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ABSTRACT  

Micro-dams are efficient in controlling erosion and increases the rate of water infiltration into 
the soil. The study aims to predict potential areas for micro-dam allocation. We prepared the 
map of potential areas for micro-dam from the multi-criteria analysis (AHP) using topographic 
data and land use. Furthermore, we developed a methodological framework with Random 
Forest (RF) algorithm to predict potential micro-dam areas from points extracted from the map 
by AHP and aided by the insertion of covariates; and we also apply the overlap of the two 
maps (AHP + RF). The AHP method overestimates high potential areas in zones without 
potential. The RF model used seven topographic covariates, and they are related to 
hydrological flows. The performance of R2 in RF was 0.43, statically satisfactory, but spatially 
underestimated the very low and very high potential classes. The superposition of the low 
potential class of the AHP method on the RF map favored a 99% reduction of very high 
potential areas in zones not suitable for micro-dam allocation. Therefore, the combination of 
the AHP and ML method generates more consistent spatial results 

Keywords: Soil erosion control. Spatial prediction. Random Forest. 

 

ANÁLISE MULTICRITÉRIO E ALGORITMO DE APRENDIZAGEM DE MÁQUINA PARA 
DEFINIÇÃO DE ÁREAS DE BARRAGINHAS, SUDESTE DO BRASIL 

 

RESUMO  

As barraginhas são eficientes no controle da erosão e aumentam a taxa de infiltração de água 
no solo. Este estudo visa prever áreas potenciais para alocação de barraginhas. Preparamos 
o mapa de áreas potenciais para alocação de barraginhas a partir da análise multicritério 
(AHP) usando dados topográficos e uso do solo. Além disso, desenvolvemos uma estrutura 
metodológica com algoritmo Random Forest (RF) para prever áreas potenciais de 
barraginhas a partir de pontos extraídos do mapa gerado por AHP e auxiliados pela inserção 
de covariáveis; e também aplicamos a sobreposição dos dois mapas (AHP + RF). O método 
AHP superestima as áreas de alto potencial em zonas sem potencialidade. O modelo de RF 
usou sete covariáveis topográficas, e elas estão relacionadas aos fluxos hidrológicos. O 
desempenho de R2 no RF foi de 0,43, estaticamente satisfatório, mas espacialmente 
subestimou as classes de potencial muito baixo e muito alto. A superposição da classe de 
baixo potencial do método AHP no mapa de RF favoreceu uma redução de 99% das áreas 
de muito alto potencial em zonas não adequadas para alocação de micro-barragens. 
Portanto, a combinação do método AHP e ML gera resultados espaciais mais consistentes 

Palavras-chave: Controle de erosão do solo. Predição espacial. Random Forest. 
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INTRODUCTION  

Soil erosion is a significant cause of soil degradation, affects soil organic matter and fertility levels, 
contaminates water bodies with transported sediments and agrochemicals, and increases the risk of 
flooding (GARCÍA-RUIZ et al., 2015; LABRIÈRE et al., 2015). In the world, only soil erosion is 
responsible for a loss of 106 ha/year of agricultural land (PIMENTEL, 2006). The main factors that 
promote erosion are the inappropriate use of the land and wrong soil management practices 
(ASSESSMENT, 2005; WUEPPER et al., 2020). Recent studies show that developing countries, 
especially in tropical regions, historically coexist with higher rates of soil loss due to erosion (WUEPPER 
et al., 2020). In addition to the history of land use, the natural characteristics of tropical regions have a 
predisposition to increase soil loss. In Brazil, the combination of high rainfall and sloping relief increases 
the kinetic energy of surface waters (OLIVEIRA et al., 2013). Notably, the relationship of these factors 
is very typical in the morphoclimatic domain known as “Mares de Morro”, which are a sequence of wavy 
landforms with a high slope, occurring in a vast area of the Brazilian territory (AB'SÁBER, 1970). This 
predisposition to erosion affects even soils with higher physical stability, such as oxisols, with erosion 
rates above 34% of the erosion tolerance limit (AYER et al., 2015; SAKUNO et al., 2020). Another 
characteristic in sloping areas is the formation of Inceptisols, with a higher silt content, making the area 
more susceptible to erosion (FU et al., 2011). Therefore, knowledge of environmental characteristics 
and adequacy of soil erosion control practices are essential in land use planning for these areas. 

