inputs and outputs (Boyd et al., 1994). 
Consider the following system:  

 

0( ) ( ) ( ) ,     (0)
( ) ( ) ( )

u w

z zu zw

x A t x B t u B t w x x
z C t x B t u B t w
= + + =
= + +

&
(10) 

 
where , , , 

.  x is the state, u is the input, w is the 
disturbance and z is the output. 

 The matrix in Eq. (10) satisfies: 
 

Ω∈⎥
⎦

⎤
⎢
⎣

⎡
)()()(
)()()(
tBtBtC
tBtBtA

zwzuz

wu  (11) 

 
for all  and . In some 
applications one or more integers  can be 
zeros, which means the corresponding variable is not used. 

 
3.2 Decay Rate 

 
The decay rate, known as the largest Lyapunov exponent, 
is defined to be the largest α , α>0, such that (Boyd et al., 
1994): 

 
0)(lim =

∞→
txe t

t

α  (12) 

 
for all trajectories x. For stability to occur, a positive decay 
is necessary. 

A quadratic Lyapunov function can be used to 
establish a lower bound for the decay rate of the LDI, 
given by Eq. (10). If: 

 

)(2)( xV
dt

xdV α−≤  (13) 

 
for every trajectory, then: 
 

texVtxV α−≤ ))0(())((  (14) 
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which means that for every trajectory the decay rate of the 
LDI (Eq. (10)) is at least α. 

The condition given by Eq. (13) is: 
 

02 ≤++ PPAPAT α  (15) 
The resolution of Eq. (15) consists in solving the 

following generalized eigenvalue problem  in P and α: 
 
minimize α  

subject to 
0

02
>

≤++
P

PPAPAT α
 (16)  

 
The optimal value of the GEPV given by Eq. (16) is 

the decay rate of SLIT.  
The decay rate is a parameter used in the control 

theory, which is one of the constraints in the design. For 
example, Silva and Lopes (2004) used the decay rate as a 
constraint of design in his work, where he presented a 
methodology for active vibration control with robust 
requirements. 

 
3.3 State Observer by LMI 

 
In this case, the study of stability of the state observer is 
attained by using the following LMI:  

 

0
0)()(

>
<−+−

P
PLCALCAP T

meme  (17) 

 
where P=PT. It is necessary to perform some 
manipulations of Eq. (17). After these manipulations one 
can get:  

 
 

0<−+− PLCPAPLCPA TT
me

T
me  

 (18) 

 
Multiplying both sides of Eq. (19) by P-1, the 

following is obtained: 

 01111 <−+− −−−− TT
me

T
me LCPAPPLCAP  

  (19) 
 
Letting X=P-1 and G=P-1L=XL, one arrives at: 
 

0
0

>
<−−+

X
GCGCXAAX TT

meme
T

 (20) 

 
where X=XT. Note that P-1 exists, because P>0. In other 
words every eigenvalue of P is different from zero. 

Considering the decay rate: 
 

0
02

>
<+−−+

X
XGCGCXAAX TT

meme
T α (21)

 
 

 
The gain of state observer is given by: 
 

GXL 1−=  (22) 
 
 

4 – EXPERIMENTAL RESULTS 
 

To verify the effectiveness of the methodology of fault 
detection and location in the mechanical system, 
considering the influence of the decay rate, a mechanical 
system of 3 degree of freedom was used. This is composed 
by 3 platforms. Figure (2) illustrates the system. 

 

 
Figure 2 – Mechanical System of 3 dof (degrees of freedom). 

 
The system presented by Figure (2) is composed of: 
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 - 3 aluminum plates of dimensions (0.350x 
0.350x 0.010)m, (0.255 x 0.255x 0.010)m and (0.158 x 
0.158 x 0.010)m; 
 - 28 stainless steel metallic blades; 
 - Inferior board: 8 blades (0.420 x 0.250 x 
0.001)m; 
 - Intermediary board: 10 blades of (0.678 x 0.250 
x 0.001)m; 
 - Higher board: 10 blades of (0.682 x 0.250 x 
0.001)m; 
 - 10 rubber pastilles of 0.006m thickness in the 
dimensions of the blades; 
 - Screws, steel plates for lateral and base support.  
  