In the literature, soil erosion studies have direction towards two focuses in general: (i) measure and 
identify erosion factors, for example, soil loss studies (DIDONÉ et al., 2015; ANACHE et al., 2017). (ii) 
erosion control techniques and practices, for example, slope stabilization (HOLANDA et al., 2008), no-
till system (DEUSCHLE et al., 2019), gullies control (VALENTIN et al., 2005),  and construction of micro-
dam (BARROS E RIBEIRO, 2009). Specifically, the micro-dam are small basins excavated in the ground, 
with an average diameter of 16 m and an average depth of 1.8 m, with the function of capturing water 
from the runoff, increasing soil infiltration and erosion control (BARROS E RIBEIRO, 2009; ARAGÃO et 
al., 2019; HIPÓLITO et al., 2019; XU et al., 2019; MESHRAM et al., 2020). The micro-dam also plays a 
socio-environmental role, as it favors infiltration to groundwater that feeds rivers, increasing the 
availability of water for urban and agricultural supply. For example, in Tunisia, especially during the dry 
years, micro-dam provides an additional amount of water for crops (SCHIETTECATTE et al., 2005). In 
the case of Brazil, the construction of micro-dam becomes relevant because of the possibility of 
mitigating the effects of soil erosion, so common in rural areas, especially small rural properties, where 
lower-income inhibits more expensive erosion control techniques (DIDONÉ et al., 2015). In addition to 
the factor, it contributes to attenuating the water crisis effects that routinely affect regions in southeastern 
Brazil, either due to changes in the precipitation regime and/or related to the increase in unsustainable 
rural and urban land-use practices (NOBRE et al., 2016).  

The allocation of areas with potential for the construction of micro-dam must consider several restrictions 
and potential factors. Among some restrictive factors, there are perennial watercourses, permanent 
protection areas (PPA), inside gullies, narrow valleys, and slope greater than 12% (BARROS E 

RIBEIRO, 2009). The support for analyzing these factors is to combine data analysis of the Digital 
Elevation Model (DEM), land use with geoprocessing tools (ARAGÃO et al., 2019; HIPÓLITO et al., 
2019). Notably, DEM provides several new data (topographic covariates) (GALLANT E AUSTIN, 2015), 
and some are highly correlated to hydrological flow, which is a factor closely linked to micro-dam 
dynamics. However, analyzing together the various topographic factors and land use requires more 
robust statistical and geostatistical methods. The effort in this regard is to consider the multicriteria 
analysis and hydrological data (ARAGÃO et al., 2019; HIPÓLITO et al., 2019). The advantage of multi-
criteria analysis is due to the process that transforms and combines geographic data with defined 
weights to obtain new information (SICAT et al., 2005; CHEN et al., 2010). 

Also, in the field of robust statistical analysis applied to environmental studies, there are Machine 
Learning Algorithms (ML), which involve a wide range of models used to discover patterns in data and 
make predictions (WITTEN et al., 2016). Several studies confirm the efficiency of ML in a vast field of 
application in spatial prediction, involving research areas of climate, geology, soil, vegetation, among 
others (AMIRI et al., 2019; GOMES et al., 2019; MOHAMMADY et al., 2019; SOUZA et al., 2020). In 
general, the ML allows selecting significant covariates from a database and provides statistical data with 
error levels and prediction accuracy (KUHN E JOHNSON, 2013). Although ML is efficient, however, there 
are still no studies predicting micro-dam areas. This study aimed to determine potential areas for micro-
dam and demonstrate that the association of the multi-criteria analysis, ML, and covariate dataset 
provides a more accurate estimate of potential sites for micro-dam allocation. 
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MATERIALS E METHODS 

Study area 

The study area is the municipality of Visconde do Rio Branco (Southeastern Brazil), between the 
coordinates -20° 55’ 58” to -21° 6’ 43” W and -42° 56’ 51” S to 42° 44’ 53” S (Figure 1). It presents the 
Cwa climate in the Köppen classification, with annual precipitation of 1100 mm, concentrated in October 
to March. The region is part of the Mantiqueira Complex, whit orthognathic amphibole-biotite, and 
pegmatites rocks (PINTO et al., 2003). The relief is part of the Mares de Morros domain (AB'SÁBER, 
1970), with a sequence of hills forming landscapes with wavy to mountainous landforms, whose altitudes 
vary between 467 and 897 meters. The predominant soils are Ultisols and Oxisols, and on most slopes, 
there is a predominance of Inceptisols. The main land use is pasture, generally degraded, representing 
80.69%, followed by exposed soil (10.98%), forest/eucalyptus (5.84%), and civil constructions (2.48%).  

 

Figure 1. Visconde de Rio Branco (MG): Location of the study area with a digital elevation model. 

 

 

Methodological procedures 

Multicriteria analysis 

To determine potential areas for micro-dam, we used the data of slope and accumulated flow model 
derived from DEM Alos-Palsar (12.5 m of spatial resolution). We also use the land use map prepared 
by the Sentinel-2 satellite image (10 m resolution) by the Maxver algorithm. 

In the next step, we classify the intervals of the covariates according to the degree of potentiality for 
micro-dam construction. We assign zero value to classes without potential, for example, forest areas 
and perennial watercourses, areas with an accumulated flow higher than 500 pixels of contribution, and 
slopes greater than 15% (BARROS E RIBEIRO, 2009; ARAGÃO et al., 2019). Weights vary in four 
classes (0, 1, 5, 10), indicating less for higher potential. We use the Analytic Hierarchy Process (AHP) 
method to grant variable weights. The technique analyzes the variables by a correlation matrix (decision 
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matrix) (SAATY, 2013; SAATY E VARGAS, 2013) and provides a total contribution to the set of variables 
involved. In defining the weights, it is necessary to divide the value of each variable by the total 
contribution amount. As a final weight, we used the average between the columns of the variables (Table 
1). 

We evaluated the consistency of the weights by the consistency ratio (RC), which indicates whether the 
weights are satisfactory by determining the RC must be less than 0.10 (SAATY, 1986). Subsequently, 
we applied equation 1 to determine the potential of the micro-dam. 

 

MDP = 0,63 x AF + 0,26 x S + 0,11 x US                                                                                  Equation 1 

Where: MDP- Micro-dams potential, AF- Accumulated flow, S- slope, LS- land use. 

 

 

 

Table 1. Top: Decision matrix of variables to analyze the total contribution of variables. Bottom: individual 
variable weights and average weight. 

 Contribution matrix of variables 

 Accumulated flow Slope Land use 

Accumulated flow 1 3 5 

Slope 1/3 1 3 

Land use 1/5 1/3 1 

Total 1.53 4.33 9 

 Variable weights 

 Accumulated flow Slope Land use Average 

Accumulated flow 0.65 0.69 0.56 0.63 

Slope 0.22 0.23 0.33 0.26 

Land use 0.13 0.08 0.11 0.11 

 

Machine Learning Algorithm 

The stage of prediction of potential areas for micro-dam allocation involved: (i) definition of sampling 
points (variable); (ii) creation of a bank of covariates; (iii) selection of significant covariates; (iv) training, 
validation with Random Forest algorithm for map prediction, with steps described below. 

From the micro-dam map by the AHP method, we determined a grid of 2000 points and extracted values 
to compose the input data for prediction (variable). As for the covariates, we used DEM Alos Palsar 12.5 
m radar images in the RSAGA software to extract covariates (BRENNING, 2008; SENA et al., 2020; 
SOUZA et al., 2020), totaling 34 topographic covariates (Table 2). In the following steps, we apply 
covariates selection criteria to assist in constructing the model, since the excessive number does not 
provide fluidity to computational processing (KUHN E JOHNSON, 2013). We analyzed the correlation 
factor between the covariates by the find correlation function, discarding those with high correlation 
(Pearson >95%). The purpose is to discard covariates that contribute similarly to the identification of 
potential areas for micro-dam. 