 The following equipments were used: 
 - Conditioning of signals; 
 - Data Acquisition system DaqBook/DaqBoard 
with Dasylab software; 
 - Functions generator of (electronic digital 
laboratory) POL-32; 
 - Signal Amplifier; 
 - Electromagnetic exciting; 
 - Accelerometers ICP(99.0 mV/g); 
 - Accelerometers ICP(97.8 mV/g); 
 - Power Transducer (31.6 pC/N); 
 - Computer link cables. 
 

For data acquisition the acquisition data 
DaqBook/DaqBoard (16 channels) with Dasylab 
software was used. 
 

A model of the system shown in Figure (2) is given 
in Figure (3). 
 

 
Figure 3 – Model of the mechanical system. 

 
The numerical values of the physics parameters of 

the vibration table without faults are shown in Table (1). 
 
 
 

Table 1 – Physics parameters of the vibration table. 
Mass (kg) Stiffness (N/m) Damper (N.s/m) 
m1 = 6,64 k1 = 100065,90 c1 = 18,76 
m2 = 4,62 k2 = 84144,18 c2 = 12,80 
m3 = 1,89 k3 = 125509,60 c3 = 14,17 

 
The faults are simulated by removing some blades. 

The removal of one or two blades of the board m1 
represents a damage of 12.5% and 25% of stiffness of k1. 
For the boards m2 and m3, the removal of one or two 
blades represents damage of 10% and 20% of stiffness 
of k2 and k3.  

Firstly, the relation between the performance index 
and the decay rate was studied. For a better view of the 
results, in Figures (4) and (5), the inverse of the 
performance index was plotted, given that, a well-
conditioned observer shows small values of performance 
index. Therefore, when the inverse of the performance 
index was plotted, the peaks of the graphic represent the 
smallest performance index. Figure (4) shows plots of 
the global and robust observers. 

In spite of knowing that the higher the decay rate is, 
the lower the estimation time of the state observers will 
be, one can observe that a higher value of decay rate 
results in an ill-conditioned observer. 

Figure (4) show that the smallest performance 
indices occur for lower values of decay rate. As can be 
seen in Figure (4), the smallest performance indices 
occur for decay rates with values lower than 50. 
Accordingly, Figure (5), shows the inverse of the 
performance indexes for the decay rate with values 
lower than 50. 

The results, illustrated by Figure (5), reveal the 
performance index lower values occur for values of 
decay rates smaller than 10. Correspondingly, Table (2) 
shows the performance index for decay rate values 
between 4 and 9. 

Examining the results in Table (2), one can see that 
the lower performance index for each state observer 
occurred for different values of decay rate. Thus, for the 
global observer, the decay rate is 6. And for the robust 
observers 87.5% k1 (It means that the faults is 12.5 of 
k1), 90% k2 (It means that the faults is 10 % of k2), 90% 
k3, 75% k1, 80% k2 and 80% k3, the decay rates are, 
respectively 6, 8, 8, 4, 7 and 9.Using these decay rates, 
they were developed in accordance with the state 
observer, and used for fault detection and location in 3 
mechanical systems. 

The fault considered in the system was simulated by 
removing a blade from table 3, which represents a 
damage of 10% of stiffness k3. 

Figure (6) shows the response of the real system 
without fault and the global observer.  
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Figure 4 – Inverse of the performance index versus decay rate. 

 
 
 

 
Figure 5 – Inverse of the performance index versus 
decay rate for the global and robust observers. 
 

In Figure (5) one can observe that the global observer is 
compatible with the system, since the responses were 
coincident. This demonstrated the validity of the global 
observer 

Figure (6) represents the response of the real system 
with fault and the global observer. In this graph, the 
presence of a fault in the system can be observed, since 
the graphs of the responses were not coincident. From 
the graph of the defective real system, whose parameter 
to be determined was modified to result in such fault, 
constructing a robust observer for each parameter is 
subject to failing. 

Analyzing the others graphics of Figures (6) and (7), 
one can see that only displacement of the mass m1 of the 
real system with fault and the robust observer 90% k3 are 
equal. Therefore, the fault is detected and located. 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2 – Performance index of state observers for decay rate values between 4 and 9. 
Decay Rate 4 5 6 7 8 9 

Global Observer 1.4549e+05 1.4099e+05 1.3894e+05 1.4046e+05 1.4178e+05 1.4552e+05 
Rob. 87.5% k1 1.7019e+05 1.4652e+05 1.3308e+05 1.3605e+05 1.4001e+05 1.4541e+05 
Rob. 90% k2 1.6229e+05 1.4039e+05 1.5279e+05 1.9395e+05 1.3246e+05 1.4063e+05 
Rob. 90% k3 1.5538e+05 1.3718e+05 1.4853e+05 1.4010e+05 1.3212e+05 1.3681e+05 
Rob. 75% k1 1.3335e+05 1.3718e+05 1.3518e+05 1.3638e+05 1.4532e+05 1.4922e+05 
Rob. 80% k2 1.5941e+05 1.4120e+05 4.1278e+05 1.2974e+05 1.3182e+05 1.3429e+05 
Rob. 80% k3 1.4809e+05 1.3399e+05 1.8575e+05 1.3739e+05 2.8891e+05 1.3003e+05 
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Figure 6 – Displacement of mass 1 of the real system and of the state observer. 
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Figure 7 – Displacement of mass 1 of the real system and of the state observer. 
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Table 3 presents the difference of RMS values of the 

curves displacement of the real system with and without 
imperfection and of the global robust observers and of the 
specific parameters. 

 
Table 3 – RMS difference between real system and state 

observer 
Bank of State 
Observers 

Real System 
without Fault 

Real System 
with Fault 

Global Observer 6.5138e-018 2.4026e-005 
Robust Ob. 
87,5% K1 

2.7837e-005 2.0133e-005 

Robust Ob. 90% 
K2 4.0963e-005 1.1349e-005 

Robust Ob. 90% 
K3 2.9354e-005 9.6919e-019 

Robust Ob. 75% 
K1 6.0520e-005 4.7222e-005 

Robust Ob. 80% 
K2 6.6381e-005 4.4610e-005 

Robust Ob. 80% 
K3 6.3372e-005 3.5410e-005 

 
Analyzing the results of Table 2, the validity of the 

method is observed as the RMS difference between x1 real 
system without fault and x1 of the global observer was 
extremely small, demonstrating the validity of the result 
for the global observer. While that for the system with 
fault, it is observed that the smallest difference of RMS 
values occurred for the robust observer 90% k3. Thus the 
fault in the system was determined, since a loss of 90% k3 
was considered in order to simulate the fault in the system. 

 
5 – CONCLUSIONS 

From the results obtained, one can see the influence of the 
decay rate in the design of state observers by LMI. It was 
thought that the best results would be obtained with a 
higher decay rate, but the results showed that when a 
higher decay rate was used, an ill-conditioned state 
observer was obtained. Therefore, a methodology was 
developed to obtain a well-conditioned state observer by 
LMI. This methodology used the decay rate and the 
performance index. The first was used to improve the 
estimation time, and the second one was used to analyze 
the conditioned state observer. 

With the well-conditioned state observers obtained, a 
methodology for fault detection could be developed. The 
technique of fault detection using state observers consists 
in the capacity of state observer to reconstruct the states 
not measured or values proceeding from points of difficult 
access in the system. The need to choose the parameters 
subject to fault or their percentile loses for the robust 
observer project was verified. 

There is a restriction in the developed methodology 
that is the system should be observable with the number of 
measurements carried out. If this does not occur, other 
measurements must be conducted until the system becomes 
observable. A system considered was a three degree-of-

freedom mass-spring-damper system. Damage of 10% in 
one of the stiffness elements was detected, validating the 
methodology developed. This methodology was used in 
continuous systems, it was applied in real systems with 
good results and they will be presented in future. The only 
difficulty to use this technique is the observed and the 
representative mathematical model of the system. 
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