Subsequently, we used the Random Forest-Recursive Feature Elimination method (RF-RFE), to select 
the subsets of covariates that best explain prediction (RF-RFE) (GRANITTO et al., 2006; KUHN E 

JOHNSON, 2013).The RF-RFE successively removes the least relevant covariates to find the best 
performing set, using the value of R2 as a reference. However, high values of R2 are almost always the 
result of using a more significant number of covariates; this makes the prediction less fluid and can 
cause difficulties in applying it in other areas (MALCZEWSKI, 2006). Therefore, we configure the RF-
RFE to select a set of covariates allowing an R-squared (R2) 3% less than the largest R2 found. This 
step of the RF-RFE was based on a cross-validation with 10 folds and 5 repetitions (KUHN E JOHNSON, 
2013; GOMES et al., 2019). 
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Using the ideal subset of covariates defined by the RF-RFE from the previous step, we configured the 
separation of these data in 75% for training and 25% for validation (holdout-test). We used the Random 
Forest (RF) algorithm, which is capable of performing classification and regression (BREIMAN, 2001), 
with wide use in spatial prediction, generating good results (PAL, 2005; JUNIOR et al., 2016; GOMES 
et al., 2019; MOHAMMADY et al., 2019; SOUZA et al., 2020). This entire process was repeated 100 
times, randomly changing the samples present in the training and validation at each repetition. The 
advantage of this excessive repetition is to avoid potentially biased predictions, as it evaluates with 
different sample groups (GRANITTO et al., 2006; KUHN E JOHNSON, 2013; SOUZA et al., 2018; 
GOMES et al., 2019). Besides, at each step (100 times), this methodological framework provides 
statistical data indicating the accuracy and error of the prediction: R-square (R2), root-mean-square error 
(RMSE), Mean Absolute Error (MAE)  (KUHN E JOHNSON, 2013; GOMES et al., 2019).  

The difference between R2 values in the validation training steps was analyzed to understand if the 
model trains and validates satisfactorily. Discrepant values of R2 denote low modeling efficiency 
(overfitting). This step assumes that the training dataset is used to build (or train) the model, while the 
validation dataset is used to estimate the performance of the trained predictive model. ML algorithms 
do not know the test dataset (validation) in the training stage, so the model trained on the test dataset 
is considered the model's performance estimates (KUHN E JOHNSON, 2013; CHUNG E LEE, 2019; 
SOUZA et al., 2020). Thus, when the predictive model well predicts the outcome in the training stage 
but not in the validation stage, this predictive model is considered overestimated in the training dataset. 

Table 2. Group of predictive covariates from the Alos-Palsar image. 
Terrain attributes Description Terrain attributes Description 

Aspect Slope orientation Plan curvature 
Described as the curvature of the 
hypothetical contour line passing 
through a specific cell 

Convergence index 
Convergence/divergence 
index concerning runoff 

Profile curvature 
Describes surface curvature in the 
direction of the steepest incline 

Cross sectional 
curvature 

Measures the curvature 
perpendicular to the 
downslope direction 

Real surface área The actual calculation of cell área 

Digital elevation 
model 

Represents the elevation in 
each model cell 

Slope Represents local angular slope 

Flow line curvature 
Represents the projection of 

a gradient line to a 
horizontal plane 

Slope height 
The vertical distance between 
base and ridge of slope 

General curvature 
The combination of both 

plan and profile curvatures 
Standardized height 

The vertical distance between 
base and the standardized slope 
index 

Gradient 
Corresponds to the 

hydrological gradient 
Surface specific 
points 

Indicates differences between 
specific surface shift points 

Hill Demonstrates the hills 
Tangential 
curvature 

Measured in the normal plane in a 
direction perpendicular to the 
gradient 

Hill Index 

Simulation of diffusive 
hillslope evolution using an 

Alternating-Direction-Implicit 
(ADI) method. 

Terrain ruggedness 
index 

Quantitative index of topography 
heterogeneity 

Longitudinal 
curvature 

Measures the curvature in 
the downslope direction 

Terrain surface 
convexity 

The ratio of the number of cells 
that have positive curvature to the 
number of all valid cells within a 
specified search radius 

Mass balance index 
Balance index between 
erosion and deposition 

Terrain surface 
texture 

Splits surface texture into 8, 12, or 
16 classes 

Maximal curvature 
Maximum curvature in local 

normal section 
Topographic 
position index 

Difference between a point 
elevation with surrounding 
elevation 

Mid-slope position 
Represents the distance 
from the top to the valley, 

ranging from 0 to 1 

Topographic 
wetness index 

Describes the tendency of each 
cell to accumulate water as a 
function of relief 

Minimal curvature 
Minimum curvature for local 

normal section 
Total curvature 

General measure of surface 
curvature 

Multiresolution index 
of ridge top flatness 

Indicates flat positions in 
high altitude áreas 

Valey Index  
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Multiresolution index 
of valley bottom 
flatness 

Indicates flat surfaces at 
bottom of valley 

Valley depth 
Calculation of vertical distance at 
drainage base level 

Normalized height 
Vertical distance between 

base and ridge of 
normalized slope 

Vector ruggedness 
measure 

Measures the variation in terrain 
roughness 

 

Overlay maps (AHP+RF) and analysis of micro-dam areas 

This step included overlaying maps of potential areas for micro-dam generated by AHP and RF. We 
selected the low potentiality class for micro-dam allocation and applied the overlay on the RF map. This 
criterion is an alternative for the normalization of values practiced by the RF algorithm, which tends to 
eliminate extreme values. In addition, this procedure makes it possible to generate a more restrictive 
map to construct a micro-dam, making the map more environmentally compatible, this new map called 
AHP+RF. 
In evaluating the efficiency of the three models (AHP, RF, and AHP+RF), we analyzed the distribution 
of potentiality classes over-restrictive zones to APP allocation. The input data were areas of slope 
greater than 12% extracted from the DEM. In addition, we consider Permanent Preservation Areas as 
restrictive zones, including watercourses, hilltops, and humid areas. These data are made available by 
the Geomorphology laboratory at UFV (GEOMORFOLOGIA-UFV, 2019). 
 

RESULTS AND DISCUSSION 

Covariates selection 

Analyzing the statistical performance of prediction with Random Forest algorithm associated with 
Recursive Feature Elimination (RF-RFE), as it involves a more extensive set of steps, the results 
indicated that the accuracy and error metrics are negatively affected with an excess of covariates (Figure 
2). In addition, the findcorrelation function previously discarded several high-correlation covariates. 
Therefore, using a smaller set of covariates generates more fluid modeling without overestimated 
predictions and meets the principle of parsimony (GRANITTO et al., 2006; KUHN E JOHNSON, 2013; 
SOUZA et al., 2018; GOMES et al., 2019). Therefore, the Random Forest (RF) selected seven 
covariates to determine potential areas for micro-dam and generated an R2 of 0.43 in training and 
validation (Table 3; Table 4). Although there are no specific studies with the prediction of micro-dam by 
ML, R2 values are consistent with other prediction studies (YESILNACAR E TOPAL, 2005; SOUZA et 
al., 2018; GOMES et al., 2019; ASSIS et al., 2021). Generally, the lower performance is due to the lack 
of covariates that can better explain the distribution of a variable (KUHN E JOHNSON, 2013). Therefore, 
for many spatial prediction studies by ML, R2 values between 0.4 to 0.6 are common and considered a 
satisfactory performance. 

Although the value of R2 is not high, in prediction studies comparing the training and validation accuracy 
metrics is a way to assess the modeling performance (KUHN E JOHNSON, 2013). Considering the 
behavior of precision and error metrics (R2, RMSE, and MAE), there are similarities in the values in 
training (cross-validation) and validation (holdout-test), showing a low overfitting statistical effect (Table 
3). In general, ML predictions are subject to overfitting, deteriorating prediction accuracy, and this 
problem occurs when data are insufficient concerning the number of model parameters, generating 
differences between training and validation accuracy values (CHUNG E LEE, 2019). However, low 
overfitting is an advantage of the RF model, because as the number of trees increases, the 
generalization error reduces (BREIMAN, 2001; PAL, 2005). 

Table 3. Performance of the Random Forest model during training and validation (100 times). 

 R2 RMSE MAE 

Value S. dev CV Value S. dev CV Value S. dev CV 

Training (cross-validation) 

0.43 0.02 3.74 2.01 0.03 1.41 1.53 0.03 1.84 

Validation (holdout-test) 

0.43 0.04 9.05 2.00 0.07 3.44 1.51 0.07 3.46 
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R2 – R square, RMSE - Root-mean-square error; MAE - Mean absolute error; CV – Coefficient of 
variation, S. dev – Standard deviation. 
 
 

Figure 2. Performance of the Random Forest model in the covariate selection process, using 
Recursive Feature Elimination, (a) R2 values, (b) RMSE values. 

 
 

Among the covariates selected after the findcorrelation and RF-RFE function, there is a predominance 
of low correlation covariates (Pearson below 0.69) those significantly important according to the ranking 
established by the RF-RFE (Table 4). In general, covariates are relief information indicating flat areas 
and valleys and can explain the areas of high potential and low potential for micro-dam allocation. The 
most significant covariate was the slope length factor (Ls-factor), and this covariate indicates areas with 
high and low potential for micro-dam. Concerning the length of the slope, because the higher the 
distance, there is potential for increased kinetic energy, and the consequence is an increase in the 
erosion process (VAN REMORTEL et al., 2001). Therefore, the construction of micro-dam after steep 
slopes and long ramps can mitigate the erosion factor.  

 

Table 4. Correlation table between selected covariates (Pearson) and the hierarchy of importance 
between the covariates by RF-RFE. 

 Relative importance level 

 
Low  High 

 

 

M. 
ruggedness WTI Conv.  Index MRRTF Valley depth MRVBF Ls factor 

M. ruggedness 1 -0.3 -0.22 -0.24 0.45 -0.33 0.58 

WTI  1 -0.17 0.3 0.17 0.69 -0.5 

Conv.  Index   1 0.41 -0.3 -0.34 -0.04 

MRRTF    1 -0.18 0.19 -0.29 

Valley depth     1 0.06 0.29 

MRVBF      1 -0.65 

Ls factor       1 
M. ruggedness: Melton ruggedness index; WTI: Topographic wetness index; Conv.  Index: Convergence index; 
MRRTF: Multiresolution index of the ridge top flatness; MRVBF: Module multiresolution index of valley bottom 
flatness; Ls factor: Slope length factor.       

 

The covariate Melton ruggedness index is an index that is related to accumulation areas, as it 
discriminates areas of deposition of alluvial sediment flows (debris-flow fans) (JACKSON JR. et al., 
1987) was also selected; and one of the functions of micro-dams is to control the erosion process in 
lower areas (BARROS E RIBEIRO, 2009). Also, flattened areas that receive water flow are potentially 
suitable for construction micro-dam (SCHIETTECATTE et al., 2005; BARROS E RIBEIRO, 2009). Thus, 
the model selected the topographic wetness index, and this covariate is related to hydrological 
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processes, describes the local trend of receiving water from the slope area (GRUBER E PECKHAM, 
2009; KOPECKÝ E ČÍŽKOVÁ, 2010). In the same way, the convergence index indicates the fields of 
convergence of flow (PROSSER E ABERNETHY, 1996). 

Finally, three covariates indicate areas of valleys (Table 4); this information is related to areas without 
the potential for micro-dam because the sites for construction of micro-dam should not be in slope >12%. 
Furthermore, the valleys are closely related to hydrological processes (GALLANT E DOWLING, 2003), 
can indicate areas of perennial rivers, and are unsuitable for micro-dam. 

 

Prediction of potential areas for dams (AHP and RF) 

The micro-dam potential maps derived from the multicriteria analysis method (AHP) and by Random 
Forest (RF), have different configurations (Figure 3). In the AHP method, there were much larger areas 
of the very low and very high potential areas, while in the RF, the same classes fell ~ 98% (Figure 4). In 
evaluating the efficiency of these two maps, we considered the prediction of classes for areas limiting 
the allocation of micro-dam. Therefore, certain factors do not favor the construction of micro-dam, for 
example, Permanent Preservation Area (PPA), slopes >12%, narrow valleys (valleys in "V"), and there 
must be a spatial dispersion in the allocation of micro-dams (BARROS E RIBEIRO, 2009). Considering 
the slope factor is fundamental in the allocation of micro-dam, several aspects linked to the slope reduce 
the efficiency of the micro-dam in controlling erosion. On high slopes, there is an increase in the kinetic 
energy of rainfall, a lower rate of water infiltration, greater convergence of water flow, and the presence 
of more fragile soils to erosive processes (SCHIETTECATTE et al., 2005; BARROS E RIBEIRO, 2009; 
ARAGÃO et al., 2019; HIPÓLITO et al., 2019). In addition, in rainy periods, the increase in surface water 
flow can compromise the stability of the micro-dam and cause ruptures, with severe environmental 
damage (HIPÓLITO et al., 2019). 

Figure 3. Potential areas for building micro-dam by methods: (a) multi-criteria analysis (AHP); (b) 
Random Forest (RF); (c) combination AHP + RF. 

 

 

Comparing the AHP and RF maps, with some limiting factors for micro-dam construction, it was evident 
that in the multicriteria analysis, there were many areas with high potential (levels 4 and 5) in steep 
slope areas (Figure 5a). Overestimating the high potential levels for micro-dam in hillslope can be a 
critical problem, since these zones coincide with the dominance of the Inceptisols, soils with higher silt 
content and more susceptible to erosion (FU et al., 2011; FONSECA et al., 2017). On the other hand, 
the RF did not overestimate the high and very high potential levels in in hillslopes. However, RF 
underestimated very low potential level, and there was a predominance of the low and medium potential 
(Figure 5b). In general, the values underwent normalization in the prediction by the RF method, which 
is a characteristic of the algorithm (BREIMAN, 2001). Sometimes, this normalization plays an essential 
role because eliminating values of low representativeness makes it possible to raise R2 and reduce 
RMSE (CHI et al., 2008). However, in the prediction of micro-dams, it generates maps that are not 
consistent for underestimating the restrictive classes and suitable for micro-dam allocation.  
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Another aspect is the distribution of potential levels in PPA; in the AHP method, the very high potential 
area occupies 24% of the PPA, while in the RF model, this same level occupies 0.12%. Given these 
scenarios, the alternative is to combine the two maps; combining the two maps (AHP + RF), it allows a 
better definition of potential areas for micro-dam construction (Figure 3c). The isolation of the low 
potential level and associating it with the RF reduced the area of the most restrictive class for micro-
dam (i.e., very high) allocation over PPA zones (Figure 5d). Besides, generated a negative linear 
correlation with the slope (Pearson: -0,56), and low potential levels predominate in areas of low slope 
(Figure 5c).   

A configuration maintained in the combination of maps that may be considered inappropriate is the 
increment of medium potential areas in PPA (Figure 5d). The prevalence of this class over PPA was 
due to the effect of data normalization practiced by the RF. Also, some river PPA have characteristics 
of landforms that are in principle favorable to the allocation of micro-dam, for example, low slope. 
However, river PPA has other environmental functions for preserving watercourses and maintaining 
fauna and flora, including preservation guaranteed by law (BARROS E RIBEIRO, 2009). 

 
Figure 4. Area of potential levels for the construction of micro-dam by methods: AHP: multicriteria 

analysis; RF: Random Forest; AHP + RF: Multicriteria analysis and Random Forest.  Potential levels: 
1 Very low, 2 Low, 3 medium, 4 High, 5 Very high. 
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Figure 5. Scatter plots between slope values and potentiality levels for the construction of micro-dam 
by methods: (a) AHP, (b) RF, and (c) AHP + RF. (d) potential levels for micro-dam construction in 

PPA. 

 

 

In general, combining the micro-dam potential map by the AHP+RF method generates better spatial 
results, reducing the effect of underestimating areas for micro-dam allocation in restricted areas when 
applying the methods in isolation. Notably, the advantage of ML is the inclusion of covariates in 
prediction studies (KUHN E JOHNSON, 2013; CHAGAS et al., 2018; SOUZA et al., 2018; GOMES et al., 
2019). The insertion of covariates opens up vast possibilities for future studies on areas for micro-dam 
allocation, especially by inserting covariates of hydrological and climatic factors, which are important 
factors in micro-dam allocation (SCHIETTECATTE et al., 2005; HIPÓLITO et al., 2019; MESHRAM et 
al., 2020). However, it was not evaluated in this study due to data limitation in an adequate scale. 

 

CONCLUSIONS 

The micro dam potential map by multicriteria analysis overestimates the high potential class in 
environmentally restrictive areas for micro-dam allocation. 

The RF method generates a map and error and precision measurements and selects important 
covariates. The R2 was 0.43 and with low R2 variation in training and validation, indicating good 
performance in the process by the low overfitting effect. Besides, seven covariates were important in 
the prediction, and are data that are related to hydrological flows. However, the RF-generated map 
underestimates the extreme level classes for micro-dam allocation (i.e., very low and very high 
potentiality classes).  

The overlay of the low potential level of the AHP map over the RF model map generates a more 
consistent result in the definition of potential areas for micro-dam, with a reduction of high levels of 
potential in sloping areas and Permanent Preservation Area (PPA).  
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